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Introduction: A Need for Change in High School 67 

In its most recent publication directed at high-school mathematics, the largest advocacy 68 

organization for improving mathematics instruction in the United States, the National 69 

Council of Teachers of Mathematics (NCTM), has called for lasting and impactful 70 

change to occur, at all levels, by all stakeholders. The purpose for this call is simple: 71 

The steady improvement in mathematics learning seen since 1990 at the 72 

elementary and middle school levels has not been shared at the high school 73 

level, underscoring the critical need for change in mathematics education at the 74 

high school level. 75 

Catalyzing Change in High School Mathematics (NCTM, 2018) 76 

Among the various findings that support the need for a call to action, the National 77 

Association of Educational Progress (NAEP) and the Programme for International 78 

Student Assessment (PISA) provide the most compelling data. For the past 15 years, 79 

grade-twelve NAEP scores have changed little, with an average score of 150 in 2005, 80 

153 in 2013 and 152 in 2015 (Gurria, 2016). 81 

On a longer, trend level, PISA results were similar. Fifteen-year-olds show an increase, 82 

from an average of 474 in 2006 to 487 in 2009, followed by a precipitous drop to 470 in 83 

2015. Thus, the gains that the United States achieved from 2006 to 2012 have 84 

disappeared by 2015. 85 

 86 
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The NAEP results for grades 4 and 8 indicate a steady improvement trend since 1990, 87 

with a leveling out occurring in the past 10 years but not an overall decrease (NAEP, 88 

2015).  89 

 90 

When compared to other countries, 15-year-olds from the U.S. achieved less than the 91 

global average of all participating countries (Schleicher, 2019). The graph below shows 92 

data from the United States and from all the countries that took part in the PISA tests—93 

labelled OECD (Organization for Economic Co-operation and Development).  94 

 95 
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 96 

https://www.oecd.org/pisa/publications/PISA2018_CN_USA.pdf 97 

Transition from Eighth Grade to High School 98 

Ample research demonstrates the importance of grade nine for students’ future 99 

academic success. Finkelstein and Fong (2008) find that students who exit or do not 100 

receive the adequate support to remain on the college-preparatory track early in high 101 

school tend to fall farther behind and are less likely to complete a college-preparatory 102 

program as they progress through high school.  103 

The grade-eight standards in the California Common Core State Standards for 104 

Mathematics (CA CCSSM) are significantly more rigorous than the previous Algebra I 105 

standards. The CA CCSSM for grade eight address the foundations of algebra by 106 

including content that was previously part of the Algebra I course—such as more in-107 

https://www.oecd.org/pisa/publications/PISA2018_CN_USA.pdf
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depth study of linear relationships and equations, a more formal treatment of 108 

functions, and the exploration of irrational numbers. For example, by the end of the CA 109 

CCSSM for grade eight, students will have applied graphical and algebraic methods to 110 

analyze and solve systems of linear equations in two variables. The CA CCSSM for 111 

grade eight also include geometry standards that relate graphing to algebra in a new 112 

way—one that was not explored previously. Additionally, the statistics content in the 113 

CA CCSSM for grade eight are more sophisticated than those previously included in 114 

middle school and connect linear relations with the representation of bivariate data. 115 

(See Chapter Five for more discussion of this relationship.) 116 

The CA CCSSM Mathematics I and Algebra I courses build on the CA CCSSM for 117 

grade eight and are therefore more advanced than they were prior to adoption of the 118 

CA CCSSM. Because many of the topics included in the former Algebra I course are 119 

in the CA CCSSM for grade eight, the Mathematics I and Algebra I courses typically 120 

start in ninth grade with more advanced topics, and include more in-depth work with 121 

linear functions and exponential functions and relationships, and go beyond the 122 

previous high-school standards for statistics. Since grade eight in CA CCSSM is 123 

designed to be integrated, Mathematics I builds directly on the CA CCSSM for grade 124 

eight, and provides a seamless transition of content through an integrated curriculum. 125 

In order to support students to succeed in Mathematics I or Algebra I, schools have 126 

adopted a variety of approaches that have been more beneficial than remediating 8th 127 

grade mathematics over again. In 2017, Louisiana developed an Intensive Algebra I 128 

pilot in which students enrolled in two periods of Algebra I, with the same teacher for 129 

both periods, using curriculum that interwove foundational mathematics and algebra 130 

content together. The extended time, and additional supports for teachers were critical 131 

to the success of the project. Academic support courses for high school mathematics 132 

has been shown as effective in a number of studies (various studies described in 133 

https://www2.ed.gov/rschstat/eval/high-school/academic-support.pdf). The support 134 

courses are offered to provide additional time for: classroom instruction (as in the case 135 

of the Louisiana project above), homework support and supplemental assignments, 136 

emphasizing study skills and preparation in the core companion courses. There are a 137 

https://www2.ed.gov/rschstat/eval/high-school/academic-support.pdf
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number of curricula that offer support course materials; for example, Illustrative 138 

Mathematics https://im.kendallhunt.com/HS/teachers/4/narrative.html.     139 

Issues with Acceleration in Middle Grades 140 

With knowledge of the rigor of the CA CCSSM for grade eight, educators must calibrate 141 

course sequencing to ensure students are able to learn the additional content. 142 

Specifically, students who previously may have been able to succeed in an Algebra I 143 

course in grade eight may find the new CA CCSSM for grade-eight content significantly 144 

more difficult. The CA CCSSM provides for strengthened conceptual understanding by 145 

encouraging students—even strong mathematics students—to take the grade-eight CA 146 

CCSSM course instead of opting for Algebra I or Mathematics I in grade eight. 147 

Many students, parents, and teachers encourage acceleration in grade eight (or sooner 148 

in some cases) because of mistaken beliefs that Calculus is an important high school 149 

goal. This misinformation leads them to believe Algebra I must be taken in grade eight 150 

in order for the student to reach a calculus class in grade twelve. This framework 151 

clarifies these misunderstandings in three ways: 152 

● First, because of the rigorous nature of the CA CCSSM grade-eight standards, a 153 

three-year high-school pathway can be sufficient preparation for a calculus class 154 

in grade twelve, as outlined in the pathway graphic on page x (to be decided by 155 

formatting) 156 

● Second, the push to calculus in grade twelve is itself misguided. In Mathematical 157 

Association of America (MAA) and NCTM clarify that “...the ultimate goal of the 158 

K–12 mathematics curriculum should not be to get into and through a course of 159 

calculus by twelfth grade, but to have established the mathematical foundation 160 

that will enable students to pursue whatever course of study interests them when 161 

they get to college” (2012). The push to enroll more students in high school 162 

calculus often leads to shortchanging important content that does not lead 163 

directly to success in the advanced placement calculus syllabus, which is 164 

significantly procedural. “In some sense, the worst preparation a student heading 165 

toward a career in science or engineering could receive is one that rushes toward 166 

accumulation of problem-solving abilities in calculus while short-changing the 167 

https://im.kendallhunt.com/HS/teachers/4/narrative.html
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broader preparation needed for success beyond calculus” (Bressoud, Mesa, and 168 

Rasmussen 2015). 169 

● Finally, the results do not support the push for more and more students to take 170 

calculus in high school: About half of the students taking Calculus I in college are 171 

repeating their high school course, and many others place into a pre-calculus 172 

course when they enter college (Bressoud, Mesa, and Rasmussen 2015). 173 

The rapid expansion of calculus, at the expense of other important mathematics, 174 

reflects troubling realities of college admission, which colleges and universities are 175 

beginning to address partly in response to the MAA and NCTM joint statement (see for 176 

example, Mejia, Rodriguez, & Johnson, 2016). The UC/CSU systems also recognize a 177 

need for students to think more broadly, and positively, in mathematics. In the 178 

