Exploring Environmental Science for AP® 1st Edition

Chapter 7 **Species** Interactions, Ecological Succession, and Population Control

CENGAGE Learning

Core Case Study: The Southern Sea Otter—A Species in Recovery

- Live in giant kelp forests on Pacific coast
- Hunted almost to extinction by early 1900s
 Partial recovery since listed as endangered in 1977
- Reasons to care about sea otters
 - Keystone species
 - Ethics
 - Tourism dollars

Southern Sea Otter

CENGAGE Learning[®]

7.1 How Do Species Interact?

- Five types of species interactions affect resource use and species population sizes in an ecosystem
 - Competition
 - Predation
 - Parasitism
 - Mutualism
 - Commensalism

Competition for Resources (1 of 4)

- Most common interaction is competition
- Interspecific competition
 - Competition between different species to use the same limited resources

Competition for Resources (2 of 4)

- Resource partitioning
 - Occurs when different species evolve specialized traits that allow them to share the same resources
 - Species may use only parts of resource
 - At different times
 - In different ways

Competition for Resources (3 of 4)

After R. H. MacArthur, "Population Ecology of Some Warblers in Northeastern Coniferous Fore: Ecology 36:533–536, 1958.

CENGAGE Learning

Competition for Resources (4 of 4)

CENGAGE Learning

Predation (1 of 2)

- Predator feeds directly on all or part of a member of another species (prey)
 - Strong effect on population sizes and other factors in ecosystems
- Methods of predation
 - Walk, swim, or fly
 - Camouflage
 - Chemical warfare

CENGAGE Learning

Predation (2 of 2)

- Prey species have evolved ways to avoid predators
 - Camouflage
 - Chemical warfare
 - Warning coloration
 - Mimicry
 - Behavioral strategies

Predator–Prey Relationships (1 of 2)

teve Hilebrand/U.S. Fish and Wildlife Service

Predator–Prey Relationships (2 of 2)

(b) Wandering leaf insect

(c) Bombardier beetle

(d) Foul-tasting monarch butterfly

(e) Poison dart frog

(f) Viceroy butterfly mimics monarch butterfly.

(a) Hind wings of lo moth resemble eyes of a much larger animal.

CENGAGE Learning[®]

Science Focus 7.1: Threats to Kelp Forests

- Giant kelp anchored to ocean floor and grow toward surface
 - Fast growing
 - Resistant to storm and wave damage
 - Support many marine plants and animals
- Sea urchins prey on kelp plants
 - Southern sea otter helps control sea urchin population
 - Ecosystem threatened by pollutants and climate change

Coevolution

- Predation plays a role in natural selection
 - Animals with better defenses against predation tend to leave more offspring
- Coevolution
 - Changes in the gene pool of one species can cause changes in the gene pool of the other
 - Example: bats and moths
 - Echolocation of bats and sensitive hearing of moths

Parasitism, Mutualism, and Commensalism (1 of 3)

- Parasitism
 - One species (parasite) lives on another organism
 - Parasites harm but rarely kill the host
 - Examples: tapeworms, sea lampreys, fleas, and ticks

Parasitism

CENGAGE Learning

Parasitism, Mutualism, and Commensalism (2 of 3)

- Mutualism
 - Interaction that benefits both species
 - Nutrition and protective relationship
 - Not cooperation—mutual exploitation
 - Example: clownfish live within sea anemones
 - Gain protection and feed on waste matter left by anemones' meals
 - Clownfish protect anemones from some predators and parasites

Mutualism

liers Steyn/Dreamstin

Parasitism, Mutualism, and Commensalism (3 of 3)

- Commensalism
 - Benefits one species and has little effect on the other
 - Examples:
 - Epiphytes (air plants) attach themselves to trees
 - Birds nest in trees

Commensalism

7.2 How Do Communities and Ecosystems Respond to Changing Environmental Conditions? (1 of 3)

- Ecological succession
 - Normally gradual change in structure and species composition in a given system
- Primary ecological succession
 - Involves gradual establishment of communities in lifeless areas
 - Need to build up fertile soil or aquatic sediments to support plant community
 - Pioneer species such as lichens or mosses

CENGAGE Learning[®]

5.2 How Do Communities and Ecosystems Respond to Changing Environmental Conditions? (2 of 3)

CENGAGE Learning

5.2 How Do Communities and Ecosystems Respond to Changing Environmental Conditions? (3 of 3)

CENGAGE Learning

Ecological Succession Creates and Changes Ecosystems (1 of 2)

- Secondary ecological succession
 - Series of terrestrial communities or ecosystems develop in places with soil or sediment
 - Examples: abandoned farmland, burned or cut forests, and flooded land
- Factors affecting rate
 - Facilitation of area by one species for another
 - Inhibition hinders growth

CENGAGE Learning

Ecological Succession Creates and Changes Ecosystems (2 of 2)

CENGAGE Learning

Is There a Balance of Nature?

