

Chapter Nineteen The Representative Elements: Groups 1A Through 4A

Table 19.1 Distribution (Mass Percent) of the 18 Most Abundant Elements in the Earth's Crust, Oceans, and Atmosphere

TABLE 19.1	Distribution	(Mass Percent) of th	ie 18 Most	Abundant Elements in
the Earth's C	rust, Oceans,	and Atmosphere		

Element	Mass Percent	Element	Mass Percent
Oxygen	49.2	Chlorine	0.19
Silicon	25.7	Phosphorus	0.11
Aluminum	7.50	Manganese	0.09
Iron	4.71	Carbon	0.08
Calcium	3.39	Sulfur	0.06
Sodium	2.63	Barium	0.04
Potassium	2.40	Nitrogen	0.03
Magnesium	1.93	Fluorine	0.03
Hydrogen	0.87	All others	0.49
Titanium	0.58		

Table 19.2 Abundance of Elements in the Human Body

TABLE 19.2 Ab	TABLE 19.2 Abundance of Elements in the Human Body						
Major Elements	Mass Percent	Trace Elements (in alphabetical order)					
Oxygen	65.0	Arsenic					
Carbon	18.0	Chromium					
Hydrogen	10.0	Cobalt					
Nitrogen	3.0	Copper					
Calcium	1.4	Fluorine					
Phosphorus	1.0	Iodine					
Magnesium	0.50	Manganese					
Potassium	0.34	Molybdenum					
Sulfur	0.26	Nickel					
Sodium	0.14	Selenium					
Chlorine	0.14	Silicon					
Iron	0.004	Vanadium					
Zinc	0.003						

Copyright © Houghton Mifflin Company. All rights reserved.

A Survey of the Representative Elements

Reviewing the Periodic Table Regions

Representative elements: Groups 1A - 8A (filling *s* and *p* orbitals) **Transition elements:**

Center of the table (filling d orbitals)

Reviewing the Periodic Table Regions

Lanthanides and Actinides:

listed separately, on the bottom of the table (filling 4*f* and 5*f* orbitals)

Metalloids:

separate metals from nonmetals

Figure 19.1 The Periodic Table: The Elements in the A Groups are the Representative Elements

1A																	8A
Н	2A											3A	4A	5A	6A	7A	He
Li	Be								В	С	Ν	0	F	Ne			
Na	Na Mg							Al	Si	Р	S	Cl	Ar				
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Ha	Unh	Uns	Uno	Une	Ds	Rg	Uub	Uut	Uuq	Uup			
	La	inthan	ides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Ac	etinide	s	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Copyright © Houghton Mifflin Company. All rights reserved.

Representative Elements: Groups 1A-4A

Figure 19.2 The Atomic Radii of Some Atoms in Picometers

The Group 1A Elements

Sodium Reacts Violently with Chlorine

Sodium Reacting with Water

Table 19.3 Sources and Methods of Preparation of the Pure Alkali Metals

TABLE 19.3	Sources and Methods of Preparation of the Pure Alkali Metal					
Element	Source	Method of Preparation				
Lithium	Silicate minerals such as spodumene, LiAl(Si ₂ O ₆)	Electrolysis of molten LiCl				
Sodium	NaCl	Electrolysis of molten NaCl				
Potassium	KCl	Electrolysis of molten KCl				
Rubidium	Impurity in lepidolite, $Li_2(F,OH)_2Al_2(SiO_3)_3$	Reduction of RbOH with Mg and H_2				
Cesium	Pollucite $(Cs_4Al_4Si_9O_{26} \cdot H_2O)$ and an impurity in lepidolite (see Fig. 19.4)	Reduction of CsOH with Mg and H_2				

Table 19.4 Selected Physical Properties of the Alkali Metals

IABLE 19.4	Selected Phy	vsical Properties of the	e Alkali Mo	etals
Element	lonization Energy (kJ/mol)	Standard Reduction Potential (V) for $M^+ + e^- \rightarrow M$	Radius of M ⁺ (pm)	Melting Point (°C)
Lithium	520	-3.05	60	180
Sodium	495	-2.71	95	98
Potassium	419	-2.92	133	63
Rubidium	409	-2.99	148	39
Cesium	382	-3.02	169	29

Group 1A Oxides

In the presence of excess oxygen:

 $4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O}$ $2\text{Na} + \text{O}_2 \rightarrow \text{Na}_2\text{O}_2$ $K + \text{O}_2 \rightarrow K\text{O}_2$ $Rb + \text{O}_2 \rightarrow Rb\text{O}_2$ $Cs + \text{O}_2 \rightarrow Cs\text{O}_2$