Statement of Competencies in Mathematics Expected for Entering College Students, 179 

students are expected to view mathematics as an endeavour which makes sense, 180 

demonstrate a willingness to work on problems requiring time and thought, 181 

communicate ideas with peers and build a “perception of mathematics as a unified field 182 

of study—students should see interconnections among various areas of mathematics, 183 

which are often perceived as distinct.” p. 4 In addition, the need for students to engage 184 

in meaningful problem solving with unfamiliar problems to develop open, inquiring, and 185 

demanding minds with the confidence to approach novel situations with adaptability, 186 

insight, and creativity. (https://icas-ca.org/wp-content/uploads/2020/05/ICAS-Statement-187 

Math-Competencies-2013.pdf) 188 

Focusing on Essential Concepts 189 

This framework draws on many sources that reflect the current state of high-school 190 

mathematics and research about effective practices. These include NCTM’s Catalyzing 191 

Change in High School Mathematics: Initiating Critical Conversations (NCTM, 2018), 192 

and Just Equations’ report on designing high school mathematics for equity, Branching 193 

Out: Designing High School Math Pathways for Equity (Daro & Asturias 2019). 194 

NCTM (2018) advances four key recommendations with regard to effecting needed 195 

change at the high school level: 196 

https://icas-ca.org/wp-content/uploads/2020/05/ICAS-Statement-Math-Competencies-2013.pdf
https://icas-ca.org/wp-content/uploads/2020/05/ICAS-Statement-Math-Competencies-2013.pdf
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● Each and every student should learn the Essential Concepts (a focused set of 41 197 

concepts for high school) in order to expand professional opportunities, 198 

understand and critique the world, and experience the joy, wonder, and beauty of 199 

mathematics. 200 

 201 

Source: 202 

www.nctm.org/uploadedFiles/Standards_and_Positions/executive%20summary.pdf  203 

● High school mathematics should discontinue the practice of tracking teachers as 204 

well as the practice of tracking students into qualitatively different pathways or 205 

into courses that have no follow up. 206 

● Classroom instruction should be consistent with research-informed and equitable 207 

teaching practices, such as those described in Chapter 2. 208 

http://www.nctm.org/uploadedFiles/Standards_and_Positions/executive%20summary.pdf
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● High schools should offer continuous four-year mathematics pathways with all 209 

students studying mathematics each year, including two to three years of 210 

mathematics in a common shared pathway focusing on the Essential Concepts, 211 

to ensure the highest-quality mathematics education for all students. 212 

Each of these is of critical importance in addressing the barriers to growth in math 213 

learning at California high schools. Practical, beautiful, and unifying ideas should be the 214 

drivers for each unit, lesson, and activity that students encounter. Tracking students into 215 

pathways for which they are unable to take, or even succeed in, other courses is a 216 

practice which must stop. And equitable teaching should utilize research-informed 217 

strategies, such as those recommended in Chapter 2. 218 

NCTM’s last recommendation, that students transitioning from eighth grade to high 219 

school should expect to undertake four-year pathways which include multiple years of 220 

courses that are taken in common with their peers, is of paramount importance. The 221 

ninth-grade year is widely considered to be the most critical year of a student’s high 222 

school and beyond trajectory. Neild, Stoner-Eby, and Furstenberg (2008) conclude that 223 

the experience of the ninth-grade year contributes substantially to the probability of 224 

dropping out of high school, even after controlling for eighth grade academic 225 

performance and pre-high school attitudes and ambitions. If students are to be 226 

accelerated, then this should occur only after grade nine.  227 

Similarly, in Branching Out: Designing High School Math Pathways for Equity (Daro & 228 

Asturias 2019), the authors call for multiple pathways in high school for students, rather 229 

than tracks for students with little opportunity to “jump tracks”. The report also 230 

challenges the notion of STEM vs Non-STEM as a useful binary paradigm for 231 

classifying career goals. There are many careers that do not fit this paradigm; according 232 

to the report, these are known as BRANCH fields, and include occupations such as 233 

“journalist, elected official, high school principal, marketing executive, attorney, game 234 

designer, first responder, movie producer, or stockbroker” (p. 8). (Note that while 235 

BRANCH itself is not an acronym, the all-capitals are used to indicate that these 236 

pathways are as rigorous as STEM pathways.) In designing new BRANCH math 237 

pathways, the report outlines goals:  238 
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1. STEM-interested students will be able to learn the mathematics that prepares 239 

them for STEM careers.  240 

2. BRANCH-interested students will be able to learn the mathematics that prepares 241 

them for BRANCH careers without being blocked by irrelevant requirements. 242 

3. Latinx and African American students will have ample opportunities to thrive in 243 

college, including in STEM fields, as will female students of all ethnicities.  244 

4. Students who initially choose a BRANCH pathway will be able to switch to a 245 

STEM pathway during high school or college, and vice versa, if their interests 246 

change.   247 

Exclusionary Math 248 

In his 2020 book Mathematics for Human Flourishing, Francis Su describes experiences 249 

of exclusion from the mathematics community, in both school mathematics and the 250 

professional mathematics community. 251 

We are not educating ourselves as well as we should, and like most injustices, 252 

this especially harms the most vulnerable. Lack of access to mathematics and 253 

lack of welcome in mathematics have had devastating consequences. (Su, 2020) 254 

The devastating consequences to which Su refers have particularly harmed students of 255 

color and those from low-income communities and other disadvantaged groups. PISA 256 

results corroborate Dr. Su’s experiences and insight. In the PISA 2018 test, socio-257 

economic status was a strong predictor of performance in mathematics in the United 258 

States. It explained 16 percent of the variation in mathematics performance in the 259 

United States versus 14 percent on average across all participating countries (PISA, 260 

2018).  261 

This raises the importance of mindset and belonging messages being given to high 262 

school students, especially those who have developed the idea that only some people 263 

are “math people” and that their brains are fixed (incapable of growth). It is crucial to 264 

share with students that struggle is the best time for brains and that they should 265 

embrace times of cognitive challenge. It is equally important to share that brains are not 266 

fixed and that any times of learning create opportunities for brain growth, connections, 267 

and strengthening of pathways. As mathematics has developed in such exclusive and 268 
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elitist ways, it is also important to share with students examples of women and people of 269 

color who are successful mathematicians. Youcubed.org has many films that can be 270 

shared with students, sharing these messages and examples of people. 271 

California schools must actively work to counteract the many forces that filter and 272 

exclude so many from mathematically-intense pursuits. It is well established that “much 273 

of what happens in the classroom is determined by a cultural code that functions, in 274 

some ways, like the DNA of teaching” (Stigler & Hiebert, 2009), and that changing what 275 

happens is remarkably difficult, even for teachers and departments that are committed 276 

to changing practice in order to right these historic injustices (Louie, 2017). Further, 277 

research has shown that when high school mathematics is taught in a narrow, 278 

procedural way students develop narrow and binary perceptions of both the curriculum 279 

(strongly like it or strongly dislike it), and of each other, leading to classroom inequalities 280 

(LaMar, Leshin & Boaler, 2020).  281 

While the adoption of the CA CCSSM has provided a basis upon which to effect 282 

changes in equitable instruction TK–8, this change has been slower to come for high 283 

school. However, from 10 years’ experience with the CA CCSSM, California high 284 

schools are positioned to lead a movement towards greater inclusion and equity in 285 

mathematical sciences. 286 

The word “inclusion” is used in this chapter to describe both a value and approaches to 287 

teaching (Roos, 2019). The value, that all California students deserve high-quality high 288 

school mathematics experiences that enable them to be powerful users of mathematics 289 

to understand and affect their world, is put into action by the approach to teaching—290 

teaching methods, curricular materials, and approaches to mathematics that are 291 

designed to actively disrupt cultural patterns that perpetuate inequity, and to 292 

authentically engage students from all backgrounds. 293 

Pathways in Grades 9–12  294 

While the ninth-grade year has been shown to be of critical importance in establishing 295 

progress toward graduation, grades eleven and twelve are important as well. The 296 

graphic below indicates possible pathways for high school coursework, reflecting a 297 
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common ninth and tenth grade experience, and a broader array of options in eleventh 298 

and twelfth grade.  299 

 300 

By completing Mathematics: Investigating and Connecting 1 and 2, Mathematics I and 301 

