
Chapter 2 Study Guide Rate of Change and Slope

Rate of Change Rate of change is a ratio that compares how much one quantity changes, on average, relative to the change in another quantity.

Example: Find the average rate of change for the data in the table.

Elevation of the Sun (in degrees) Time 6° 7:00 A.M. 26° 8:00 A.M. 45° 9:00 A.M. 64° 10:00 A.M. 84° 11:00 A.M.

Exercises

Find the rate of change for each set of data.

1.	Time P.M.	People in Auditorium
	7:15	26
	7:22	61
	7:24	71
	7:30	101
	7:40	151

3.	Time (minutes)	Vehicles through Tunnel
	4	1,610
	11	2,131
	19	2,746
	22	2,970
	28	3,432

5.	Time (seconds)	Water through Channel (liters)
	6	22,172
	13	24,706
	15	25,430
	23	28,326
	47	37,014

2.	Time (minutes)	Altitude of balloon (meters)
	3	520
	8	1,220
	11	1,640
	15	2,200
	23	3,320

4.	Time (seconds)	Depth of sinking stone (meters)	
	0	3.51	
	7	4.77	
	11	5.49	
	21	7.29	
	29	8.73	

 Time (seconds)
 Distance between Two Sleds (meters)

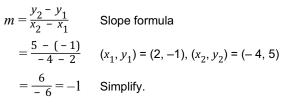
 0
 37.3

 3
 30.2

 4
 27.7

 7
 20.8

 13
 7.2
 DATE

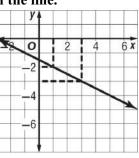

2-3 Study Guide and Intervention Rate of Change and Slope

Slope

Slope *m* of a Line

e For points (x_1, y_1) and (x_2, y_2) , where $x_1 \neq x_2$, $m = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$

Example 1: Find the slope of the line that passes through (2, -1) and (-4, 5).

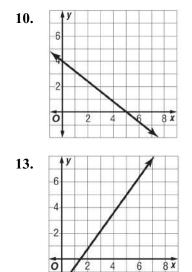


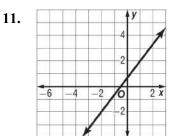
The slope of the line is -1.

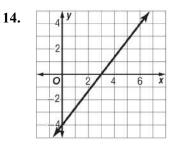
Example 2: Find the slope of the line.

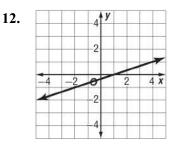
(continued)

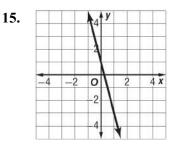
Find two points on the line with integer coordinates, such as (1, -2) and (3, -3). Divide the difference in the *y*-coordinates by the difference in the *x*coordinates: $\frac{-3 - (-2)}{3 - 1} = -\frac{1}{2}$


The slope of the line is $-\frac{1}{2}$


Exercises


Find the slope of the line that passes through each pair of points. Express as a fraction in simplest form.


1. (4, 7) and (6, 13)	2. (6, 4) and (3, 4)	3. (5, 1) and (7, -3)
4. (5, -3) and (-4, 3)	5. (5, 10) and (-1,-2)	6. (-1, -4) and (-13, 2)
7. (7, -2) and (3, 3)	8. (-5, 9) and (5, 5)	9. (4, -2) and (-4, -8)


Determine the rate of change of each graph.

