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Introduction

 In the last chapter, the definite integral was introduced 
as the limit of Riemann sums and we used them to find 
area:

 However, Riemann sums and definite integrals have 
applications that extend far beyond the area problem.

 In this chapter, we will use Riemann sums and definite 
integrals to find volume and surface area of a solid, 
length of a plane curve, work done by a force, etc.

 While these problems sound different, the calculations 
we will use will all follow a nearly identical procedure.



A Review of Riemann Sums
 The distance between a and b is b-

a.
 Since we divided that distance into 

n subintervals, each is :

 In each subinterval, draw a 
rectangle whose height is the value
of the function f(x) at an arbitrarily
selected point in the subinterval 
(a.k.a. xk*) which gives f(xk*).

 Since the area of each rectangle is 
base * height, we get the formula 
you see on the right for each 
rectangle:  

 Area= 
b*h =   x * f(xk*) = f(xk*)   x .



Review of Riemann Sums - continued

 Remember, that was the area for each rectangle.  We need to 
find the sum of the areas of all of the rectangles between a and
b which is why we use sigma notation.

 As we discussed in a previous section, the area estimate is more
accurate with the more number of rectangles used.  Therefore,
we will let n approach infinity.



Area Between y = f(x) and y = g(x)

 To find the area between two curves, we will divide the 
interval [a,b] into n subintervals (like we did in section 5.4) 
which subdivides the area region into n strips (see diagram 
below).



Area Between y = f(x) and y = g(x) 
continued

 To find the height of each rectangle, subtract the function 
output values f(xk*) – g(xk*).  The base is      .  

 Therefore, the area of each strip is    

       base * height =       * [f(xk*) – g(xk*)]. 

 We do not want the area of one strip, we want the sum of the 
areas of all of the strips.  That is why we need the sigma.

 Also, we want the limit as the number of rectangles “n” 
increases to approach infinity, in order to get an accurate area.



Assuming One Curve is Always Above the
Other



Summary of Steps Involved



Picture of Steps Two and Three From 
Previous Slide:



Straightforward Example



Sometimes, you will have to find the limits of 
integration by solving for the points of 
intersection first:

 Then solve for the area as we did in the previous example:



Inconsistent Boundaries

 If you look at the area in figure (a), the upper and
lower boundaries are not the same for the left 
portion of the graph as they are for the right 
portion.

 On the left, the x = y2 curve is the upper and 
lower boundary.

 On the right, the x = y2 curve is the upper 
boundary, but the line y = x – 2 is the lower 
boundary.

 Therefore, in order to calculate the area using x 
as our variable, we must divide the region into 
two pieces, find the area of each, then add those 
areas to find the total area (see figure (b)).

 See work on page 417 if interested.



Reversing the Roles of x and y

 Instead, we could reverse the roles of x and y to make it easier 
to find the area.

 Solve for x in terms of y, find the lower and upper limits of 
integration in terms of y, and integrate with respect to y.



Reverse x and y to find the area on slide #13 
instead of breaking into two sections. 

 You get exactly the same answer whether you break the area 
into two sections or if you reverse x and y.

 This is a much easier and quicker calculation that we had to 
perform when we reversed x and y.

 We avoided having to do two separate integrals and add our 
results.



Formula and Picture for Reversing the
Roles of x and y



Application of Area Between Two Curves



General Idea/Definition of Volume

 In order to find volume we are first going to slice a 
three dimensional space (such as the one seen at the 
right) into infinitesimally narrow slices of area.

 Then, find the area of each slice separately.

 Next, find the sum of all of the areas (which will bring
in the Sigma notation).

 Calculate the limit as the number of slices approaches
infinity to get an accurate measure of volume.



Which Area Formula?

 The formula depends upon the shape of the cross-section.  It 
could use a circle, square, triangle, etc.





Rotating Area using Discs to Find Volume

 One of the simplest examples of a solid with congruent cross sections is 

 We are going to use all of the same ideas from Section 6.1 and more, so I am 
going to remind you of the process.

 The difference is that after we find the area of each strip, we are going to 
rotate it around the x-axis, y-axis, or another line in order to find the 
resulting volume.





Rotating Area using Washers to Find 
Volume

 We are going to use all of the same ideas from Section 6.1 and 
more, so I am going to remind you of the process.

 The difference is that after we find the area of each strip, we 
are going to rotate it around the x-axis, y-axis, or another line 
in order to find the resulting volume.



Remember:  Area Between y = f(x) and y = g(x)

 To find the area between two curves, we will divide the 
interval [a,b] into n subintervals (like we did in section 5.4) 
which subdivides the area region into n strips (see diagram 
below).