II, or Algebra and Geometry, students will be satisfying the requirements of California 302 

Assembly Bill 220 that states that students complete two mathematics courses in order 303 

to receive a diploma of graduation from high school, with at least one course meeting 304 

the rigor of Algebra 1. Depending upon their post-secondary goals, students may 305 

choose different third- and fourth-year courses. For example, a student who is planning 306 

upon working in a fabrication shop upon high school graduation may choose to follow 307 

Mathematics I and II with a course in Modeling to help understand the mathematics of 308 

die-casting and 3-d printing. Or a student who is planning to study political science may 309 

choose a Data Science course in their third year and a Statistics course in their fourth 310 

year to understand the mathematics behind polling, apportionment and the implications 311 

of gerrymandering.  312 

Should students decide to switch pathways (at high schools which offer multiple 313 

pathways), there is an increasing amount of flexibility afforded to those planning to enter 314 

a university upon graduation, in terms of which courses “count” for admission. In 315 
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October 2020, the University of California system updated the mathematics (area C) 316 

course criteria and guidelines for the 2021–22 school year and beyond. An exciting 317 

change in this update is the allowance of courses in data science to serve as the 318 

required third year of mathematics coursework. In the diagram above, Mathematics: 319 

Investigating and Connecting (MIC) – Data Science meets the criteria above and so 320 

fulfills the required third year, since MIC – Data substantially aligns with CACCSSM (+) 321 

standards. The MIC pathway is described later in this chapter. For additional information 322 

on Data Science, see Chapter 5. 323 

Overall, the revisions are to: 324 

● Clarify UC’s expectation for college-prep mathematics courses that will help 325 

students acquire specific skills to master the subject’s content and also gain 326 

proficiency in quantitative thinking and analysis; 327 

● Support the efforts of high schools to develop and implement multiple college-328 

prep mathematics course options for students; 329 

● Encourage the submission of a broader range of advanced/honors math courses 330 

(e.g., Statistics, Introduction to Data Science) for area C approval. 331 

Key highlights of the policy updates: 332 

● Courses that substantially align with Common Core (+) standards (see chapters 333 

on Higher Mathematics Courses: Advanced Mathematics and Higher 334 

Mathematics Standards by Conceptual Category in Common Core Standards for 335 

Mathematical Practice (SMPs) 336 

https://www.cde.ca.gov/BE/st/ss/documents/ccssmathstandardaug2013.pdf), and 337 

are intended for 11th and/or 12th grade levels are eligible for area C approval 338 

and may satisfy the required third year or recommended fourth year of the 339 

mathematics subject requirement if approved as an advanced mathematics 340 

course. 341 

○ Examples of such courses include, but are not limited to, applied 342 

mathematics, computer science, data science, pre-calculus, probability, 343 

statistics, and trigonometry. 344 

https://www.cde.ca.gov/BE/st/ss/documents/ccssmathstandardaug2013.pdf
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● Courses eligible for UC honors designation must integrate, deepen, and support 345 

further development of core mathematical competencies. Such courses will 346 

address primarily the (+) standards of Common Core-aligned advanced 347 

mathematics (e.g., statistics, pre-calculus, calculus, or discrete mathematics). 348 

The entire revised mathematics (area C) course criteria are located at https://hs-349 

articulation.ucop.edu/guide/a-g-subject-requirements/c-mathematics/ 350 

The California State University (CSU) system has developed several courses for the 351 

fourth year of high school (and some for earlier grades) which meet the Area C 352 

(Mathematics) requirement for admission to the CSU. The CSU Bridge Courses page 353 

(http://cmrci.csu-eppsp.org/) lists mathematics/quantitative courses and projects 354 

working within the CSU system focused on supporting mathematics and quantitative 355 

reasoning readiness among K–12, CSU, and community-college educators. The 356 

courses developed have a variety of emphases, including modeling, inference, voting, 357 

informatics, financial decision making, introduction to basic calculus concepts, 358 

connections among topics, theory of games, cryptography, combinatorics, graph theory, 359 

and connecting statistics with algebra. These courses have been adopted throughout 360 

the state in coordination with district and school initiatives to increase the variety of rich 361 

high school mathematics coursework at the upper grade levels.  362 

Note 363 

The Just Equations Report Branching Out: Designing High School Math Pathways for 364 

Equity tackles several aspects of the traditional calculus pathway that has led to highly 365 

unequal opportunity for California students, and to very inequitable outcomes. The 366 

provision of alternative pathways is expected to broaden opportunities for students, 367 

increase interest in a wider range of students, and result in much more diverse 368 

participation in Science, Technology, Engineering, and Mathematics (STEM) pathways 369 

(LaMar, Leshin & Boaler, 2020). 370 

https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/c-mathematics/
https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/c-mathematics/
http://cmrci.csu-eppsp.org/
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Mathematics: Investigating and Connecting Pathway 371 

Definition of Integration 372 

There are multiple contexts for which the term “integrated” has been used in connection 373 

with mathematics education. In this chapter, “integrated” will refer to both the connecting 374 

of mathematics with students’ lives and their perspectives on the world, and to the 375 

connecting of mathematical concepts to each other. This reference to both can result in 376 

a more coherent understanding of mathematics. Integrated tasks, activities, projects, 377 

and problems are those which invite students to engage in both of these aspects of 378 

integration.  379 

The integration of mathematical topics into authentic problems that draw from different 380 

areas of mathematics has been shown to increase engagement and achievement 381 

(Grouws et al, 2013). Some districts, in recent years, moved towards the integration of 382 

content by offering integrated courses but the textbooks they chose did not truly 383 

integrate mathematical concepts, instead interspersing chapters of algebra and 384 

geometry. This framework offers an approach that is conceptually integrated. The 385 

districts that moved to integrated courses—even when the content was not integrated—386 

have course structures in place that will allow a smooth transition to this new, truly 387 

integrated approach, that is centered around broad ideas and meaningful engagement. 388 

Other districts teaching algebra and geometry may consider a move to the conceptually 389 

integrated approach that has been shown to increase engagement and understanding.  390 

Children are naturally curious about the world in which they live, and this curiosity fuels 391 

their desire to wonder, describe, understand, and ask questions about their world. In a 392 

similar way, new mathematics is developed through attempts to describe, to 393 

understand, and to answer questions. Mathematics provides a set of lenses for viewing, 394 

describing, understanding, and analyzing phenomena, as well as solving problems, 395 

such as local issues related to environmental and social justice, through engineering 396 

design practices(CA NGSS HS-ETS1-2)—which might occur in the “real world” or in 397 

abstract settings such as within mathematics itself. For instance, finance, the 398 
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environment, and science all offer phenomena, such as recurrent patterns or atypical 399 

cases, which are better understood through mathematical tools; such phenomena also 400 

arise within mathematics (see Chapter Four: Exploring, Discovering, and Reasoning 401 

with and About Mathematics, for instance).  402 

However, mathematics is never developed in order to answer questions about which the 403 

explorer is not curious; and learning mathematics is not much different. By experiencing 404 

the ways in which mathematics can answer natural questions about their world, both in 405 

school and outside of it, a student’s perspectives on both mathematics and their world 406 

are integrated into a connected whole. 407 

Motivation for Integration 408 

Critique the effectiveness of your lesson, not by what answers students 409 

give, but by what questions they ask. 410 

—Fawn Nguyen (2016), Mesa Union School District, junior high mathematics teacher 411 

The Mathematics: Investigating and Connecting (MIC) pathway described here 412 

(implementing the content standards laid out in the CA CCSSM) emphasizes both 413 

aspects of integration: opportunities which are relevant to students and their 414 

experiences, and opportunities to connect different mathematical ideas. In keeping with 415 

the thrust of this framework, curriculum and instruction should take both of these into 416 

account. A guiding question for measuring these two aspects in classroom activities is, 417 