Table 19.5 Types of Compounds Formed by the Alkali Metals with Oxygen

TABLE 19.5 Types of Compounds Formed by the Alkal Metals with Oxygen				
General Formula	Name	Examples		
M ₂ O	Oxide	Li_2O , Na_2O		
M_2O_2	Peroxide	Na_2O_2		
MO_2	Superoxide	KO_2 , RbO_2 , CsO_2		

Table 19.6 Selected Reactions of the Alkali Metals

TABLE 19.6 Selected React	tions of the Alkali Metals
Reaction	Comment
$2M + X_2 \rightarrow 2MX$	$X_2 = any halogen molecule$
$4Li + O_2 \rightarrow 2Li_2O$	Excess oxygen
$2Na + O_2 \rightarrow Na_2O_2$	
$M + O_2 \rightarrow MO_2$	M = K, Rb, or Cs
$2M + S \rightarrow M_2S$	
$6Li + N_2 \rightarrow 2Li_3N$	Li only
$12M + P_4 \rightarrow 4M_3P$	
$2M + H_2 \rightarrow 2MH$	
$2M + 2H_2O \rightarrow 2MOH + H_2$	
$2M + 2H^+ \rightarrow 2M^+ + H_2$	Violent reaction!

Hydrogen

Hydrogen Gas Being Used to Blow Soap Bubbles

As the **Bubbles Float** Upward, They are Lighted Using a Candle on a Long Pole

Hydrides

Binary compounds containing hydrogen. ionic hydrides: hydrogen + the most active metals (eg; LiH, CaH₂) covalent hydrides: hydrogen + other nonmetals (eg; H_2O , CH_4 , NH_3) metallic (interstitial) hydrides: transition metal crystals treated with H₂ gas

The Group 2A Elements

Bones Contain Large Amounts of Calcium

Calcium Metal **Reacting with** Water to Form Bubbles of Hydrogen Gas

Table 19.7 Selected Physical Properties, Sources, and Methods of Preparation for the Group 2A Elements

	Ionization Energy Radius (kJ/mol)		° (\/) for			
Element	(pm)	First	Second	$M^{2+} + 2e^- \rightarrow M$	Source	Preparation
Beryllium	~30	900	1760	-1.70	Beryl (Be ₃ Al ₂ Si ₆ O ₁₈)	Electrolysis of molten BeCl ₂
Magnesium	65	738	1450	-2.37	Magnesite (MgCO ₃), dolomite (MgCO ₃ \cdot CaCO ₃), carnallite (MgCl ₂ \cdot KCl \cdot 6H ₂ O)	Electrolysis of molten MgCl ₂
Calcium	99	590	1146	-2.76	Various minerals containing CaCO ₃	Electrolysis of molten CaCl ₂
Strontium	113	549	1064	-2.89	Celestite (SrSO ₄), strontianite (SrCO ₃)	Electrolysis of molten SrCl ₂
Barium	135	503	965	-2.90	Baryte (BaSO ₄), witherite (BaCO ₃)	Electrolysis of molten BaCl ₂
Radium	140	509	979	-2.92	Pitchblende (1 g of Ra/7 tons of ore)	Electrolysis of molten RaCl ₂

Table 19.8 Selected Reactions of the Group 2A Elements

TABLE 19.8 Selected Reactions of the Group 2A Elements					
Reaction	Comment				
$M + X_2 \rightarrow MX_2$	$X_2 =$ any halogen molecule				
$2M + O_2 \rightarrow 2MO$ $M + S \rightarrow MS$	Ba gives BaO ₂ as well				
$3M + N_2 \rightarrow M_3N_2$	High temperatures				
$6M + P_4 \rightarrow 2M_3P_2$	High temperatures				
$M + H_2 \rightarrow MH_2$	M = Ca, Sr, or Ba; high temperatures; Mg at high pressure				
$M + 2H_2O \rightarrow M(OH)_2 + H_2$ $M + 2H^+ \rightarrow M^{2+} + H_2$ $Be + 2OH^- + 2H_2O \rightarrow Be(OH)_4^{2-} + H_2$	M = Ca, Sr, or Ba				

Ion Exchange

Ca²⁺ and Mg²⁺ are often removed during ion exchange, releasing Na⁺ into solution. Ion exchange resin: large molecules that have many ionic sites.

