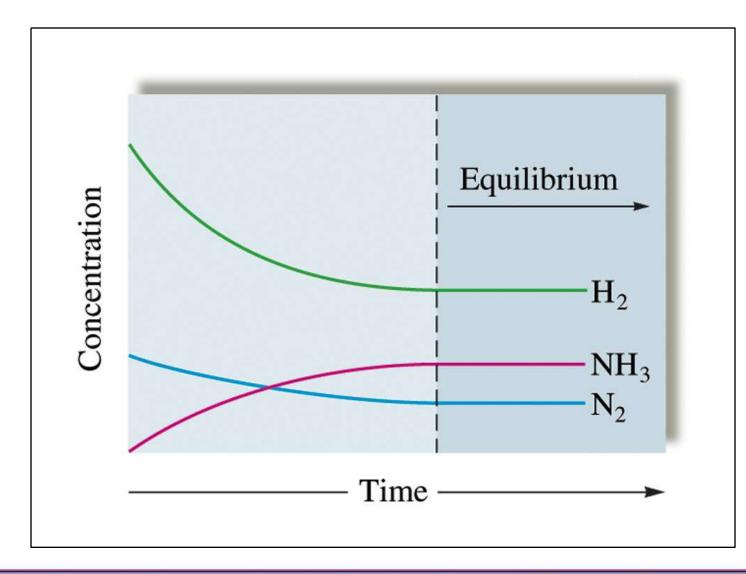

Chapter Thirteen:

CHEMICAL EQUILIBRIUM

The Equilibrium Condition

Figure 13.1 a-d A Molecular Representation of the Reaction $2NO_2(g)$ - $N_2O_4(g)$

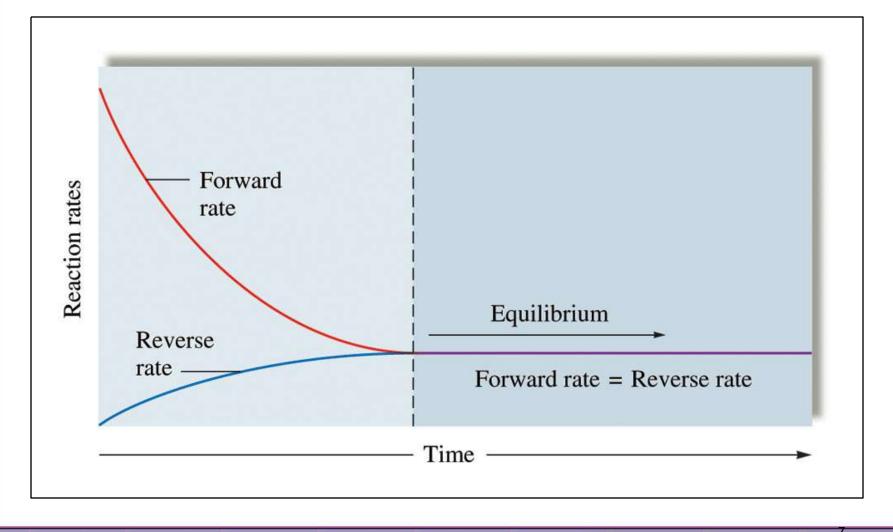


Chemical Equilibrium

 The state where the concentrations of all reactants and products remain constant with time.

 On the molecular level, there is frantic activity. Equilibrium is not static, but is a highly dynamic situation.

The Ammonia Synthesis Equilibrium


13-

Equilibrium Is:

• Macroscopically static.

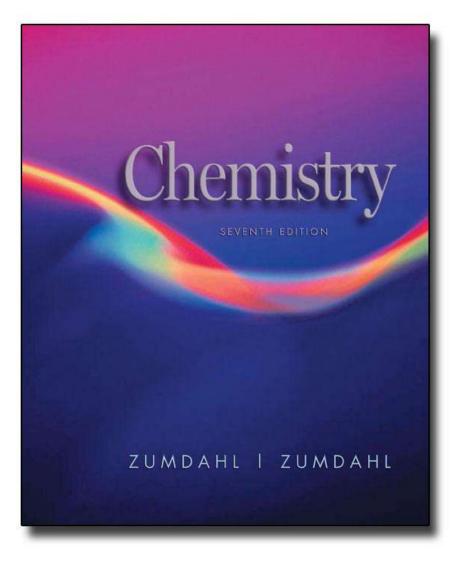
• Microscopically dynamic

The Changes with Time in the Rates of Forward and Reverse Reactions

Consider an equilibrium mixture in a closed vessel reacting according to the equation

$H_2O(g) + CO(g) \quad H_2(g) \pm O_2(g)$

You add more H₂O to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer.