“Can I see evidence that students wonder about questions that will help to motivate 418 

learning of mathematics and that connect this learning to other knowledge?” 419 

As has been mentioned previously, there are several studies which have documented 420 

the disproportionately negative impacts of mathematics on students of color when 421 

teaching approaches are largely procedural (e.g. Louie, 2017), and, more specifically, 422 

the negative impact 8th grade algebra has upon students of color (Domina, et al. 2015). 423 

Integrated approaches, such as Mathematics: Investigating and Connecting and the 424 

Integrated pathway, focused on the use of inclusive teaching practices, such as those 425 

described in Chapter 2, allow more equitable access to authentic mathematics for all 426 
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students, and necessitate a view that mathematics is a beautiful and connected subject, 427 

both internally and to the greater world around it.  428 

Designing Integration 429 

The primary challenge for the design of any high-school pathway is to bridge the gap 430 

between the CA CCSSM’s lists of critical content goals, on the one hand, and the 431 

difficult tasks facing teachers every day in helping their students to see mathematics as 432 

a subject of connected, meaningful ideas, and to become powerful users of 433 

mathematics to understand and affect their world. The Mathematics: Investigating and 434 

Connecting pathway presents one possible embedding of the CA CCSSM content into 435 

experience-based contexts designed to necessitate mathematics, so that mathematical 436 

content is experienced by students as tools for answering authentic questions.  437 

The courses Mathematics: Investigating and Connecting 1 and Mathematics: 438 

Investigating and Connecting 2 are implementations of the Integrated Math I and 439 

Integrated Math II sample content outlines in the CA CCSSM (with some data clusters 440 

moved from Integrated Math III into MIC 1 and MIC 2). The Mathematics: Investigating 441 

and Connecting pathway has two options for advanced (years 3 and 4) courses: 442 

Mathematics: Investigating and Connecting—Data Science (MIC—Data) and 443 

Mathematics: Investigating and Connecting—Functions and Modeling (MIC—Modeling). 444 

MIC—Data and MIC —Modeling emphasize different types of investigations to frame 445 

student activities, and distribute student effort differently between the various 446 

Conceptual Categories of the CA CCSSM. 447 

As described in Chapter 2: Teaching for Equity and Engagement, it is important that 448 

exploration and question-posing occur prior to teachers telling students about questions 449 

to explore, methods to use, or solution paths. A compelling experimental research study 450 

compared students who learned calculus actively, when they were given problems to 451 

explore before being shown methods, to students who received lectures followed by 452 

solving the same problems as the active learners (Deslauriers, McCarty, Miller, 453 

Callaghan, & Kestin, 2019). The students who explored the problems first learned 454 

significantly more (see also Schwartz & Bransford, 1998). However, despite their 455 

increased learning, the students believed that the lecture approach was more 456 
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effective—as the active learning condition caused them to experience more challenge 457 

and uncertainty. The study not only showed the effectiveness of students exploring 458 

problems before being taught methods, but the value of sharing with students the 459 

importance of struggle and of thinking about mathematics problems deeply.  460 

Other research examines beliefs and attitudes such as utility value (belief that 461 

mathematics is relevant to personal goals and to societal problems), and this research 462 

shows a severe drop-off in utility value during high school (Chouinard & Roy, 2008). 463 

However, teaching methods that increase connections between course content and 464 

students’ lives, and that include careful focus on effective groupwork, can significantly 465 

increase utility value for students (Cabana, Shreve & Woodbury, 2014; Boaler, 2016a, 466 

2016b, 2019; Hulleman, Kosovich, Barron, & Daniel, 2017; LaMar, Leshin & Boaler, 467 

2020). 468 

Driving Investigations and Connections 469 

Since motivating students to care about the mathematics is crucial to forming 470 

meaningful content connections, the Mathematics: Investigating and Connecting 471 

pathway (abbreviated MIC below) identifies three Drivers of Investigation, which 472 

provide the “why” of learning mathematics, to pair with four categories of Content 473 

Connections (CCs), which provide the “how and what” mathematics (the high school 474 

CA CCSSM standards) to be learned in an activity. So, the DIs propel the learning of 475 

the content framed in the CCs. 476 

Drivers of Investigation (DIs) 477 

The Content Connections should be developed through investigation of questions in 478 

authentic contexts; these investigations will naturally fall into one or more of the 479 

following Drivers of Investigation. The DIs are meant to serve a purpose similar to that 480 

of the Crosscutting Concepts in the CA-NGSS, as unifying reasons that both elicit 481 

curiosity and provide the motivation for deeply engaging with authentic mathematics. In 482 

practical use, teachers can use these to frame questions or activities at the outset for 483 

the class period, the week, or longer; or refer to these in the middle of an investigation 484 

(perhaps in response to the “Why are we doing this again?” questions that often crop 485 
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up), or circle back to these at the conclusion of an activity to help students see “why it 486 

all matters”.  Their purpose is to pique and leverage students’ innate wonder about the 487 

world, the future of the world, and their role in that future, in order to foster a deeper 488 

understanding of the Content Connections and grow into a perspective that 489 

mathematics itself is a lively, flexible endeavor by which we can appreciate and 490 

understand so much of the inner workings of our world. The DIs are: 491 

●        DI 1: Making Sense of the World (Understand and Explain) 492 

●        DI 2: Predicting What Could Happen (Predict) 493 

●        DI 3: Impacting the Future (Affect) 494 

Content Connections (CCs) 495 

The four Content Connections described in the framework organize content and provide 496 

mathematical coherence through the grades: 497 

CC1: Communicating Stories with Data 498 

CC2: Exploring Changing Quantities 499 

  CC3: Taking Wholes Apart, Putting Parts Together 500 

  CC4: Discovering Shape and Space 501 

Big ideas that drive design of instructional activities will link one or more Content 502 

Connections, and SMPs, with a Driver of Investigation, so that students can 503 

Communicate Stories with Data in order to Predict What Could Happen, or Illuminate 504 

Changing Quantities in order to Impact the Future. The aim of the drivers of 505 

investigation is to ensure that there is always a reason to care about mathematical work 506 

-and that investigations allow students to make sense, predict, and/or affect the world. 507 

The following diagram is meant to illustrate the ways that the drivers of investigation 508 

relate to content connections and practices, as cross cutting themes. Any driver of 509 

investigation could go with any set of content and practices: 510 

Figure 1: Content connections, Mathematical Practices and Drivers of Investigation 511 
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 512 

Instructional materials should primarily involve tasks that invite students to make sense 513 

of these big ideas, elicit wondering in authentic contexts, and necessitate mathematical 514 

investigation. Big ideas in math are central to the learning of mathematics, link 515 

numerous mathematical understandings into a coherent whole, and provide focal points 516 

for students’ investigations. An authentic activity or problem is one in which students 517 

investigate or struggle with situations or questions about which they actually wonder. 518 

Lesson design should be built to elicit that wondering. 519 

This framing helps teachers and curriculum writers to focus on big ideas (see Chapter 2 520 

and Cabana, Shreve & Woodbury, 2014). It is similar to the way that the Next 521 

Generation Science Standards’ seven Cross-cutting Concepts serve as themes which 522 

span multiple grades and are present in the various sciences. 523 
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Within each category, students’ experiences should first emerge out of exploration or 524 

problems that incorporate student problem-posing (Cai & Hwang, 2019). Meaningful 525 

student engagement in identifying problems of interest helps increase engagement 526 

even in subsequent teacher-identified problems. Identifying contexts and problems 527 

before solution methods are known makes explorations more authentically problematic 528 

for students, as opposed to simply exercises to practice previously learned exercise-529 

solving paths. 530 

A well-known example of the difference between a stereotypical use of problems and 531 

the one assumed in this pathway is described in Dan Meyer’s TED talk (Meyer, 2010): 532 