Area Between y = f(x) and y = g(x) 
continued

 To find the height of each rectangle, subtract the function 
output values f(xk*) – g(xk*).  The base is      .  

 Therefore, the area of each strip is   
        base * height =       * [f(xk*) – g(xk*)]. 

 We do not want the area of one strip, we want the sum of the 
areas of all of the strips.  That is why we need the sigma.

 Also, we want the limit as the number of rectangles “n” 
increases to approach infinity, in order to get an accurate area.



Picture of Steps Two and Three From 
Previous Slide:



Volume

 To find the height of each rectangular strip, subtract the function output 
values f(xk*) – g(xk*).  The base is      .  

 Therefore, the area of each strip is

            base * height =       * [f(xk*) – g(xk*)]. 

 We do not want the area of one strip, we want the sum of the areas of all of 
the strips.  That is why we need the sigma.

 Also, we want the limit as the number of rectangles “n” increases to 
approach infinity, in order to get an accurate area.

















Introduction

 In this section we will find the area of a surface that is 
generated by revolving a plane curve about a line.

 It is very similar to section 6.4, therefore, the equation is very 
similar to that of arc length.

 The difference is that we need to revolve it around a line like 
we did in sections 6.2 and 6.3.

 Since we are only rotating the outside curve (not the area 
between it and the axis or line), each small section will be 
approximated by the circumference of the circle infinitesimally
narrow width.



Examples Rotated about the x-axis



Around the x-axis



Break the Surface into Small Sections



Calculate Surface Area Using Riemann 
Sums

 Each of the subintervals into which we broke the surface area 
on the previous slide (figure b) is called a frustum which is a 
portion of a right circular cone. 

 As we allow the number of subintervals to approach infinity, 
the width of each approaches zero.

 Each subinterval gets closer and closer to resembling a circle 
who’s circumference is     r.

 We calculated the length of each subinterval in figure a on the 
previous slide last class using the distance formula. 



Combine the Distance Formula and the 
Circumference

 The arc length (distance) formula from last class 
and the circumference which represents the 
rotation around a line combine together to generate
the following Riemann sum-like expression:

 When we take the limit as the number of 
subintervals approaches infinity, this Riemann sum 
will give us the exact surface area.



Integral – when about the x-axis



Example about the x-axis



Integral – when about the y-axis



Example about the y-axis



Introduction
 In this section we will use our integration skills to 

study some basic principles of “work”, which is one of 
the fundamental concepts in physics and engineering.

 A simple example:
When you push a car that has run out of gas for a certain

distance you are performing work and the effect of your 
work is to make the car move.

 The energy of motion caused by the work is called the 
kinetic energy of the car.

 There is a principle of physics called the work-energy 
relationship.  We will barely touch on this principle.

 Our main goal (on later slides) is to see how integration 
is related.



Examples of W = F * d

 An object moves five feet along a line while subjected 
to a constant force of 100 pounds in its direction of 
motion.  

 The work done is W = F * d = 100 * 5 = 500 ft-lbs

 An object moves 25 meters along a line while subjected 
to a constant force of four Newtons in its direction of 
motion. 

 The work done is W = F * d = 4*25 = 100 N-m

=100 Joules



Work Done by a Variable Force 
Applied in the Direction of Motion

 If we wanted to pull the block attached to the spring 
horizontally, then we would have to apply more and more force
to the block to overcome the increasing force of the stretching 
spring.

 We will break the interval of the stretch [a,b] into subintervals 
and approximate the work on each subinterval.

 By adding the approximations to the work we will obtain a 
Riemann sum.

 The limit of the Riemann sum as n increases will give us an 
integral for work W.



Integral for Work, W (with a Variable 
Force)



Example



Calculating Work 
from Basic 
Principles Example

 As you can see in the figure above right, we have a cone shaped
(conical) container of radius 10 ft and height 30 ft.  Suppose 
that this container is filled with water to a depth of 15 ft.  How
much work is required to pump all of the water out through the
hole in the top of the container?

 We will divide the water into thin layers, approximate the work 
required to move each layer to the top of the container and add 
them to obtain a Riemann sum.

 The limit of the Riemann sum produces an integral for the total 
work.



Calculating Work 
from Basic 
Principles Example 
con’t

 The volume of a cone is 
1
3
��2h

 By similar triangles the ratio of radius to height 
�

h
 =	
10
30

 =	
1
3

 When these are combined with the weight density of water 
which is 62.4 pounds per cubic foot, we get the following 
Riemann sum and integral:




