
Table of Contents

EXIT

A solution is an example of a

 a. homogeneous colloid.
 b. heterogeneous colloid.

- c. homogeneous mixture.
- d. heterogeneous mixture.

A solution is an example of a

 a. homogeneous colloid.
 b. heterogeneous colloid.

 c. homogeneous mixture. d. heterogeneous mixture.

2. Magnesium sulfide and aluminum fluoride are

- a. ionic compounds.
- b. molecular compounds.
- c. covalent electrons.
- d. radioactive elements.

- 2. Magnesium sulfide and aluminum fluoride are
 - a. ionic compounds.

b. molecular compounds.

- c. covalent electrons.
- d. radioactive elements.

- 3. When dissolved in water, ionic compounds
 - a. conduct electricity.
 - b. make the water cloudy.
 - c. form double and triple bonds.
 - d. do not conduct electricity.

3. When dissolved in water, ionic compounds

a. conduct electricity.

- b. make the water cloudy.
- c. form double and triple bonds.
- d. do not conduct electricity.

4. When dissolved in water, molecular compounds

- a. conduct electricity.
- b. make the water cloudy.
- c. form double and triple bonds.
- d. do not conduct electricity.

4. When dissolved in water, molecular compounds

- a. conduct electricity.
- b. make the water cloudy.
- c. form double and triple bonds.
- d. do not conduct electricity.

What are some characteristics of acids and bases?

Suppose you dissolve a teaspoon of salt in a glass of water. Is it possible to recover the salt from the water? Explain.

Use Related Words

Verb	Noun	Adjective
indicate To show; to point to	indicator Something that shows or points to	indicative Serving as a sign; showing

MENU

Use Related Words

Verb	Noun	Adjective
saturate	saturation	saturated
To fill up as much as	The condition of holding	To be full; to hold as
is possible	as much as is possible	much as is possible

Use Related Words

Verb	Noun	Adjective
suspend	suspension	suspended
To hang so as to	The condition of hanging	Hanging so as to allow
allow free movement	or moving freely	free movement

Apply It!

Review the words related to saturate. Complete the following sentences with the correct form of the word.

MENU

1. The ______ sponge could hold no more water.

saturated

2. He continued to add water to the point of _____.

saturation

End of Chapter Preview

Section 1: Understanding Solutions

- What are the characteristics of solutions, colloids, and suspensions?
- What happens to the particles of a solute when a solution forms?
- How do solutes affect the freezing point and boiling point of a solvent?

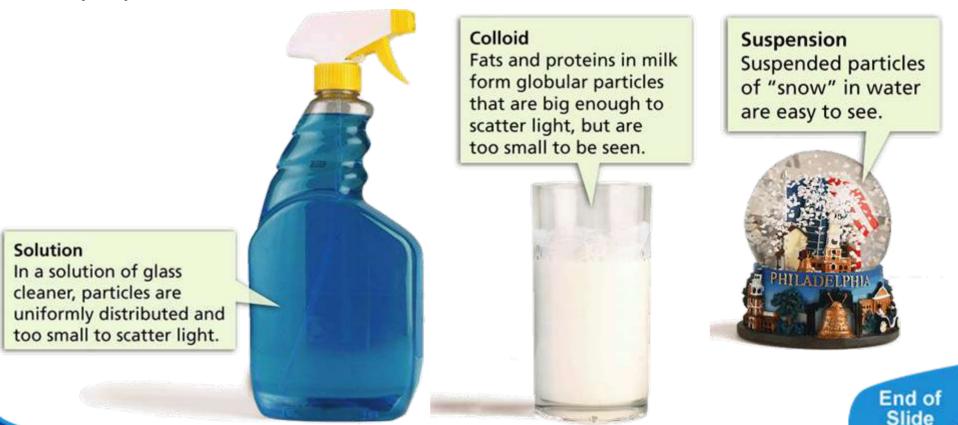
What Is a Solution?

A solution has the same properties throughout. It contains solute particles (molecules or ions) that are too small to see.

