

Chapter Eighteen:

THE NUCLEUS: A CHEMIST'S VIEW

Nuclear Stability and Radioactive Decay

Nuclear Particles

loading...

3 18–

The Zone of Stability

18–

Table 18.1 Number of Stable Nuclides Related to Numbers of Protons and Neurons

TABLE 18.1 Number of Stable Nuclides Related to Numbers of Protons and Neutrons			
Number of Protons	Number of Neutrons	Number of Stable Nuclides	Examples
Even	Even	168	${}^{12}_{6}C, {}^{16}_{8}O$
Even	Odd	57	${}^{13}_{6}C, {}^{47}_{22}Ti$
Odd	Even	50	¹⁹ ₉ F, ²³ ₁₁ Na
Odd	Odd	4	² ₁ H, ⁶ ₃ Li

Note: Even numbers of protons and neutrons seem to favor stability.

Types of Radioactive Decay

- alpha production (α): $^{238}_{92}U \rightarrow ^{4}_{2}He + ^{234}_{90}Th$
- beta production (β):

$$^{234}_{90}$$
Th $\rightarrow ^{234}_{91}$ Pa + $^{0}_{-1}$ e

Types of Radioactive Decay

gamma ray production (γ):

positron production: $^{238}U \rightarrow ^{4}He + ^{234}_{90}Th + 2^{0}_{0}\gamma$

electron capture: $_{11}^{0}Ne \rightarrow _{1}^{0}e + _{10}^{22}Ne$

 $^{201}_{80}\text{Hg} + ^{0}_{-1}e \rightarrow ^{201}_{79}\text{Au} + ^{0}_{0}\gamma$

Table 18.2 Various Types of RadioactiveProcesses Showing the Changes ThatTake Place in the Nuclides

Process	Change in A	Change in Z	Change in Neutron/Proton Ratio	Example
-particle (electron) production	0	+1	Decrease	$^{227}_{89}Ac \longrightarrow ^{227}_{90}Th + ^{0}_{-1}e$
Positron production	0	-1	Increase	$^{13}_{7}N \longrightarrow ^{13}_{6}C + ^{0}_{1}e$
Electron capture	0	-1	Increase	$^{73}_{33}As + ^{0}_{-1}e \longrightarrow ^{73}_{32}Ge$
-particle production	-4	-2	Increase	$^{210}_{84}$ Po \longrightarrow $^{206}_{82}$ Pb + $^{4}_{2}$ He
-ray production	0	0	-	Excited nucleus \longrightarrow ground-state nucleus $+ {}^{0}_{0}$
Spontaneous fission		-		$^{254}_{98}Cf \longrightarrow$ lighter nuclides + neutrons

Decay Series

Table 18.3 The Half-Lives of **Nuclides** in the ²³⁸92U Decay Series

TABLE 18.3 The Half-Lives of N	uclides in the ²³⁸ ₉₂ U Decay Serie	es
Nuclide	Particle Produced	Half-Life
Uranium-238 $\binom{238}{92}$ U)		$4.51 imes 10^9$ years
Thorium-234 $\binom{234}{90}$ Th		24.1 days
Protactinium-234 (²³⁴ ₉₁ Pa)		6.75 hours
Uranium-234 $\binom{234}{92}$ U)		2.48×10^5 years
Thorium-230 ($^{230}_{90}$ Th)		8.0×10^4 years
Radium-226 $\binom{226}{88}$ Ra)		1.62×10^3 years
$\operatorname{Radon-222}_{\downarrow}^{\vee} (\overset{222}{}_{86}^{22} \operatorname{Rn})$		3.82 days
Polonium-218 ($^{218}_{84}$ Po)		3.1 minutes
Lead-214 $\binom{14}{82}$ Pb)		26.8 minutes
Bismuth-214 $\binom{214}{83}$ Bi)		19.7 minutes
Polonium-214 $\binom{214}{84}$ Po		$1.6 \times 10^{-4} {\rm second}$
Lead-210 $\binom{210}{82}$ Pb)		20.4 years
Bismuth-210 $\binom{210}{83}$ Bi)		5.0 days
Polonium-210 $\binom{210}{84}$ Po)		138.4 days
Lead-206 $\binom{206}{82}$ Pb)	_	Stable

The Kinetics of Radioactive Decay

Rate of Decay

rate = kN

The rate of decay is proportional to the number of nuclides. This represents a first-order process.

Half-Life of Nuclear Decay

Figure 18.4 The Half-Lives of Radioactive Nuclides

Brigham Young Researcher Scott Woodward Taking a **Bone Sample**

A Dendrochronologist Cutting a Section from a Dead Tree

Nuclear Transformation

Nuclear Transformation

The change of one element into another.

$$^{27}_{13}\text{Al} + ^{4}_{2}\text{He} \rightarrow ^{30}_{15}\text{P} + ^{1}_{0}\text{n}$$