A Schematic Representation of a Typical Cation-Exchange Resin

The Group 3A and Group 4A Elements

Table 19.9 Selected Physical Properties, Sources, and Methods of Preparation for the Group 3A Elements

INDEL 13.5	Scietteu Pily	sical rioperties,	sources, and methous	or reparation for the droup 5	ALIEMENES
Element	Radius of M ³⁺ (pm)	lonization Energy (kJ/mol)	$^{\circ}$ (V) for M^{3+} + $3e^{-} \rightarrow M$	Sources	Method of Preparation
Boron	20	798	-	Kernite, a form of borax (Na ₂ B ₄ O ₇ · 4H ₂ O)	Reduction by Mg or H ₂
Aluminum	51	581	-1.71	Bauxite (Al ₂ O ₃)	Electrolysis of Al ₂ O ₃ in molten Na ₃ AlF ₆
Gallium	62	577	-0.53	Traces in various minerals	Reduction with H ₂ or electrolysis
Indium	81	556	-0.34	Traces in various minerals	Reduction with H ₂ or electrolysis
Thallium	95	589	0.72	Traces in various minerals	Electrolysis

Table 19.10 Selected Reactions of the Group 3A Elements

TABLE 19.10 Selected Reactions of the Group 3A Elements					
Reaction	Comment				
$2M + 3X_2 \rightarrow 2MX_3$	X_2 = any halogen molecule; Tl gives TlX as well, but no TlI ₃				
$4M + 3O_2 \rightarrow 2M_2O_3$	High temperatures; Tl gives Tl ₂ O as well				
$2M + 3S \rightarrow M_2S_3$	High temperatures; Tl gives Tl ₂ S as well				
$2M + N_2 \rightarrow 2MN$	M = Al only				
$2M + 6H^+ \rightarrow 2M^{3+} + 3H_2$	$M = Al$, Ga, or In; Tl gives Tl^+				
$2M + 2OH^- + 6H_2O \rightarrow 2M(OH)_4^- + 3H_2$	M = Al or Ga				

Figure 19.8 (a) The Structure of B₂H₆ (b) The Structure of B₅H₉

Inert Pair Effect

The tendency for the heavier elements of Groups 3A and 4A to exhibit lower oxidation states as well as their expected oxidation states.

Group 3A

+1 and +3 oxidation states

Group 4A

+2 and +4 oxidation states

Gallium Metal has such a Low Melting point (30°C) That it Melts from the Heat of a Hand

Aluminum is Used in Airplane Construction

Table 19.11 Selected Physical Properties, Sources, and Methods of Preparation for the Group 4A Elements

TABLE 19.11	Selected Physic	or the Group 4A Elements			
Element	Electronegativity	Melting Point (°C)	Boiling Point (°C)	Sources	Method of Preparation
Carbon	2.5	3727 (sublimes)	—	Graphite, diamond, petroleum, coal	—
Silicon	1.8	1410	2355	Silicate minerals, silica	Reduction of K_2SiF_6 with Al, or reduction of SiO_2 with Mg
Germanium	1.8	937	2830	Germanite (mixture of copper, iron, and germanium sulfides)	Reduction of GeO_2 with H_2 or C
Tin	1.8	232	2270	Cassiterite (SnO ₂)	Reduction of SnO2 with C
Lead	1.9	327	1740	Galena (PbS)	Roasting of PbS with O_2 to form PbO ₂ and then reduction with C

Table 19.12 Strengths of C-C,Si-Si, and Si-O Bonds

Table 19.13 Selected Reactions of the Group 4A Elements

TABLE 19.13 Selected Reactions of the Group 4A Elements				
Reaction	Comment			
$M + 2X_2 \rightarrow MX_4$	X_2 = any halogen molecule; M = Ge or Sn; Pb gives PbX ₂			
$M + O_2 \rightarrow MO_2$	M = Ge or Sn; high temperatures; Pb gives PbO or Pb_3O_4			
$M + 2H^+ \rightarrow M^{2+} + H_2$	M = Sn or Pb			

Sand Dunes in Monument Valley Arizona

Figure 19.3 The Structure of Quartz, which has Empirical Formula SiO₂

(top) A Processed Silicon Wafer with (bottom) a Silicon Microchip

Roman Baths such as these in Bath, England, Used Lead Pipes for Water

Lead (II) oxide, Known as Litharge

Hydrogen Peroxide has the Lewis Structure

Figure 19.5 The Structure of Ice, Showing the Hydrogen Bonding

Figure 19.6c The Ball-and-Stick Model of the Extended Structure

Lepidolite

Airpacks

The Dolomite Mountains in Italy

Portrait of Beethoven by Josef Kari Stieler