Examples of Common Solutions			
Solute	Solvent	Solution	
Gas	Gas	Air (oxygen and other gases in nitrogen)	
Gas	Liquid	Soda water (carbon dioxide in water)	
Liquid	Liquid	Antifreeze (ethylene glycol in water)	
Solid	Liquid	Dental filling (silver in mercury)	
Solid	Liquid	Ocean water (sodium chloride and other compounds in water)	
Solid	Solid	Stainless steel (chromium, nickel, and carbon in iron)	

What Is a Solution?

Solutions can be formed from any combination of solids, liquids, and gases.

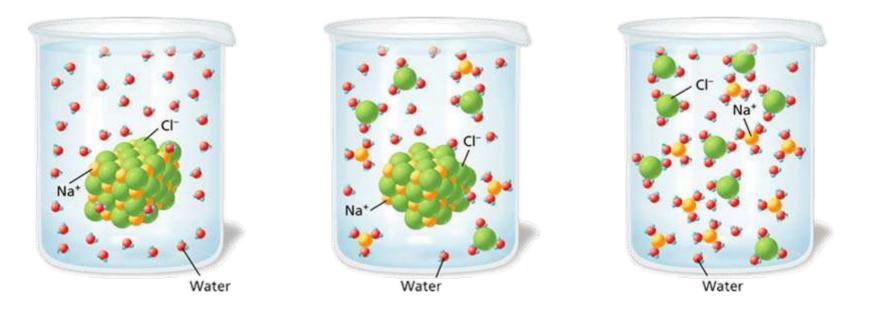


End of Slide

EXI

Colloids and Suspensions

Colloids and suspensions are mixtures that have different properties than solutions.



MENU

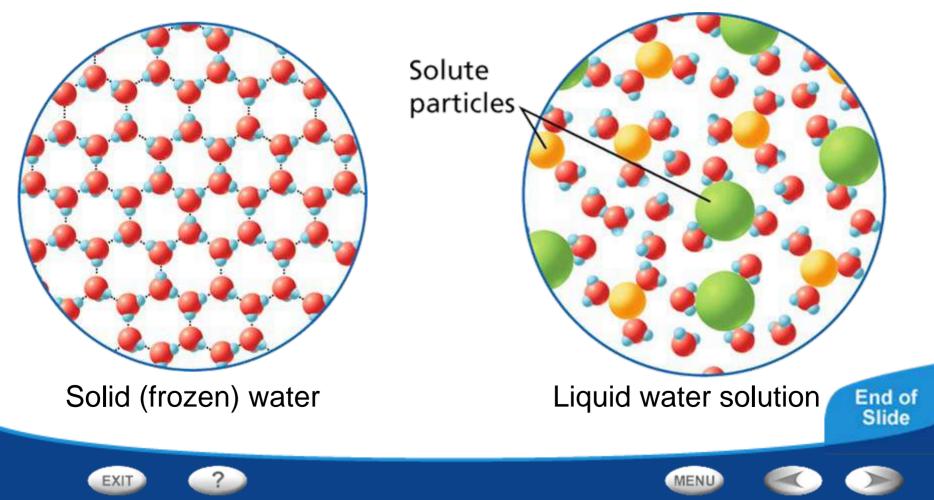
EXIT

Particles in a Solution

When a solution forms, particles of the solvent surround and separate the particles of the solute.

MENU

Salt Dissolving in Water Activity


Click the Active Art button to open a browser window and access Active Art about salt dissolving in water.

Effects of Solutes on Solvents

Solutes lower the freezing point and raise the boiling point of a solvent.

Universal Solvent

Click the Video button to watch a movie about universal solvent.

End of Section: Understanding Solutions

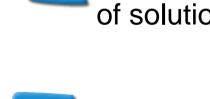
Section 2: Concentration and Solubility

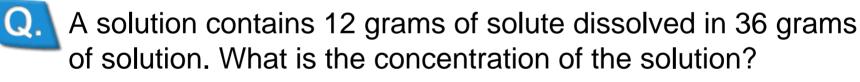
- How is concentration measured?
- Why is solubility useful in identifying substances?
- What factors affect the solubility of a substance?