- Traditional view
 - Ecological succession proceeds to stable climax communities
 - Equilibrium called balance of nature
- Current view
 - Succession leads to a more complex, diverse, and resilient ecosystem
 - Can withstand changes if not too large or too sudden

Living Systems Are Sustained through Constant Change

- Inertia
 - Ability of a living system to survive moderate disturbances
- Resilience
 - Ability of a living system to be restored through secondary succession after a moderate disturbance

7.3 What Limits the Growth of Populations? (1 of 3)

- Population
 - Group of interbreeding individuals of the same species
- Population size
 - May increase, decrease, or remain the same in response to changing environmental conditions
 - Scientists use sampling techniques to estimate

What Limits the Growth of Populations? (2 of 3)

- Population distribution
 - Most populations live together in clumps or groups
 - Organisms cluster for resources
 - Protection from predators
- Variables that govern changes in population size
 - Births, deaths, immigration, and emigration
- Age Structure
 - Distribution of individuals among various age groups
 - Pre-reproductive, reproductive, and post-reproductive stages

CENGAGE Learning[®]

What Limits the Growth of Populations? (3 of 3)

a. Clumped (elephants)

b. Uniform (creosote bush)

c. Random (dandelions)

CENGAGE Learning^{*}

Critical Concept: Sampling Populations

- Characterization of populations can be qualitative or quantitative
- Quadrat sampling can be used to determine abundance, density, and distribution of species
- Mark and recapture sampling is used to estimate the size of a population in a defined area

Several Factors Can Limit Population Size (1 of 2)

- Each population has a range of tolerance
 - Variation in physical and chemical environment under which it can survive
- Limiting factors
 - Precipitation (on land)
 - Water temperature, depth, clarity, and other factors (in aquatic environments)
 - Population density
 - Density-dependent factors

CENGAGE Learning

Several Factors Can Limit Population Size (2 of 2)

No Population Can Grow Indefinitely: J-Curves and S-Curves (1 of 4)

- Some species can reproduce exponentially
 - Reproduce at an early age
 - Have many offspring each time they reproduce
 - Short intervals in between reproductive cycles
 - Produces J-shaped curve of growth
 - Examples: bacteria and many insect species

No Population Can Grow Indefinitely: J-Curves and S-Curves (2 of 4)

No Population Can Grow Indefinitely: J-Curves and S-Curves (3 of 4)

- Population growth in nature always limited
- Environmental resistance
 - Sum of all factors that limit population growth
- Carrying capacity
 - Maximum population of a given species that a particular habitat can sustain indefinitely
 - Overshoot results in population crash

No Population Can Grow Indefinitely: J-Curves and S-Curves (4 of 4)

CENGAGE Learning

Reproductive Patterns (1 of 3)

- *r*-Selected species
 - Species with capacity for a high rate of population growth
 - Examples: algae, bacteria, frogs, most insects, and many fish
 - May go through irregular and unstable cycles in population sizes

Reproductive Patterns (2 of 3)

- *K*-Selected species
 - Species that reproduce later in life
 - Have few offspring
 - Have long life spans
 - Examples: large mammals, whales, humans, birds of prey, and long-lived plants
 - Can be vulnerable to extinction

Reproductive Patterns (3 of 3)

TABLE 5.1 Typical traits of <i>r</i> -selected and <i>K</i> -selected species		
Trait	<i>r</i> – Selected Species	<i>K</i> – Selected Species
Reproductive potential	High	Low
Population growth rate	Fast	Slow
Time to reproductive maturity	Short	Long
Number of reproductive cycles	Many	Few
Number of offspring	Many	Few
Size of offspring	Small	Larger
Degree of parental care	Low	High
Life span	Short	Long
Population size	Variable with Crashes	Stable, near carrying capacity
Role in environment	Usually prey	Usually predators

CENGAGE Learning

Case Study: Exploding White-Tailed Deer Population in the U.S. (1 of 2)

- 1900: deer habitat destruction and uncontrolled hunting
- 1920s–1930s: laws to protect deer
- Current deer population explosion in suburban areas
 - Increased deer-vehicle collisions and Lyme disease
- Various methods to control the deer population

Case Study: Exploding White-Tailed Deer Population in the U.S. (2 of 2)

Science Focus 5.2: The Future of California's Southern Sea Otters

- Factors in declining sea otter population
 - Increased predation by orcas
 - Toxic algae and pollutants released into the ocean
 - Low reproductive rate
 - Rising mortality rate
- Other threats: oil spills and fishing traps
- Otter population rising in last several years

Species Vary in Their Life Spans (1 of 2)

- Survivorship curve
 - Shows the percentages of members of population surviving at different ages
 - Late loss (K-selected species)
 - Early loss (r-selected species)
 - Constant loss (many songbirds)

Species Vary in Their Life Spans (2 of 2)

CENGAGE Learning

Humans Are Not Exempt from Nature's Population Controls

- Ireland
 - Potato crop destroyed by fungus in 1845
 - Killed one million people
- Bubonic plague
 - Killed 25 million during the 14th century
- Technological, social, and cultural changes have expanded earth's carrying capacity for the human species today