Meyer’s considers a standard textbook problem about a cylindrical tank filling from a 533 

hose at a constant rate. The textbook provides several sub-steps (area of the base, 534 

volume of the tank), and the final question “How long will it take to fill the tank?” The 535 

task appears at the end of a chapter in which all the mathematical tools to solve the 536 

problem are covered; thus, students experience the task as an exercise, not an 537 

authentic problem. 538 

In the problem-based technique advocated here, the tank-filling context is presented 539 

prior to any introduction of methods or a general class of problems, in some way that 540 

authentically raises the question, “how long will it take to fill?” and preferably in a way 541 

that has a meaningful answer available for a check (e.g., a video of the entire tank-filling 542 

process, as in the TED Talk). After the question has been raised (hopefully by 543 

students), students make some estimates, and then the development of the necessary 544 

mathematics is seen as having a purpose. Viewing the end of the video prompts meta-545 

thinking about process—why is our answer different than the video shows?—much 546 

more effectively than a “check your work” prompt or a comparison with the answer in 547 

the back of the book. This tank-filling problem could occur in the “Exploring Changing 548 

Quantities” Content Connection of MIC I. Note that the problem integrates linear 549 

function and geometry standards. 550 

As this example shows, the problem-embedded learning envisioned in this pathway 551 

does not imply a curriculum in which all learning takes place in the context of large, 552 

multi-week projects, though that is one approach that some curricula pursue. Problems 553 
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and activities that emphasize an integrated approach as outlined here can also be 554 

incorporated into instruction in short time increments, such as 45-minute lessons or 555 

even in shorter routines such as Think-Pair-Share, or Math Talks (see Chapter 3). 556 

There are a number of lesson plan formats which take a problem-embedded approach, 557 

including one from LA Unified School District which adopts the Three-Phase Approach 558 

advocated by Dan Meyer. 559 

https://achieve.lausd.net/cms/lib/CA01000043/Centricity/domain/335/lessons/integrated560 

%20math/integrated%20math%20pd/Three-PhaseLessonStructure.pdf 561 

A more extensive investigation that cuts across several Content Connections is 562 

illustrated in this climate change vignette. 563 

Vignette: Exploring Climate Change  564 

Course: MIC1 / Integrated Math 1 565 

Background Reading on Climate Change 566 

With the beginning of the Industrial Revolution of the in the mid-1700s, the world began 567 

to see many changes in the production of goods, the work people did on a daily basis, 568 

the overall economy and, from an environmental perspective, the balance of the carbon 569 

cycle. The location and distribution of carbon began to shift as a result of the Industrial 570 

Revolution, and have continued to change over the last 250 years as a result of the 571 

growing consumption of fossil fuels, industrialization, and several other societal shifts. 572 

During this time, the distribution of carbon among Earth's principal reservoirs 573 

(atmosphere; the oceans; terrestrial plants; and rocks, soils, and sediments) has 574 

changed substantially. Carbon that was once located in the rock, soil, and sediment 575 

"reservoir," for example, was extracted and used as fossil fuels in the forms of coal and 576 

oil to run machinery, heat homes, and power automobiles, buses, trains, and tractors. 577 

[This provides a good opportunity for discussing and reinforcing California 578 

Environmental Principle IV. "The exchange of matter between natural systems and 579 

human societies affects the long-term functioning of both."] (Supporting materials are 580 

available in EEI Curriculum units Britain Solves a Problem and Creates the Industrial 581 

https://achieve.lausd.net/cms/lib/CA01000043/Centricity/domain/335/lessons/integrated%20math/integrated%20math%20pd/Three-PhaseLessonStructure.pdf
https://achieve.lausd.net/cms/lib/CA01000043/Centricity/domain/335/lessons/integrated%20math/integrated%20math%20pd/Three-PhaseLessonStructure.pdf
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Revolution and The Life and Times of Carbon, available at no charge 582 

from https://californiaeei.org/curriculum) 583 

Before the Industrial Revolution, the input and output of carbon among the carbon 584 

reservoirs was more or less balanced, although it certainly changed incrementally over 585 

time. As a result of this balance, during the 10,000 years prior to industrialization, 586 

atmospheric CO2 concentrations stayed between 260 and 280 parts per million (ppm). 587 

Over the past 250 years human population growth and societal changes have resulted 588 

in increased use of fossil fuels, dramatic increase in energy generation and 589 

consumption, cement production, deforestation and other land-use changes. As a 590 

result, the global average amount of carbon dioxide hit a new record high of 407.4 ppm 591 

in 2018—with the annual rate of increase over the past 60 years approximately 100 592 

times faster than previously recorded natural increases. 593 

The "greenhouse effect" impacts of rising atmospheric CO2 concentrations are diverse 594 

and global in distribution and scale. In addition to melting glaciers and ice sheets that 595 

many people are becoming aware of, the impacts will include sea level rise, diminishing 596 

availability of fresh water, increased number and frequency of extreme weather events, 597 

changes to ecosystems, changes to the chemistry of oceans, reductions in agricultural 598 

production, and both direct and indirect effects on human health. [This offers a good 599 

opportunity to reinforce California Environmental Principle II. "The long-term functioning 600 

and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by 601 

their relationships with human societies.”] 602 

You may visit https://www.climate.gov for more information. 603 

Mathematics/Science/English Languages Arts/Literacy (ELA) Task: 

https://californiaeei.org/curriculum
https://www.climate.gov/
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Determine the relative contributions of each of the major greenhouse gases and which 

is the greatest contributor to the global greenhouse effect and, therefore, should be 

given the highest priority for policy changes and governmental action. Examine the 

growth patterns of related human activities and their relative contributions to release of 

the most influential greenhouse gas. Based on these factors, analyze the key 

components of the growth patterns and propose a plan that would reduce the human-

source release of that greenhouse gas by at least 25–50%, and determine how that 

change would influence the rate of global temperature change. 

Classroom Narrative: 604 

Mathematics, science and language arts teachers met to co-plan this interdisciplinary 605 

task. They each felt that the task was challenging and authentic, requiring students to 606 

draw from different disciplines to forge a solution, just as we do in the real world. They 607 

developed a sequence of activities to get the students started, being careful not to over-608 

scaffold the task or to give students too much guidance toward possible solutions 609 

pathways, but ensuring their work supplemented and supported the larger task. 610 

Launch: Student teams are provided with the task and then read the article “Climate 611 

Change in the Golden State” (http://www.cde.ca.gov/ci/sc/cf/ch8.asp#link68) to gather 612 

evidence about the scale and scope of the effects of climate changes in California. As 613 

this is an extended text, the English language arts teacher provides an interactive note-614 

taking guide for students to use. Students highlight parts that are not clear, they note 615 

important claims made by the authors, and formulate their own questions to share in 616 

groups. Students use their reading and research skills as basis for tackling the question 617 

of climate change.   618 

Orienting Discussion: The class discusses three key questions:  619 

1. Can the recent changes in California’s climate be explained by natural 620 

causes? 621 

2. If natural causes cannot explain the rising temperatures, what anthropogenic 622 

factors have produced these changes? 623 

http://www.cde.ca.gov/ci/sc/cf/ch8.asp#link68
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3. If temperatures in California’s climate continue to rise, what effects will this 624 

have on humans and the state’s natural systems?  625 

Having read and processed the key article, students start to unpack these questions. 626 

Students look up the meaning of “anthropogenic, then rephrase the questions in their 627 

own words to see if they understand the meaning. Both the reading and the initial class 628 

discussion prepare students to push forward.   629 

Motivated to help reduce climate change in California and globally, students decide to 630 

break down their task into more manageable pieces: 631 

1. Determining the major greenhouse gases; 632 

2. Analyzing the relative contributions of each gas and deciding which is the 633 

greatest contributor to global climate change and thus should be given the 634 

highest priority for policy changes and governmental action; 635 

3. Collecting data on the human activities that cause increases to the release of the 636 

most influential greenhouse gas; 637 

4. Analyzing the key components of the growth patterns of this gas; 638 

5. Based on influences to the growth pattern, developing a plan to reduce the 639 

human-source release of that greenhouse gas by 25–50%; and, 640 

6. Determining how their plan would influence the rate of global climate change. 641 

Team Research 642 

Students start researching online, considering the trustworthiness of the data sources. 643 

