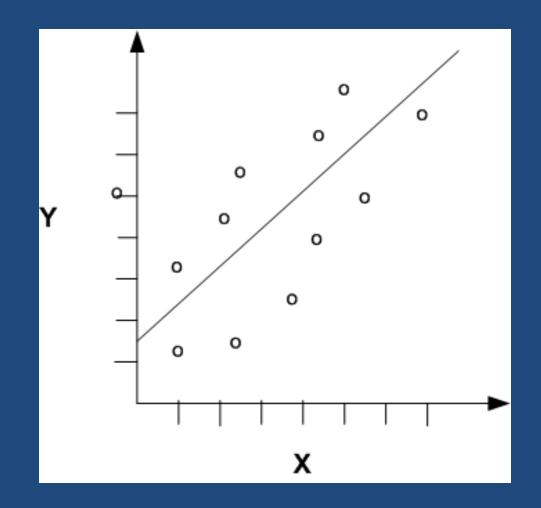
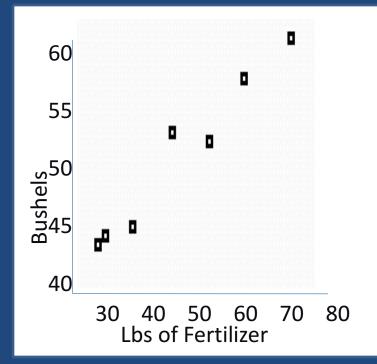
Part II – Exploring Relationships Between Variables

Ch. 8 – Linear Regression (Day 1)



The Linear Model

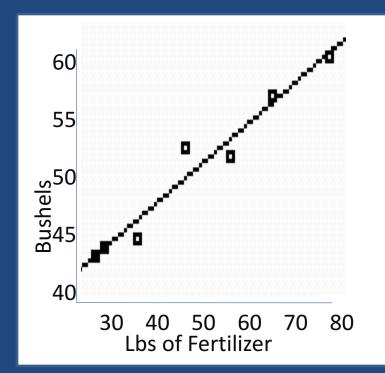
- In the last chapter, we learned to draw a picture (scatterplot) of the relationship between two variables, and to measure the strength and direction of that relationship (correlation)
- The next step is to use what we learn from this analysis to make predictions about the variables



r = .9782 There is a strong,positive linear relationshipbetween lbs of fertilizer andbushels of grain

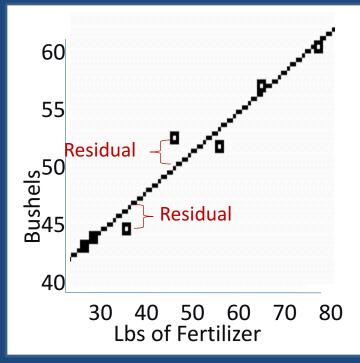
The Linear Model

- In Chapter 6, we used the Normal model to represent the distribution of a single quantitative variable
- In this chapter we will model the relationship between two quantitative variables using a <u>linear model</u> – the equation of a straight line through the data
- In models of the real world the line will not fit the data perfectly, but it will still be very useful in understanding how the two variables are related



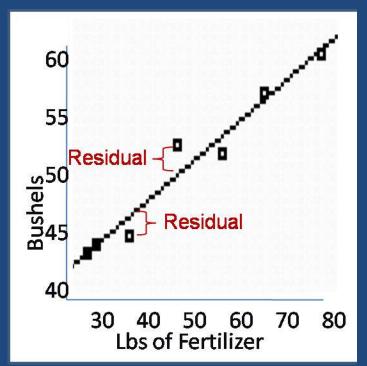
Residuals

- For most data sets, a straight line will not go through all of the data points – in fact, it might not go through any of them, but that doesn't mean it's a bad model
- We are looking for the line that will come as close as possible to all of the data points
- The distance between the actual data points and the line are called <u>residuals</u>



