Chapter 3 Study Guide Solving Systems of Equations

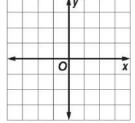
Solve Systems Graphically A system of equations is two or more equations with the same variables. You can solve a system of linear equations by using a table or by graphing the equations on the same coordinate plane. If the lines intersect, the solution is that intersection point. The following chart summarizes the possibilities for graphs of two linear equations in two variables.

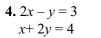
Graphs of Equations	Slopes of Lines	Classification of System	Number of Solutions
Lines intersect	Different slopes	Consistent and independent	One
Lines coincide (same line)	Same slope, same y-intercept	Consistent and dependent	Infinitely many
Lines are parallel	Same slope, different y-intercepts	Inconsistent	None

Example: Graph the system of equations and describe it as *consistent and independent, consistent and dependent, or inconsistent.*

Write each equation in slope-intercept form.

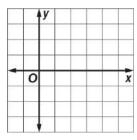
 $x-3 y=6 \rightarrow y=\frac{1}{3}x-2$ $2 x-y=-3 \rightarrow y=2x+3$


The graphs intersect at (-3, -3). Since there is one solution, the system is consistent and independent.

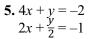

2x - y = -3

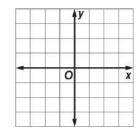
Exercises

Graph each system of equations and describe it as *consistent and independent*, *consistent and dependent*, or *inconsistent*.


1.
$$3x + y = -2$$

 $6x + 2y = 10$

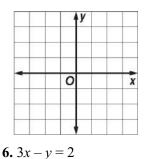




		y	
-	0		x
		-	

2.
$$x + 2y = 5$$

 $3x - 15 = -6y$



3. 2x - 3y = 04x - 6y = 3

x-3y=6

x + y = 6

1	- 1	y	
-	-		
-	_	_	
_	_		_
			8
	0		x
-			

3-1 Study Guide and Intervention Solving Systems of Equations

Solve Systems Algebraically To solve a system of linear equations by **substitution**, first solve for one variable in terms of the other in one of the equations. Then substitute this expression into the other equation and simplify. To solve a system of linear equations by **elimination**, add or subtract the equations to eliminate one of the variables.

Example 1: Use substitution to solve the system of equations.

Subtract 2x from both sides.

First equation

Solve the first equation for *y* in terms of *x*.

2x - y = 9x + 3y = -6

Replace x with -2 and solve for y.

3x - 2y = 4

x = 3 Divide each side by 7. Now, substitute the value 3 for x in either original equation and solve for y.

y = 2x - 9	Multiply both sides by –1.	2x - y = 9	First equation
Substitute the expression $2x - 9$ for y into the second		2(3) - y = 9	Replace x with 3.
equation and solve for		6 - y = 9	Simplify.
x + 3y = -6	Second equation	-v = 3	Subtract 6 from each side.
x+3(2x-9)=-6	Substitute $2x - 9$ for y.	v = -3	Multiply each side by –1.
x + 6x - 27 = -6	Distributive Property	2 -	
7x - 27 = -6	Simplify.	The solution of	f the system is $(3, -3)$.
7x = 21	Add 27 to each side.		

Example 2: Use the elimination method to solve the system of equations.

3x -	2y =	4
5x +	3y =	-25

Multiply the first equation by 3 and the second equation by 2. Then add the equations to eliminate the y variable.

3x - 2y = 4	Multiply by 3.	9x - 6y = 12	3(-2) - 2y = 4
5x + 3y = -25	Multiply by 2.	10x + 6y = -50	-6 - 2y = 4
		19x = -38	-2y = 10
		x = -2	-2y = 10 $y = -5$
			The solution is $(-2, -5)$

Exercises

2x - v = 9

-y = -2x + 9

Solve each system of equations.

1. $3x + y = 7$	2. $2x + y = 5$	3. $2x + 3y = -3$
4x + 2y = 16	3x - 3y = 3	x + 2y = 2
4.2.7	F A ((5 2 12
4. $2x - y = 7$ 6x - 3y = 14	5. $4x - y = 6$ $2x - \frac{y}{2} = 4$	6. $5x + 2y = 12$ -6x - 2y = -14
	2	··· _/ 11
7. $2x + y = 8$ $3x + \frac{3}{2}y = 12$	8. $7x + 2y = -1$	9. $3x + 8y = -6$
$3x + \frac{3}{2}y = 12$	4x - 3y = -13	x - y = 9