React 7

Consider an equilibrium mixture in a closed vessel reacting according to the equation

$H_2O(g) + CO(g) \qquad H_2(g) + CO_2(g)$

 You add more H₂ to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer.

React 2

The Equilibrium Constant and Applications

The Equilibrium Constant

$jA + kB \implies lC + mD$

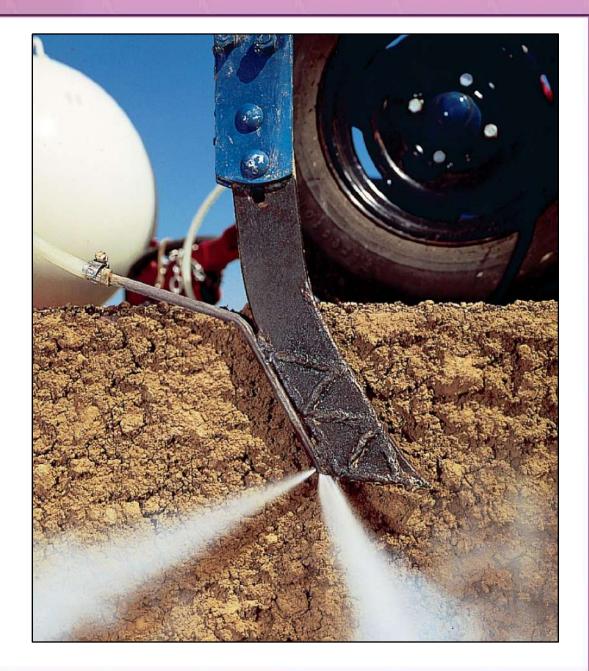
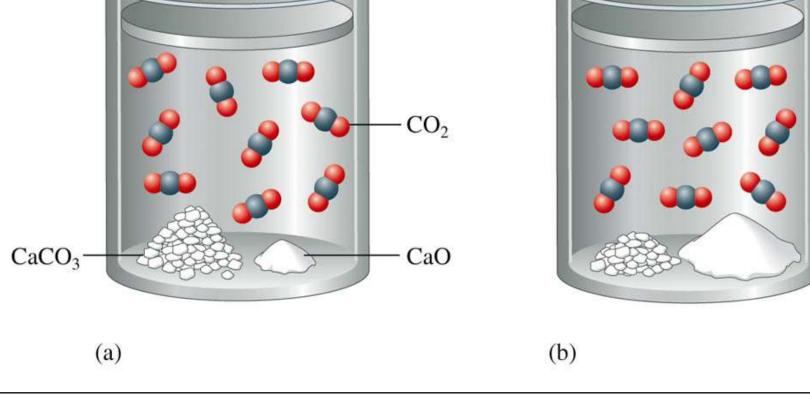

$K = \frac{[C]^{l}[D]^{m}}{[A]^{i}[B]^{k}}$

Table 13.1 Results of Three Experiments for the Reaction N₂(g) + 3H₂(g) -- 2NH₃(g)

TABLE 13.1 Results of Three Experiments for the Reaction $N_2(g) + 3H_2(g) \implies 2NH_3(g)$

Experiment	Initial Concentrations	Equilibrium Concentrations	$K = \frac{[NH_3]^2}{[N_2][H_2]^3}$
Ι	$[N_2]_0 = 1.000 M$ $[H_2]_0 = 1.000 M$ $[NH_3]_0 = 0$	$[N_2] = 0.921 M$ [H_2] = 0.763 M [NH_3] = 0.157 M	$K=6.02\times10^{-2}$
II	$[N_2]_0 = 0[H_2]_0 = 0[NH_3]_0 = 1.000 M$	$[N_2] = 0.399 M$ $[H_2] = 1.197 M$ $[NH_3] = 0.203 M$	$K=6.02\times10^{-2}$
III	$[N_2]_0 = 2.00 M$ $[H_2]_0 = 1.00 M$ $[NH_3]_0 = 3.00 M$	$[N_2] = 2.59 M$ $[H_2] = 2.77 M$ $[NH_3] = 1.82 M$	$K = 6.02 \times 10^{-2}$