They visit https://www.climate.gov and the California Air Resources Board 644 

(https://ww2.arb.ca.gov) to gather most of the data they need. 645 

At https://www.climate.gov they discover a graph that shows the influence of the major 646 

human-produced greenhouse gases from 1980–2018. 647 

https://www.climate.gov/
https://www.climate.gov/
https://ww2.arb.ca.gov/
https://ww2.arb.ca.gov/
https://ww2.arb.ca.gov/
https://www.climate.gov/
https://www.climate.gov/
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 648 

Looking at the graph and prompted by the teacher’s questions, “What do you notice? 649 

What do you wonder?” students wonder about various aspects and implications. They 650 

jot these wonderings down and then speak in small groups. They notice that all major 651 

contributing gases seem to be increasing over time, though some say CFC-11 isn’t 652 

obviously increasing; and others note that CFC-12 seems to have leveled out around 653 

1990. Some students question this, as both still look like they are “going up” on the 654 

graph; this disagreement and ensuing discussion helps all students make sense of the 655 

graph.  656 

Through a process of collaboration, they work together to synthesize their questions into 657 

coherent and meaningful inquiries:  658 

1. Why are there labels on both vertical axes? What do the three labeled axes 659 

represent? 660 

2. Why is there a labeled 43-percent increase? An increase in what? Over what 661 

time frame? How was this calculated? 662 

3. What does this data display suggest is the most important greenhouse gas? 663 

4. How does the year-to-year growth change over these 38 years? 664 
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Most teams choose to focus their efforts on reducing CO2 emissions based on the 665 

graph above. One team decides to work with methane because they believe that CO2 666 

emissions are harder to reduce, and they can make a bigger difference by reducing 667 

methane emissions. Students feel empowered since they have more autonomy to follow 668 

where their explorations lead them, which is not the usual way of learning in math, 669 

science or ELA. The teachers work with some groups that may struggle with the 670 

openness of the task. Teachers encourage students to build from and explore each 671 

other’s ideas. 672 

Each team researches the sources of human emissions of the gas they have chosen, 673 

uses their understanding of political and psychological opportunities and barriers to 674 

decide on most-likely policy shifts to achieve the desired 25–50% reduction in 675 

emissions, and prepares a presentation for the class outlining their solutions. The 676 

teaching team provides additional expertise to help interpret the complexity of the 677 

information students are collecting and synthesizing. 678 

Team Presentations 679 

As teams prepare for their presentations, they return to the driving question of the task. 680 

From all the data they collected, they must now distill the most important information to 681 

describe their analysis and recommendations. Part of each presentation is a version of 682 

the NOAA graph above, extended into the future with the assumed implementation of 683 

the team’s proposal. Calculating the impact of their proposal on the rate of temperature 684 

change will require interpreting the left vertical axis label on the graph. The teaching 685 

team videotapes the presentations and reports to capture the range of practices that 686 

students are using such as quality of their research, analysis of data, effectiveness of 687 

their visuals, and clarity of their report, given audience, and purpose.  688 

After all teams have presented, the final activity is to put all the pieces together to 689 

address the following big idea: What will be the impact on climate change if all the 690 

teams’ proposals are implemented? 691 

Following the common experience of MIC 1 and MIC 2, this framework presents two 692 

options for a MIC 3/4 course: Mathematics: Investigating and Connecting—Data 693 
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Science and Mathematics: Investigating and Connecting—Functions and Modeling. 694 

Both continue the MIC 1 and 2 emphasis on developing mathematical understanding in 695 

order to answer students’ authentic questions. The two emphasize different types of 696 

investigations to frame student activities, and distribute student effort differently 697 

between the various Content Connections and the Conceptual Categories of the CA 698 

CCSSM. 699 

The specifications for the MIC—Data and MIC—Modeling courses are consistent with 700 

the broad goals of the Integrated Math III guidance that is provided in the CA CCSSM: 701 

“It is in the Mathematics III course that students integrate and apply the mathematics 702 

they have learned from their earlier courses.” Research and recommendations about 703 

high school pathways have added much to our understanding since the adoption of the 704 

CA CCSSM in 2010 (and postsecondary admission requirements have broadened the 705 

mathematics recognized as appropriate preparation, see Pathways in 9-12 section 706 

above), so the MIC—Data and MIC—Modeling courses are replacements for, rather 707 

than implementations of, the Integrated Math III content guidance in the CA CCSSM. 708 

The CA CCSSM foresaw this mechanism, pointing out that the framework “...will offer 709 

expanded explanations of the model courses and suggestions for additional courses.” 710 

Specifically, MIC implements the recommendation in (Daro & Asturias, 2019) that 711 

students have a common experience in ninth and tenth grades, with branching options 712 

in eleventh grade. This enables students to begin to explore mathematics in contexts 713 

that matter to them. An important caveat is that both MIC—Data and MIC—Modeling 714 

courses should offer a path to all twelfth-grade courses, so that students are not locked 715 

into a track with their MIC third year choice.  716 

Mathematics: Investigating and Connecting—Functions and Modeling is designed 717 

around investigations centered in the Mathematical Modeling Conceptual Category 718 

(which might fit into any Content Connection), developing most content through these 719 

investigations. For more discussion of modeling, see Content Connection 2 on p. X. 720 

Mathematics: Investigating and Connecting—Data Science is designed around 721 

investigations centered in the Statistics and Probability Conceptual Category, and is 722 

explained in detail in Chapter 5: Data Science. 723 
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As indicated in the course diagram earlier in this chapter, additional advanced MIC 724 

courses are possible, as long as they are designed to situate mathematics learning in 725 

investigations of authentic contexts and problems, and offer a path to twelfth-grade 726 

courses offered by the school/district. 727 

One example that is already offered by some districts (and is University of California A–728 

G approved) is Financial Algebra, in which students engage in mathematical modeling 729 

in the context of personal finance. Through this modeling lens, they develop 730 

understanding of mathematical topics from advanced algebra, statistics, probability, 731 

precalculus, and calculus. Instead of simply incorporating a finance-focused word 732 

problem into each Algebra 2 lesson, this course incorporates the mathematics concept 733 

when it applies to the financial concept being discussed. For example, the concept of 734 

exponential functions is explored through the comparison of simple and compound 735 

interest; continuous compounding leads to a discussion of limits; and tax brackets shed 736 

light on the practicality of piecewise functions. In this way, the course ignites students' 737 

curiosity and ultimately their engagement. The scope of the course covers financial 738 

topics such as: taxes, budgeting, buying a car/house, (investing for) retirement, and 739 

credit, and develops algebra and modeling content wherever it is needed. “Never has 740 

mathematics seemed so relevant to students as it does in this course,” says one 741 

teacher. 742 

Any of these advanced MIC courses could lead to a full range of fourth-year options as 743 

set out in the course diagram earlier in the chapter. The University of California and the 744 

California State Universities have approved courses in data science and statistics as 745 

valuable alternatives to calculus pathways. Research has shown that taking a 746 

precalculus class does not increase success in calculus (Sonnert & Sadler, 2014), and 747 

recent innovative approaches for students in California community colleges have shown 748 

that students who move from Algebra 2 to supported calculus classes are more 749 

successful than those who go through prerequisite courses (Mejia, Rodriguez, & 750 

Johnson, 2016). Thus, this Framework recommends that students be allowed to move 751 

from any advanced MIC course to any fourth-year course, including a calculus course or 752 

another advanced MIC course. 753 
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The four Content Connections are described and illustrated with a relevant vignette and 754 

with CA CCSSM content domains listed for each. See the CA CCSSM for the full 755 

language of standards in the domain. Note that almost all tasks and investigations will 756 

involve multiple domains, with a goal of building connections across multiple 757 

mathematical ideas. 758 

The Content Connections 759 

CC 1: Communicating Stories with data 760 

Vignette: Whale Hunting 761 

This Content Connection is covered in more depth in Chapter 5: Data Science. The 762 