Calculating a Concentration

To calculate the concentration of a solution, compare the amount of solute to the amount of solution and multiply by 100 percent.

For example, if a solution contains 10 grams of solute dissolved in 100 grams of solution, then its concentration can be reported as 10 percent.


MENL

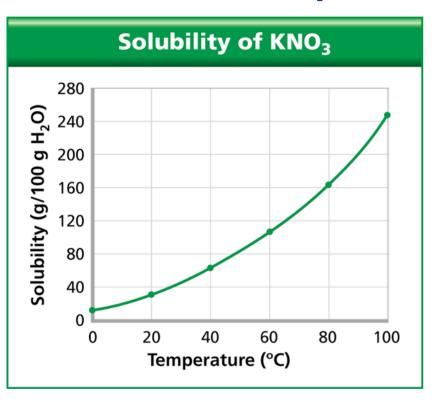


Calculating a Concentration

Practice Problem

Solubility

Solubility in 100 g of Water at 0°C				
Compound	Solubility (g)			
*Carbon dioxide (CO ₂)	0.335			
Baking soda (NaHCO ₃)	6.9			
Table salt (NaCl)	35.7			
Table sugar (C ₁₂ H ₂₂ O ₁₁)	180			


*CO₂ at 101 kPa total pressure

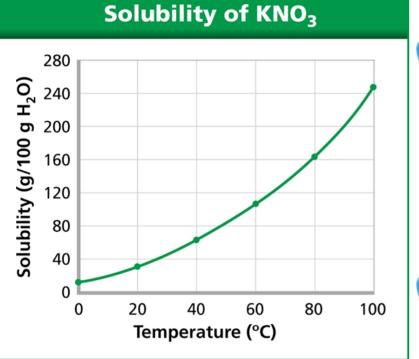
Solubility is a measure of how much solute can dissolve in a solvent at a given temperature.

MENU

Analyzing Data Temperature and Solubility

The solubility of the compound potassium nitrate (KNO_3) varies in water at different temperatures.

MENU



Math

Analyzing Data

Math

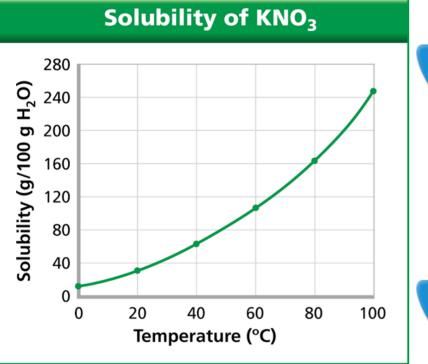
Temperature and Solubility

EXIT

Reading Graphs:

At which temperature shown in the graph is KNO₃ least soluble in water?

 KNO_3 is least soluble at 0°C.


MENU

Analyzing Data

Math

Temperature and Solubility

EXIT

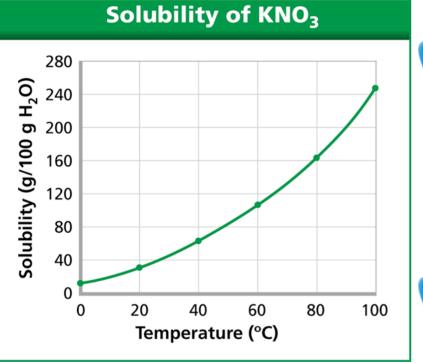
Reading Graphs:

Approximately what mass of KNO_3 is needed to saturate a water solution at 40°C?

Approximately 65 g of KNO_3 are needed to saturate a water solution at 40°C.

MENU

End of Slide


Analyzing Data

Math

Temperature and Solubility

Q.

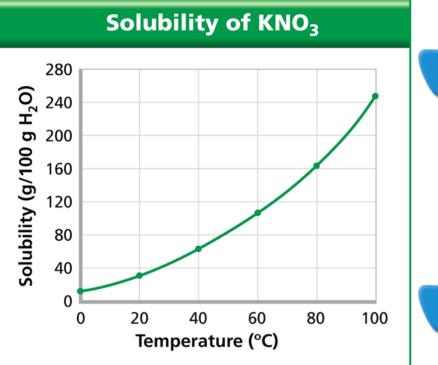
Calculating:

EXIT

About how much more soluble is KNO₃ at 40°C than at 20°C?