Anhydrous Ammonia is Injected into the Solid to Act as a Fertilizer

The Seven Sisters Chalk Cliffs in East Sussex, England

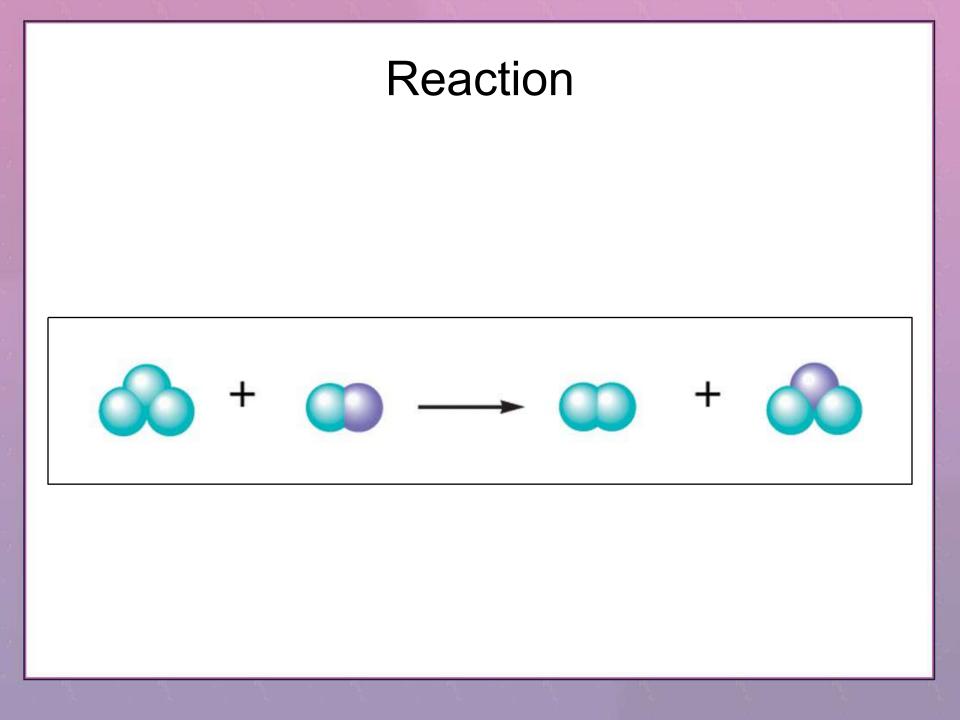
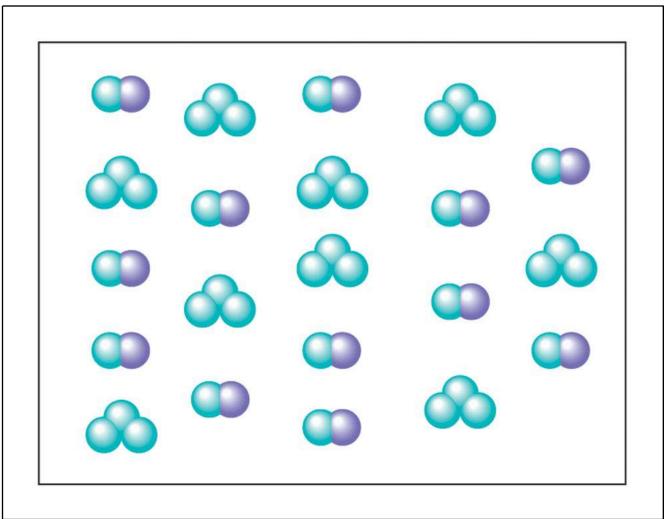