Mathematics: Investigating and Connecting pathway gives prominence to reasoning 763 

about and with data, reflecting the growing importance of data as the source of most 764 

mathematical situations that students will encounter in their lives. Investigations in a 765 

data-driven context—data either generated/collected by students, or accessed from 766 

publicly-available sources—help maintain and build the integration of mathematics with 767 

students’ lives (and with other disciplines such as science and social studies). Most 768 

investigations in this category also involve aspects of CC 2: Illuminating changing 769 

quantities. 770 

Context: 771 

In the 1970s the stock (or number) of bowhead whales in the Bering Sea was calculated 772 

to be as low as 600–2000 whales, mostly due to heavy commercial whaling. This was, 773 

of course, mightily concerning to environmentalists and thus the International Whaling 774 

Commission completely halted permissions to hunt whales hoping to restore the 775 

population. Commercial whaling had long been a known issue, and it was already 776 

restricted, but this really hurt native populations that hunt bowhead whales for 777 

subsistence. Note that this provides a good opportunity for discussing and reinforcing 778 

California Environmental Principle I, “The continuation and health of individual human 779 

lives and of human communities and societies depend on the health of the natural 780 

systems that provide essential goods and ecosystem services.” 781 
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Here is some writing on the practice from an indigenous person from the region: 782 

“Subsistence whaling is a way of life for the Inupiat and Siberian Yupik people 783 

who inhabit the Western and Northern coasts of Alaska. From Gambell to 784 

Kaktovik, the bowhead whale has been our central food resource and the center 785 

of our culture for millennia, and remains so today. 786 

Our whale harvest brings us an average of approximately 1.1M to 2M pounds of 787 

food per year (12–20 tons x 45–50 whales), which our whaling captains and 788 

crews share freely throughout our whaling communities and beyond to relatives 789 

and other members of Alaska’s native subsistence community in other native 790 

villages. For perspective, replacing this highly nutritious food with beef would cost 791 

our subsistence communities approximately $11M – $30M per year. 792 

As important as whale is to keeping our bodies healthy, this subsistence harvest 793 

also feeds our spirit. The entire community participates in the activities 794 

surrounding the subsistence bowhead whale harvest, ensuring that the traditions 795 

and skills of the past are carried on by future generations. Portions of each whale 796 

are saved for celebration at Nalukataq (the blanket toss or whaling feast), 797 

Thanksgiving, Christmas, and potlucks held during the year. […] Sharing the 798 

whale is both an honor and an obligation.” 799 

Over the years, the International Whaling Commission (IWC) has worked with the 800 

Inupiat and Siberian Yupik people to ensure their needs are met and whales are 801 

protected. Through this process, bowhead whale populations have bounced 802 

back. However, the IWC still establishes whaling quotas for the local indigenous 803 

folks to ensure the population remains strong. 804 

The last ice-based abundance and Photo-ID-based surveys were conducted in 805 

2011. The 2011 ice-based abundance estimate is 16,892 (within the range of 806 

15,704 – 18,928). The rate of increase of the population, or trend, starting in 807 

1979 was estimated to be 3.7 percent (within the range of 2.8–4.7 percent). 808 

These abundance and trend estimates show that the bowhead population is 809 
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healthy and growing with a very low conservation risk under the current 810 

Aboriginal Subsistence Whaling management scheme.” 811 

[Source pending.] 812 

Task: 813 

The tribe has assembled a committee of tribal scientists and community members, 814 

along with outside scientific and economic advisors, to make a recommendation to the 815 

International Whaling Commission. The proposal will specify how many whales the 816 

Inupiat and Siberian Yupik people will hunt this year as part of the Aboriginal 817 

Subsistence Whaling management plan, while making sure the whale population 818 

continues its growing trend. As a member of the committee, it is your task to help create 819 

the proposal. 820 

Student Vignette: 821 

The group receives the task, and discusses what they were being asked for. They 822 

decide to break down the problem into more manageable pieces, so they make a 823 

checklist with three items: 824 

1. Figure out what happened to whale population between 2011 and 2019. 825 

2. Find out the current growth rate that should be maintained. 826 

3. Calculate how many whales can be lost in 2020 so that the growth rate is 827 

maintained. 828 

For point 1, they think they might be able to find more data online, so they look up whale 829 

hunt statistics in 2011–2019. They found a table in the IWC website that lists every 830 

whale catch between 1986 and 2018. It had a lot more information than they needed: 831 

different whale species and stocks from different oceans, but they reviewed the 832 

information and pulled out the data they needed. In order to estimate the whale stock in 833 
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2018, for each year between 2011 and 2018 they plan to use the equation: 834 

 835 

(Number of whales in the year they’re looking for) = (Number of whales in the year 836 

prior)*(growth rate per year) – (whales hunted that year) 837 

They discuss with the whole group which numbers to use for growth rate and for the 838 

2011 stock numbers, since they have the estimates but also the error ranges the 839 

experts gave. They decide that it’s better to be safe than sorry, since whale 840 

overpopulation hardly seems like an issue, so they will use the lower end of the range 841 

for both numbers. Now comes a lot of number crunching, but computers can do that. 842 

They use Wolfram|Alpha to quickly complete the calculations and they estimate the 843 

2019 stock at 19,050. 844 

However, they know they need the stock for the beginning of 2020. They don’t have the 845 

data for how many whales were hunted in 2019, so they estimate it by averaging the 846 

years they do have data for: 2011–2018. The average is 60.75, so they round it to 61 847 

and use their equation to calculate the stock at the beginning of 2020 as 19,522. 848 
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Now they look at point 2: finding the rate at which the population is currently growing. 849 

They use Desmos to graph the population each year and map a line of best fit, which 850 

will show the target growth rate. 851 

That leads them to point 3: how many whales can be killed to keep this target? They 852 

look back at the original growth equation, but now they solve it for how many whales 853 

can be hunted: 854 

(whales hunted that year) = (Number of whales in the year prior)*(growth rate per year) 855 

– (Number of whales in the year they’re looking for) 856 

● That target growth line has the equation y = 424.714 x – 838,484, so for x = 2021 857 

(meaning, after the hunt in 2020), the population target would be 19,863, and 858 

they already know the growth rate they’ve been using, and their estimate for the 859 

2020 population, so they can calculate the number of whales that can be hunted 860 

while maintaining the current growth and make a recommendation to the IWC. 861 

Note: This provides a good opportunity for discussing and reinforcing California 862 

Environmental Principle V, “Decisions affecting resources and natural systems 863 

are based on a wide range of considerations and decision-making processes.” It 864 

demonstrates the importance of mathematical analysis in making policy 865 

recommendations and decisions about the conservation and management of 866 

organisms and the ecosystems they depend on. It also reinforces California 867 

Environmental Principle II, “The long-term functioning and health of terrestrial, 868 

freshwater, coastal and marine ecosystems are influenced by their relationships 869 

with human societies 870 

The progression of CC1 through the courses 871 

CC1 is the only Content Connection in which standards differ from those in the CA 872 

CCSSM Integrated Mathematics model course outlines. Given the rapidly increasing 873 

importance of data literacy, many Statistics and Probability standards that are in year 3 874 

of the model course outlines are here addressed through all years of the MIC pathway. 875 



37 

 

The progression of data literacy is addressed in more detail in Chapter 5: Data Science. 876 

Briefly, in MIC 1, students should experience repeated random processes and keep 877 

track of the outcomes, to begin to develop a sense of the likelihood of certain types of 878 

events. They must have experience generating authentic questions that data might help 879 

to answer, and should have opportunities to gather some data to attempt to answer their 880 

questions. They should plot data on scatter plots, and informally fit linear and 881 

exponential functions when data appear in the plot to demonstrate a relationship (using 882 

physical objects like spaghetti or pipe cleaners, or online graphing technology).  883 