 KNO_3 is about twice as soluble at 40°C as it is at 20°C.

MENU


End of Slide

Analyzing Data

EXIT

Math

Temperature and Solubility

Interpreting Data:

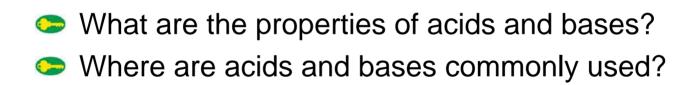
Does solubility increase at the same rate with every 20°C increase in temperature? Explain.

No; the curve shows that solubility increases more with each 20°C increase in temperature.

Slide

Links on Solubility

Click the SciLinks button for links on solubility.


End of Section: Concentration and Solubility

Section 3: Describing Acids and Bases

Properties of Acids and Bases

Litmus is an example of an indicator, a compound that changes color when in contact with an acid or a base.

EXIT

Acids and bases have many uses around the home and in industry.

Acids in the Home People often use dilute solutions of acids to clean brick and other surfaces. Hardware stores sell muriatic (hydrochloric) acid, which is used to clean bricks and metals.



Acids and bases have many uses around the home and in industry.

Acids and Food Many of the vitamins in the foods you eat are acids.

Acids and bases have many uses around the home and in industry.

Acids and Food Many of the vitamins in the foods you eat are acids.

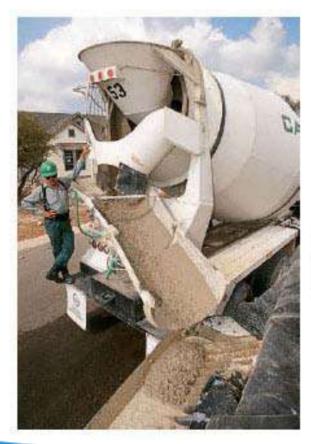
Tomatoes and oranges contain ascorbic acid, or vitamin C.

EXIT

Acids and bases have many uses around the home and in industry.

Acids and Food Many of the vitamins in the foods you eat are acids.




Acids and bases have many uses around the home and in industry.

Acids and bases have many uses around the home and in industry.

Acids and bases have many uses around the home and in industry.

EXIT

Bases and Industry Mortar and cement are manufactured using the bases calcium oxide and calcium hydroxide.

Acids and bases have many uses around the home and in industry.

Bases and Food

Baking soda reacts with acids such as lemon juice and buttermilk to produce carbon dioxide gas in baked goods. Without these gas bubbles, breads, biscuits, cakes, and cookies would not be light and fluffy.

End of Slide

Links on Acids and Bases

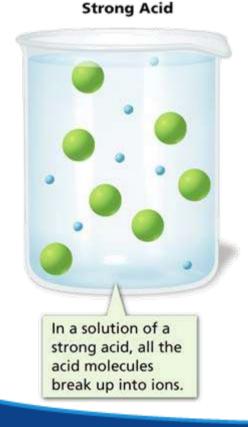
Click the SciLinks button for links on acids and bases.

End of Section: Describing Acids and Bases

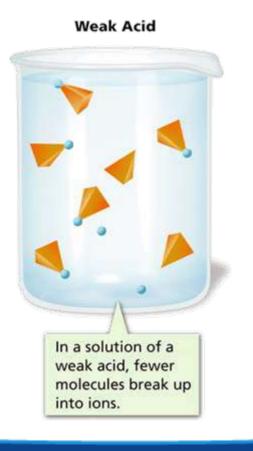
Section 4: Acids and Bases in Solution

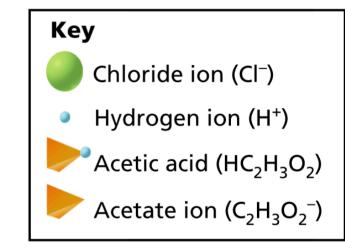
- What kinds of ions do acids and bases form in water?
- What does pH tell you about a solution?
- What happens in a neutralization reaction?