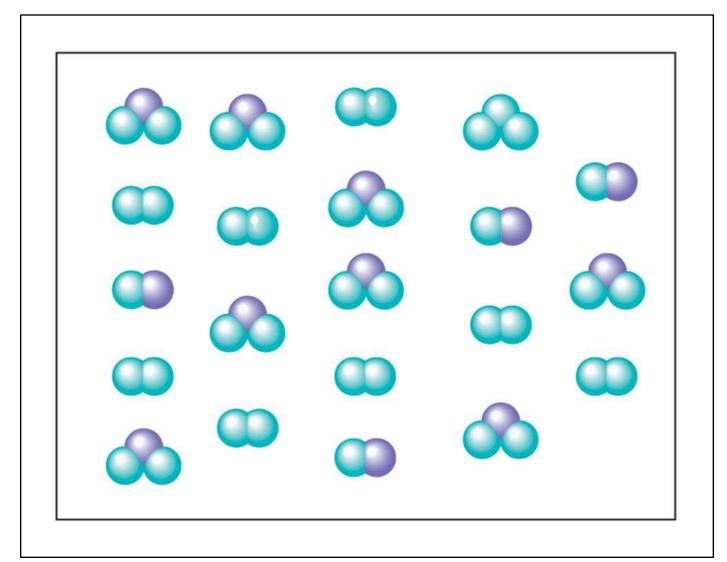
Figure 13.6 a-b The Position of the Equilibrium



Hydrated Copper (II) Sulfate on the Left. Water Applied to Anhydrous Copper (II) Sulfate, on the Right, Forms the Hydrated Compound

Two Types of Molecules are Mixed Together in the Following Amounts

Conditions of Equilibrium Reactions


Initial Conditions

- 9 ∞ molecules 12 ∞ molecules
- 0 \infty molecules
- 0 🕥 molecules
- $x \propto x$ disappear $x \propto x$ disappear $x \propto x$ form $x \propto x$ form

Equilibrium Conditions

- $9-x \iff$ molecules $12-x \iff$ molecules
 - x \bigotimes molecules
 - x \bigcirc molecules

Equilibrium Mixture

Consider the reaction represented by the equation Fe³⁺(*aq*) + SCN⁻(*aq*) FeSCN²⁺(*aq*)

• Trial #1

React 4

6.00 *M* Fe³⁺(*aq*) and 10.0 *M* SCN⁻(*aq*) are mixed and at equilibrium the concentration of FeSCN²⁺(*aq*) is 4.00 *M*.

What is the value for the equilibrium constant for this reaction?

$Fe^{3+}(aq) + SCN^{-}(aq) \xrightarrow{-} FeSCN^{2+}(aq)$

Initial 6.00 10.00 0.00 <u>Change -4.00 -4.00+4.00</u> Equilibrium 2.00 6.00 4.00

Copyright © Houghton Mifflin Company. All rights reserved.

Consider the reaction represented by the equation

$$Fe^{3+}(aq) + SCN^{-}(aq) = Fe^{3+}CN^{2+}(aq)$$

• Trial #2:

React 4

Initial:10.0 *M* Fe³⁺(*aq*) and 8.00 *M* SCN⁻(*aq*)

Equilibrium: <u>?</u> *M* FeSCN²⁺(*aq*)

Consider the reaction represented by the equation

• Trial #3:

React 4

Initial:6.00 *M* Fe³⁺(*aq*) and 6.00 *M* SCN⁻(*aq*)

Equilibrium: <u>?</u> *M* FeSCN²⁺(*aq*)

A 2.0 mol sample of ammonia is introduced into a 1.00 L container. At a certain temperature, the ammonia partially dissociates according to the equation

$$\mathsf{NH}_3(g) := \mathsf{N}_2(g) + \mathsf{H}_2(g)$$

At equilibrium 1.00 mol of ammonia remains.

Calculate the value for *K*.

