

Chapter One:

CHEMICAL FOUNDATIONS

Chemistry: An Overview

Figure 1.1a The Surface of a Single Grain of Table Salt

Figure 1.1b An Oxygen Atom on a Gallium Arsenide Surface

Figure 1.1c Scanning Tunneling Microscope Image

Figure 1.2 A Charged Mercury Atom

Figure 1.3b Beach at Big Sur

Figure 1.3a Each Grain of Sand is Composed of Tiny Atoms

Atoms vs. Molecules

Copyright © Houghton Mifflin Company. All rights reserved.

A Chemical Reaction

11 1–

The Scientific Method

The Various Parts of the Scientific Method

1_

Robert Boyle

Law vs. Theory

- A law summarizes what happens.
- A theory (model) is an attempt to explain why it happens.

Units of Measurement

Soda is Sold in 2-Liter Bottles- an Example of SI Units in Everyday Life

Artist's Conception of the Lost Mars Climate Orbital

Nature of Measurement

- Measurement quantitative observation consisting of 2 parts
 - Part 1 number
 - Part 2 scale (unit)
- Examples:
 - 20 grams
 - 6.63×10^{-34} Joule seconds

The Fundamental SI Units

Physical Quantity	<u>Name of Unit</u>	Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	S
Temperature	kelvin	K
Electric current	ampere	Α
Amount of substance	mole	mol
Luminous intensity	candela	cd

Copyright © Houghton Mifflin Company. All rights reserved.

Figure 1.6 Measurement of Volume

Table 1.2 The Prefixes Used in the SI

TABLE 1.2 The Prefixes Used in the SI System (Those most commonly encountered are shown in blue.)

Prefix	Symbol	Meaning	Exponential Notation*
exa	E	1.000.000.000.000.000	10 ¹⁸
peta	P	1,000,000,000,000,000	10 ¹⁵
tera	Т	1,000,000,000,000	1012
giga	G	1,000,000,000	10^{9}
mega	Μ	1,000,000	10 ⁶
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deka	da	10	10 ¹
		1	10^{0}
deci	d	0.1	10^{-1}
centi	с	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}
nano	n	0.00000001	10^{-9}
pico	р	0.00000000001	10^{-12}
femto	f	0.00000000000001	10^{-15}
atto	a	0.0000000000000000000000000000000000000	10^{-18}

*See Appendix 1.1 if you need a review of exponential notation.

Table 1.3 Some Examples of Commonly Used Units

TABLE 1.3Some Examples ofCommonly Used Units

Length A dime is 1 mm thick. A quarter is 2.5 cm in diameter. The average height of an adult man is 1.8 m. Mass A nickel has a mass of about 5 g. A 120-lb person has a mass of about 55 kg. Volume A 12-oz can of soda has a volume of about 360 mL.

Figure 1.7 Common Types of Laboratory Equipment Used to Measure Liquid Volume

Figure 1.8 An Electronic Analytic Balance

Uncertainty in Measurement

Uncertainty in Measurement

- A digit that must be estimated is called uncertain.
- A measurement always has some degree of uncertainty.

Measurement of Volume Using a Buret

Measurement of volume using a buret. The volume is read at the bottom of the liquid curve (called the meniscus).

The Difference Between Precision and Accuracy

(b)

(a)

FIGURE 1.10

The results of several dart throws show the difference between precise and accurate. (a) Neither accurate nor precise (large random errors). (b) Precise but not accurate (small random errors, large systematic error). (c) Bull's-eye! Both precise and accurate (small random errors, no systematic error). (c)

Significant Figures and Calculations

Rules for Counting Significant Figures -Details

 Nonzero integers always count as significant figures.

- 3456 has 4 sig figs.

• Leading zeros do not count as significant figures.

- 0.048 has 2 sig figs.

- Captive zeros always count as significant figures.
 - 16.07 has 4 sig figs.

- Trailing zeros are significant only if the number contains a decimal point.
 - -9.300 has 4 sig figs
 - 150 has 2 sig figs.

- Exact numbers have an infinite number of significant figures.
 - -1 inch = 2.54 cm, exactly

Rounding Numbers

 Measure your textbook using the four rulers provided and fill in the table in your Course Guide.

React 1

 Justify the precision for each of your measurements, and the number of significant figures in each of your calculations. React 2

 You have water in each graduated cylinder shown. You then add both samples to a beaker. How would you write the number describing the total volume? What limits the precision of this number?

Dimensional Analysis

Table 1.4 English-Metric Equivalents

TABLE 1.4 English–Metric Equivalents

Length	1 m = 1.094 yd
	2.54 cm = 1 in

Mass 1 kg = 2.205 lb453.6 g = 1 lb

Volume 1 L = 1.06 qt $1 \text{ ft}^3 = 28.32 \text{ L}$

What data would you need to estimate the money you would spend on gasoline to drive your car from New York to Chicago? Provide estimates of values and a sample calculation.

React 3

Temperature

The Three Major Temperature Scales

At what temperature does °C = °F?

• Prove your answer.

React 4

Figure 1.12 Normal Body Temperature

Liquid Nitrogen

Table 1.5Densities of VariousCommon Substances* at 20° C

TABLE 1.5Densities of Various Common Substances* at 20°C		
Substance	Physical State	Density (g/cm ³)
Oxygen	Gas	0.00133
Hydrogen	Gas	0.000084
Ethanol	Liquid	0.789
Benzene	Liquid	0.880
Water	Liquid	0.9982
Magnesium	Solid	1.74
Salt (sodium chloride)	Solid	2.16
Aluminum	Solid	2.70
Iron	Solid	7.87
Copper	Solid	8.96
Silver	Solid	10.5
Lead	Solid	11.34
Mercury	Liquid	13.6
Gold	Solid	19.32

*At 1 atmosphere pressure

Classification of Matter

The Three States of Water

50 1–

Structure of a Liquid

looding	
 ioauing	

Structure of a Gas

_	loading	

Figure 1.14 Simple Laboratory Distillation Apparatus

Simple Laboratory Distillation Apparatus

55 1–

Figure 1.15a A Line of the Mixture to be Separated is Placed at One End of a Sheet

Figure 1.15b The Paper Acts as a Wick to Draw up the Liquid

Figure 1.15c Component with the Weakest Attraction for the Paper Travels Faster

59 1–

Copyright © Houghton Mifflin Company. All rights reserved.

Mixture vs. Solution

loading	

Mixture vs. Compound

Sketch a magnified view (showing atoms/molecules) of each of the following:

- a heterogeneous mixture of two different compounds.
- a homogeneous mixture of an element and a compound.

React 5