Chapter 9 Chemical Quantities

Information Given By a Chemical Equation

- Recall: chemical changes are really arrangements of atom grouping that can be described by chemical equations.
- Atoms are just rearranged not created or destroyed
 - So must always balance an equation!
 - Balanced means the smallest set of integers that gives same # of atoms of each element on both sides

CO (g) + H₂ (g) \rightarrow CH₃OH (I)

- Balanced:
- Balanced equation gives relative numbers so could multiply by any number & still balanced
- 12CO (G) + $24H_2 \rightarrow 12CH_3OH$
- 1 dozen CO (g) + 2 dozen H₂ (g) → 1 dozen
 CH₃OH (I)
- 1 (6.022 x10²³) CO (g) + 2 (6.022 x10²³) H₂ (g) \rightarrow 1 (6.022 x10²³) CH₃OH (I)
- $(6.022 \times 10^{23}) = 1 \text{ mole (mol)}$

$$C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

Balance:

- Meaning 1 molecule C₃H₈ reacts with 5 molecules O₂ to produce 3 molecules CO₂ plus 4 molecules H₂O
- Or moles: 1 mol C₃H₈ reacts with 5 mol O₂ to produce 3 mol s CO₂ plus 4 mol H₂O

9.2 Mole- Mole Relationships

- We can use balanced equation to predict # moles of products produced by given # moles reactants
- $2 H_2O(I) \rightarrow 2H_2(g) + O_2(g)$

What if we decompose 4 moles H₂O?? (multiply everything by 2)

What if we decompose 5.8 moles H₂O (divide everything by 2 then multiply by 5.8)

Mole Ratios

- 2 mol H₂O = 1 mol O₂ (from coefficients of balanced equations)
- Want to go from moles H₂O to mol O₂

Do together:

• Ex. 9.3-

Do On Your Own

- Pg 243 self check 1,2 AND
- pg 261 # 11-12