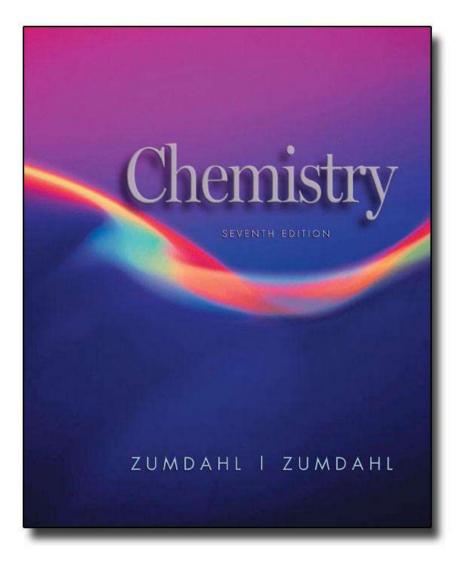
React

Photo 13.4 Apollo II Lunar Landing

A 1.00 mol sample of N₂O₄(*g*) is placed in a 10.0 L vessel and allowed to reach equilibrium according to the equation N₂O₄(*g*) \implies 2NO₂(*g*) $K = 4.00 \times 10^{-4}$

Calculate the equilibrium concentrations of $N_2O_4(g)$ and $NO_2(g)$.

React 8


Consider the reaction represented by the equation $Fe^{3+}(aq) + SCN^{-}(aq)$ FeSCN $\frac{2+1}{2+1}(aq)$

Fe³⁺ SCN⁻FeSCN²⁺ Trial #19.00 *M*5.00 *M*1.00 *M* Trial #23.00 *M*2.00 *M*5.00 *M* Trial #32.00 *M*9.00 *M*6.00 *M*

React 6

Find the equilibrium concentrations for all species

Copyright © Houghton Mifflin Company. All rights reserved.

LeChâtelier's Principle

Le Châtelier's Principle

If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change.

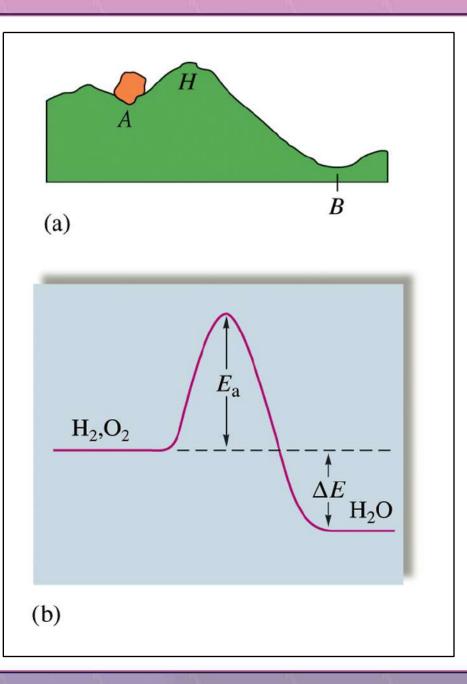
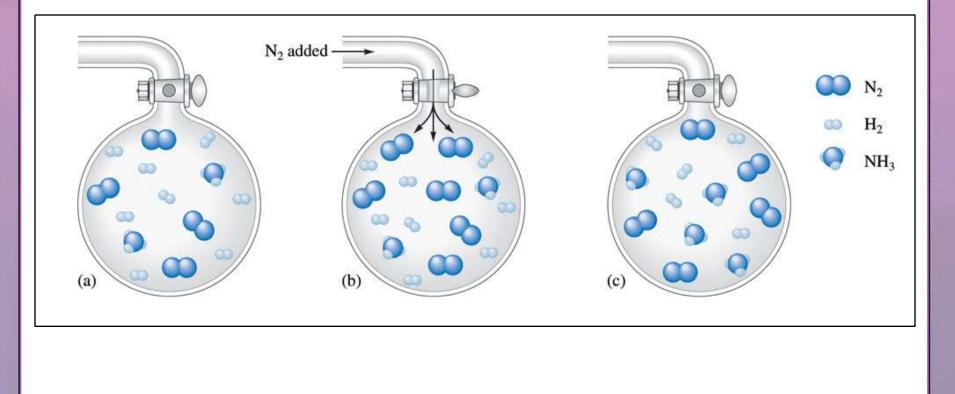

Table 13.2 The Percent by Mass of NH₃ at Equilibrium in a Mixture of N₂, H₂, and NH₃ as a Function of Temperature and Total Pressure

TABLE 13.2 The Percent by Mass of NH₃ at Equilibrium in a Mixture of N₂, H₂, and NH₃ as a Function of Temperature and Total Pressure^{*}

	Total Pressure			
Temperature (°C)	300 atm	400 atm	500 atm	
400	48% NH ₃	55% NH ₃	61% NH ₃	
500	26% NH ₃	32% NH ₃	38% NH ₃	
600	13% NH ₃	17% NH ₃	21% NH ₃	

*Each experiment was begun with a 3:1 mixture of H_2 and N_2 .


