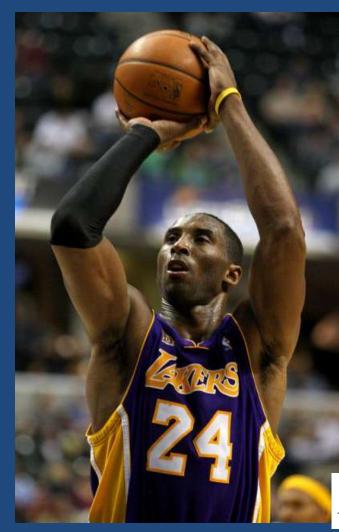
Part IV – Randomness and Probability

Ch. 17 – Probability Models (Day 1 – The Geometric Model)

 Kobe Bryant is an 84% free throw shooter. Suppose he takes 8 shots in a game. Assuming each shot is independent, find:



-The probability that he makes all 8 shots P(8 made) =

-The probability that he misses at least one shot P(at least one miss) =

-The probability that he misses the first two shots $P(miss \ 1st \ 2) =$

-The probability that the first shot he misses is the third one taken $P(3rd \ is \ 1st \ miss) =$

Bernoulli Trials

In this chapter, we will be looking at probability models that involve a specific type of random situation – the Bernoulli trial

Bernoulli trials have 3 requirements:

There are two possible outcomes (we will call these "success" and "failure")

Each trial is independent

 The probability of success (p) remains the same for each trial

Examples of Bernoulli Trials

- Flipping a coin
- Shooting free throws (assuming shots are independent)
- Asking a "yes" or "no" question to a group of randomly selected survey respondents
- Rolling a die to try to get a 3
 - (but <u>not</u> rolling a die and recording how many times each number comes up)

Are these Bernoulli trials?

- You are rolling 5 dice and need to get at least two 6's to win the game
 - Two outcomes? Yes (win or don't)
 - Independent? Yes (first game doesn't affect next)
 - Probability stays the same for each trial? Yes
- We record the eye colors found in a group of 500 people
 - Two outcomes? No (more than 2 eye colors)
 - Independent?
 - Probability stays the same for each trial?

Are these Bernoulli trials?

- A manufacturer recalls a doll because about 3% have buttons that are not properly attached. Customers return 37 of these dolls to the local toy store. Is the manufacturer likely to find any dangerous buttons? – Two <u>outcomes</u>? Yes (dangerous or not)
 - Independent? Yes (If there were many dolls made)
 - Probability stays the same for each trial? Yes
- A city council of 11 Republicans and 8 Democrats picks a committee of 4 at random. What's the probability that they choose all Democrats?
 - Two outcomes? Yes (Republican or Democrat)
 - Independent? No(choose from small #, not replaced)
 - Probability stays the same for each trial? No

A note about independence...

- The last example on the previous slide was not independent because each time we removed a Democrat from the group, this changed the probability of choosing Democrats.
- But what if we had chosen our committee from the whole city of 550,000 people? Then removing one Democrat wouldn't make any noticeable difference.
- If the population is large enough, then our trials will be "close enough" to independent
- <u>The 10% condition</u>: Bernoulli trials should be independent, but if they aren't, we can still proceed as long as the sample size is less than 10% of the population size

The Geometric Setting

- Once we have decided that a situation involves Bernoulli trials, we then have to determine our <u>variable of interest</u> – in other words, what is the question asking us to find out?
- If the variable of interest (X) is the number of trials required to obtain the first success in a set of Bernoulli trials, then we are dealing with the geometric distribution

Examples of Geometric Situations

- Flip a coin until you get a tail
- Shoot free throws until you make one
- Draw cards from a deck with replacement until you draw a spade
- Roll a die until you get a 4

Calculating Geometric Probabilities

 When rolling a die, what is the probability that it will take 5 rolls to get the first three?

P(1st 3 on 5th try) =

• What is the probability that it will take more than 7 rolls? P(more than 7 rolls to get a 3) =

Calculating Geometric Probabilities

$$P(X = n) = (1 - p)^{n - 1} p$$

Where p = the probability of success for one trial And X = the number of trials needed to obtain one success

$$P(X > n) = (1 - p)^n$$

 In a large population, 18% of people believe that there should be prayer in public school. If a pollster selects individuals at random, what is the probability that the 6th person he selects will be the first to support school prayer?

P(X = 6) =

•What is the probability that it will take him more than 4 people to find one who supports school prayer?

P(X > 4) =

Mean of a Geometric Random Variable

If X is a geometric random variable with probability of success p on each trial, then the mean, or expected value, of X is

$$\mu = \frac{1}{p}$$

- That is, it takes an average of 1/p trials to have the first success
- In the previous example, how many people do we expect the pollster to have to survey in order to find one who supports school prayer?

$$E(X) =$$

Kobe again...

 Remember that Kobe Bryant is an 84% free throw shooter. What is the average number of shots he will have to take before he makes

one?

$$E(X) =$$

Calculator

Geometpdf(p,x)

Find the probability of an individual outcome

Geometcdf(p,x)

 Find the probability of finding the first success on or before the xth trial.

Homework 17-1

•p. 401 #1, 7-12

•Use the examples from your notes!