Residuals

- We will use the equation of the line to find <u>predicted values</u> for the response variable (in this case, bushels of grain)
- The symbol for the predicted value is $\frac{y}{y}$ (pronounced y-hat)
- The line predicts that a field where 40 lbs of fertilizer is used will have a yield of <u>47</u> bushels of grain
- In our data set, the field where 40 lbs of fertilizer was used actually yielded 45 bushels



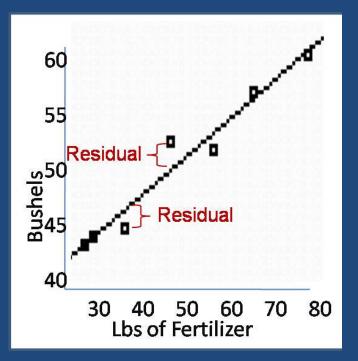
Residuals

 The <u>residual</u> for this point is the difference between what actually happened and what the line predicted

$$e = y - y$$

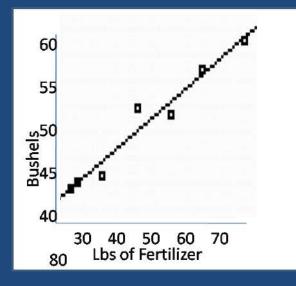
$$e = 45 - 47$$

- The negative residual for this point indicates that the actual value was below the prediction (the point was below the line)
- Points which fall above the line will have positive residuals



Line of Best Fit

- Remember that our model is the "line of best fit", where the data points are as close as possible to the line
- In other words, we want the residuals to be as small as possible
- If we just found the sum of the residuals, the positive and negative residuals would cancel each other out and the sum would be zero
- Just as we did when we found standard deviation, we will use the squares of the residuals instead
- The linear model we will use is one which minimizes the squared residuals – it's called the least squares regression line



Finding the Model

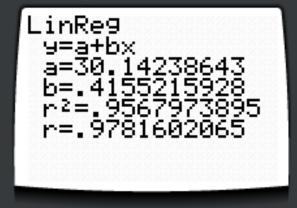
 The equation of the LSRL (Least Squares Regression Line) will be in the form

y = a + bx

- *a* is the <u>intercept</u> of the line, and *b* is the <u>slope</u>
- The formula for calculating these values can be found on your formula sheet and in your book
- We will find the line either with your calculator or with a computer printout – the main focus of our work will be on interpreting what the line tells us

Finding the Model

 You have already calculated the least squares regression line using your calculator – it's the same calculation you used to find r



- When you write the equation, you need to define the variables
- It should look like this:
 - y = 30.142 + .4155x
 - x = lbs of fertilizer
 - y = bushels of grain

or

 $\widehat{bushels} = 30.142 + .4155(fertilizer)$

Interpreting the Model

 $\widehat{bushels} = 30.142 + .4155(fertilizer)$

The model has two parts:

- Slope: for every increase in x, this is the predicted or <u>average</u> amount we would expect y to change For this problem: For every additional pound of fertilizer, we predict about .42 more bushels of grain
- **Intercept**: Remember that this is the value of y when x is 0
- For this problem: If no fertilizer was used, the model predicts that about 30 bushels of grain will be produced.

Using the Model

 Use the line to predict the yield if 50 lbs of fertilizer were used

bushels = 30.142 + .4155(fertilizer)

bushels = 30.142 + .4155(50)

 $\widehat{bushels} = 50.917$

• What is the residual for this point?

$$e = y - y$$

$$e =$$

Notes About the Regression Line

- Remember that predictions we make from the line are <u>estimates</u> – we don't expect them to match reality perfectly
- Since this model describes the average behavior of y in relation to x, the point $(\overline{x}, \overline{y})$ always falls on the regression line
- Be careful not to <u>extrapolate</u> too much the model is only good for predictions within the range of the data we used to create it (or close to it)
- Some predictions will not make sense in the context of the problem (often including the intercept)

Very Short Homework!

- Assignment 8-1
- P. 192 #21, 22
- Watch video on how to do a residual plot on the calculator.