Acids and Bases in Solution


The table lists some commonly encountered acids and bases.

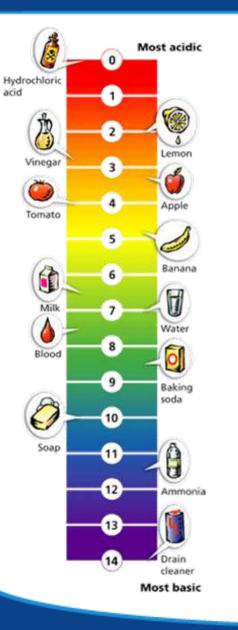
Important Acids and Bases			
Acid	Formula	Base	Formula
Hydrochloric acid	HCI	Sodium hydroxide	NaOH
Nitric acid	HNO ₃	Potassium hydroxide	кон
Sulfuric acid	H ₂ SO ₄	Calcium hydroxide	Ca(OH) ₂
Carbonic acid	H ₂ CO ₃	Aluminum hydroxide	AI(OH) ₃
Acetic acid	$HC_2H_3O_2$	Ammonia	NH ₃
Phosphoric acid	H ₃ PO ₄	Calcium oxide	CaO




Strength of Acids and Bases

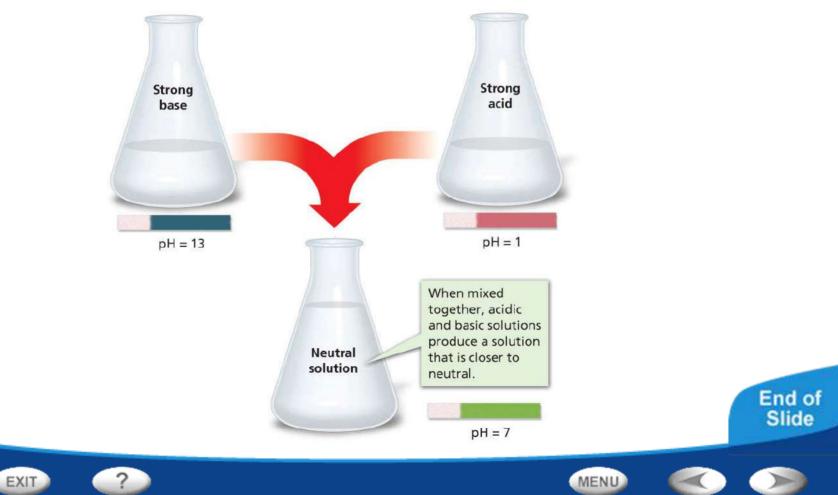
Strong acids and weak acids act differently in water. Hydrochloric acid is a strong acid. Acetic acid is a weak acid.

EXIT



End of

Slide


EXIT

The pH Scale

A low pH indicates that the concentration of hydrogen ions is big. In contrast, a high pH indicates that the concentration of hydrogen ions is low.

Acid-Base Reactions

In a neutralization reaction, an acid reacts with a base to produce a salt and water.

Acid-Base Reactions

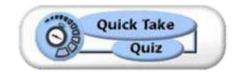
Common Salts		
Salt	Uses	
Sodium chloride NaCl	Food flavoring; food preservative	
Potassium iodide KI	Additive in "iodized" salt that prevents iodine deficiency	
Calcium chloride CaCl ₂	De-icer for roads and walkways	
Potassium chloride KCl	Salt substitute in foods	
Calcium carbonate CaCO ₃	Found in limestone and seashells	
Ammonium nitrate NH₄NO₃	Fertilizer; active ingredient in cold packs	

Each salt listed in this table can be formed by the reaction between an acid and a base.

More on the pH Scale

Click the PHSchool.com button for an activity about the pH scale.

Click the Video button to watch a movie about pH.


End of Section: Acids and Bases in Solution

QuickTake Quiz

Click to start quiz.