$$^{249}_{98}Cf + {}^{18}_{8}O \rightarrow {}^{263}_{106}X + 4{}^{1}_{0}n$$

An Aerial View of Fermilab, a High Energy Particle Accelerator

The Accelerator Tunnel at Fermilab

A Schematic Diagram of a Cyclotron

A Schematic Diagram of a Linear Accelerator

A Physicist Works with a Small Cyclotron at the University of California Berkley

Table 18.4 Syntheses of Some of the Transuranium Elements

TABLE 18.4	Syntheses of Some of the Transuranium Elemen	ıts
Element	Neutron Bombardment	Half-Life
Neptunium (Z = 93) Plutonium	$^{238}_{92}$ U + $^{1}_{0}$ n \longrightarrow $^{239}_{93}$ Np + $^{0}_{-1}$ e	2.35 days (²³⁹ ₉₃ Np)
(Z = 94) Americium	$^{239}_{93}$ Np $\longrightarrow ^{239}_{94}$ Pu + $^{0}_{-1}$ e	24,400 years $\binom{239}{94}$ Pu)
(Z = 95)	$^{239}_{94}$ Pu + 2 $^{1}_{0}$ n \longrightarrow $^{241}_{94}$ Pu \longrightarrow $^{241}_{95}$ Am + $^{0}_{-1}$ e	458 years $\binom{241}{95}$ Am)
Element	Positive-Ion Bombardment	Half-Life
Curium (Z = 96) Californium (Z = 98) Rutherfordium (Z = 104) Dubnium (Z = 105) Seaborgium (Z = 106)	${}^{239}_{94}Pu + {}^{4}_{2}He \longrightarrow {}^{242}_{96}Cm + {}^{1}_{0}n$ ${}^{242}_{96}Cm + {}^{4}_{2}He \longrightarrow {}^{245}_{98}Cf + {}^{1}_{0}n$ or ${}^{238}_{92}U + {}^{12}_{6}C \longrightarrow {}^{246}_{98}Cf + 4 {}^{1}_{0}n$ ${}^{249}_{98}Cf + {}^{12}_{6}C \longrightarrow {}^{257}_{104}Rf + 4 {}^{1}_{0}n$ ${}^{249}_{98}Cf + {}^{15}_{7}N \longrightarrow {}^{260}_{105}Db + 4 {}^{1}_{0}n$ ${}^{249}_{98}Cf + {}^{18}_{8}O \longrightarrow {}^{263}_{106}Sg + 4 {}^{1}_{0}n$	163 days (²⁴² ₉₆ Cm) 44 minutes (²⁴⁵ ₉₈ Cf)

Detection and Uses of Radioactivity

Radiotracers

Nuclide	Half-Life	Area of the Body Studied
¹³¹ I	8.1 days	Thyroid
⁵⁹ Fe	45.1 days	Red blood cells
⁹⁹ Mo	67 hours	Metabolism
^{32}P	14.3 days	Eyes, liver, tumors
⁵¹ Cr	27.8 days	Red blood cells
⁸⁷ Sr	2.8 hours	Bones
^{99m} Tc	6.0 hours	Heart, bones, liver, and lungs
¹³³ Xe	5.3 days	Lungs
²⁴ Na	14.8 hours	Circulatory system

A Pellet Containing Radioactive

The Image of a Bone Scan of a Normal Chest

Thermodynamic Stability of the Nucleus

Uranium Oxide (refined uranium)

Energy and Mass

When a system gains or loses energy it also gains or loses a quantity of mass.

 $\Delta E = \Delta m c^2$

- Δm = mass defect
- ΔE = change in energy

If ΔE is negative(exothermic), mass is lost from the system.

Binding Energy

- The energy required to decompose the nucleus into its components.
- Iron-56 is the most stable nucleus and has a binding energy of 8.97 MeV.

Binding Energy per Nucleon vs. Mass Number

Nuclear Fission and Nuclear Fusion

Figure 18.10 Both Fission and Fusion Produce More Stable Nuclides and are thus Exothermic

Nuclear Fission and Fusion

• Fusion: Combining two light nuclei to form a heavier, more stable nucleus.

${}_{2}^{3}\text{He} + {}_{1}^{1}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{0}\text{e}$

 Fission: Splitting a heavy nucleus into two nuclei with smaller mass numbers.

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + 3{}^{1}_{0}n$$

Nuclear Fission

	loading	
-		

Figure 18.11 Fission

Figure 18.12 Fission Process in which each Event Produces Two Neutrons

Figure 18.13 Result of Too Small a Mass of Fissionable Material

Fission Processes

A self-sustaining fission process is called a chain reaction.

Neutrons		
	Causing	
Event	Fission	Result
subcritical	< 1	reaction stops
critical	= 1	sustained reaction
supercritical	> 1	violent explosion

Schematic Diagram of a Nuclear Power Plant

Schematic Diagram of a Reactor Core

Nuclear Fusion

	loading	
-		

Image of a Portion of the Cygnus Loop Supernova Remnant

Effects of Radiation

Biological Effects of Radiation

... depend on:

- 1. Energy of the radiation
- 2. Penetration ability of the radiation
- 3. Ionizing ability of the radiation
- 4. Chemical properties of the radiation source

Figure 18.16 A Plot of Energy versus the Separation Distance

Figure 18.17 The Two Models for Radiation Damage

Effects of Short-Term Exposures on Radiation

Dose (rem)	Clinical Effect
0–25	Nondetectable
25-50	Temporary decrease in white blood cell counts
100-200	Strong decrease in white blood cell counts
500	Death of half the exposed population within 30 days after exposure

Table 18.7 Typical Radiation Exposures for a Person Living in the **United States** (1 millirem =10⁻³ rem)

TABLE 18.7Typical RadiationExposures for a Person Living inthe United States (1 millirem = 10^{-3} rem)

Exposure (millirems/year) Cosmic radiation 50 47 From the earth From building materials 3 In human tissues 21 Inhalation of air 5 Total from natural 126 sources X-ray diagnosis 50 10 Radiotherapy Internal diagnosis/ therapy 1 0.2 Nuclear power industry TV tubes, industrial wastes, etc. 2 Radioactive fallout 4 Total from human activities 67 Total 193