The magnitude of K for the reaction depends on Thermodynamics, but the reaction rate depends on Ea.

Effects of Changes on the System

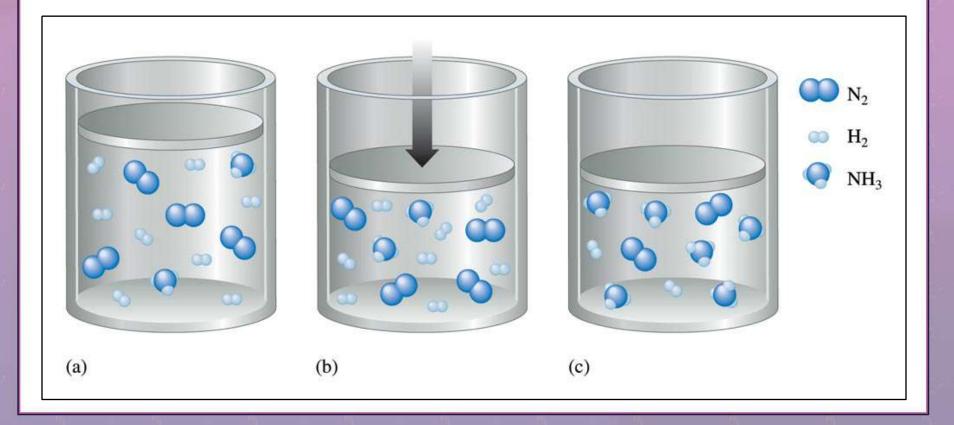
1. Concentration: The system will shift away from the added component.

2.Temperature: K will change depending upon the temperature (treat the energy change as a reactant). Figure 13.8 a-c (a) The Initial Equilibrium Mixture of N₂, H₂, and NH₃ (b) Addition of N2. (c.) The New Equilibrium Position for the System Containing More N₂ (due to Less H₂, and More NH₃ than in (a)

Photo 13.5 a-b LeChatelier's Principle

Table 13.3 Observed Value of K for the Ammonia Synthesis Reaction as a Function of Temperature

TABLE 13.3Observed Value ofK for the Ammonia SynthesisReaction as a Function ofTemperature*				
Temperature (K)	К			
500	90			
600	3			
700	0.3			
800	0.04			


*For this exothermic reaction, the value of *K* decreases as the temperature increases, as predicted by Le Châtelier's principle.

Effects of Changes on the System

3. Pressure:

- a) Addition of inert gas does not affect the equilibrium position.
- b) Decreasing the volume shifts the equilibrium toward the side with fewer moles.

Figure 13.9 a-c (a) A Mixture of NH₃(g), N₂(g), and H₂(g) at Equilibrium (b) The Volume is Suddenly Decreased (c) The New Equilibrium Position for the System Containing More NH₃ and Less N₂ and H₂

LeChâtelier's Principle

loading...

Equilibrium Decomposition of N₂O₄

loading...

Table 13.4 Shifts in the Equilibrium Position for the Reaction 58 kJ + $N_2O_4(g) - 2NO_2(g)$

TABLE 13.4Shifts in theEquilibrium Position for theReaction 58 kJ + $N_2O_4(g)$ $\implies 2NO_2(g)$

Change	Shift
Addition of $N_2O_4(g)$	Right
Addition of $NO_2(g)$	Left
Removal of $N_2O_4(g)$	Left
Removal of $NO_2(g)$	Right
Addition of $He(g)$	None
Decrease container	Left
volume	
Increase container	Right
volume	
Increase temperature	Right
Decrease temperature	Left