In MIC 2, investigations should be designed to build students’ understanding of 884 

probability as the basis for statistical claims. For functions modeling relationships 885 

between quantities, “strength of fit” is introduced (informally at first by comparing weak 886 

and strong associations with identical linear models) as a measure of how much of the 887 

observed variability is explained by the model; it measures predictive ability of the 888 

model.  889 

MIC—Data has almost all student investigations driven by data, and requires extensive 890 

use of probability to make decisions. Students  generate questions, design data 891 

collection, search for available existing data, analyze data, and represent data and 892 

results of analysis. Most content in other Content Connections is situated in stories told 893 

through data. See Chapter 5 for more detail. 894 

Some MIC—Modeling investigations may be set in contexts where data leads to the 895 

mathematical model. Most investigations, however, will be based on a structural 896 

understanding of the context: A function to represent the height at time t seconds of a 897 

ball thrown at a given upward velocity; a model to represent the total cost of ownership 898 

of a car over n years based on sales price, fuel costs, and average maintenance costs. 899 

Data may play a bigger role in the validation stage of the modeling cycle (see below in 900 

CC2).  901 

CA CCSSM domains by course 902 

MIC 1: domains of emphasis for investigations in CC1 (from the CA CCSSM 903 

Mathematics I model course outline, augmented by additional Statistics and Probability 904 

standards): 905 
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● Number and Quantity 906 

○ Quantities 907 

● Algebra 908 

○ Creating Equations 909 

● Functions 910 

○ Interpreting Functions 911 

○ Building Functions (modeling a relationship) 912 

○ Linear, Quadratic, and Exponential Models (linear and exponential in MIC 913 

1) 914 

● Statistics and Probability 915 

○ Interpreting Categorical and Quantitative Data 916 

○ Making Inferences and Justifying Conclusions (informally, emphasis on 917 

observing distributions resulting from random processes) 918 

MIC 2: domains of emphasis for investigations in CC1 (from the CA CCSSM 919 

Mathematics II model course outline, augmented by additional Statistics and Probability 920 

standards): 921 

● Algebra 922 

○ Creating Equations 923 

● Functions 924 

○ Interpreting Functions 925 

○ Building Functions (modeling a relationship) 926 

○ Linear, Quadratic, and Exponential Models 927 

● Statistics and Probability 928 

○ Conditional Probability and the Rules of Probability 929 

○ Using Probability to Make Decisions 930 

MIC—Data: domains of emphasis for investigations in CC1: 931 

● Statistics and Probability 932 

○ Interpreting Categorical and Quantitative Data 933 

○ Making Inferences and Justifying Conclusions 934 

○ Using Probability to Make Decisions 935 
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● Algebra 936 

○ Creating Equations 937 

○ Reasoning with Equations and Inequalities 938 

● Functions 939 

○ Linear, Quadratic, and Exponential Models 940 

○ Trigonometric Functions (model periodic phenomena)  941 

MIC—Modeling: domains of emphasis for investigations in CC1: 942 

● Statistics and Probability 943 

○ Interpreting Categorical and Quantitative Data 944 

○ Making Inferences and Justifying Conclusions 945 

● Algebra 946 

○ Creating Equations 947 

○ Reasoning with Equations and Inequalities 948 

● Functions 949 

○ Linear, Quadratic, and Exponential Models 950 

CC 2: Exploring Changing Quantities 951 

Applications of mathematics in the 21st Century often require users to make sense of, 952 

keep track of, and connect a wide range of quantities. Quantities can represent vastly 953 

different—yet interrelated—components within a context, such as speed, weight, 954 

location, magnitude, and value, etc., and mathematicians must find ways to represent 955 

the relationships between these quantities in order to make sense of and model 956 

complex situations. To explore and make sense of changing quantities is an important 957 

skill that applies across mathematical contexts.  958 
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Through investigations in this Content Connection (CC), students build many concrete 959 

examples of functions to represent relationships between changing quantities in 960 

authentic contexts. The CC includes 961 

most modeling investigations. 962 

Specific, contextualized examples of 963 

functions are crucial precursors to 964 

students’ work with categories of 965 

functions such as linear, exponential, 966 

quadratic, polynomial, rational, etc. 967 

and to the abstract notion of 968 

function. Notice that the name of the 969 

CC considers changing quantities, 970 

not changing numbers. Functions 971 

referring to authentic contexts gives 972 

students concrete representations 973 

that can serve as contexts for 974 

reasoning, providing multiple entry 975 

paths and reasoning strategies—as 976 

well as ample necessity to engage in 977 

SMP 2 (Reason abstractly and 978 

quantitatively). This embedding also 979 

maintains and builds connections 980 

between mathematical ideas and 981 

students’ lives. 982 

The Modeling Cycle 983 

 984 

What is a Model? 

Modeling, as used in the CACCSSM, is primarily 
about using mathematics to describe the world. In 
elementary mathematics, a model might be a 
representation such as a math drawing or a 
situation equation (operations and algebraic 
thinking), line plot, picture graph, or bar graph 
(measurement), or building made of blocks 
(geometry). In Grades 6–7, a model could be a 
table or plotted line (ratio and proportional 
reasoning) or box plot, scatter plot, or histogram 
(statistics and probability). In Grade 8, students 
begin to use functions to model relationships 
between quantities. In high school, modeling 
becomes more complex, building on what 
students have learned in K–8. Representations 
such as tables or scatter plots are often 
intermediate steps rather than the models 
themselves. The same representations and 
concrete objects used as models of real life 
situations are used to understand  mathematical 
or statistical concepts. The use of representations 
and physical objects to understand mathematics 
is sometimes referred to as “modeling 
mathematics,” and the associated representations 
and objects are sometimes called “models.”  

Taken from the K-12 Modeling Progression for the 
Common Core Math Standards 
(http://ime.math.arizona.edu/progressions/) 
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Mathematical modeling projects, large and small, provide many examples of such 985 

investigations. Mathematical modeling has also been shown to provide more equitably 986 

engaging mathematics for students (Boaler, Cordero & Dieckmann, 2019). The 987 

modeling cycle (graphic from the CA CCSSM shown here) includes many important 988 

aspects of doing mathematics that are dramatically underrepresented in traditional word 989 

problems in textbooks (essentially everything except “Compute” in the graphic): 990 

● Identifying interesting questions 991 

● Identifying questions amenable to mathematical formulation 992 

● Making simplifying assumptions 993 

● Formulating mathematical versions of questions and mathematical 994 

representations of relationships between quantities (“geometric, graphical, 995 

tabular, algebraic, or statistical representations”—CA CCSSM) 996 

● Interpreting results in the original context 997 

● Validating results by comparing with what is known about the context 998 

● Deciding whether the results sufficiently represent the situation for the purpose at 999 

hand, or whether the model needs to be refined and the cycle repeated 1000 

While most investigations identified as modeling are set in empirical contexts, the 1001 

important feature of the context for CC 3 investigations is not real-world versus made-1002 

up, but rather the concreteness of the context to the students engaging in the 1003 

investigation. The context of the investigation must be sufficiently concrete for students 1004 

to imagine questions, to identify changing quantities, to guess at what might happen, 1005 

and to see enough structure to begin to describe relationships between the changing 1006 

quantities.  1007 

Thus, a dot growth pattern such as the one here (Illustrative Mathematics, n.d.) can be 1008 

a source for rich take apart/put together activities, as can larger-scale modeling 1009 

problems such as predicting the effects of climate change over time in terms of several 1010 
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possible factors related to human activities (exhaust from cars, production of electricity, 1011 

release of pollutants from factories, etc.).” [Note: This provides a good opportunity for 1012 

discussing and reinforcing California Environmental Principle IV, “The exchange of 1013 

matter between natural systems and human societies affects the long‐term functioning 1014 

of both.”] 1015 

Vignette: Drone light show 1016 

Course: MIC3—Modeling with Functions (also Integrated Math 3) 1017 

CC 1: Exploring changing quantities 1018 

DI 3: Impacting the Future 1019 

Domains of Emphasis: HS.A-SSE, HS.A-CED, HS.F-BF, HS.F-TF, HS.G-GMD, HS,G-1020 

MG  1021 

SMPs: SMP 4, 5, 7 1022 

Source: Consortium for Mathematics and its Applications (COMAP), High School 1023 

Mathematical Contest in Modeling (HiMCM)—2017 Problems.  1024 

Problem: Drone Clusters as Sky Light Displays 1025 

Intel© developed its Shooting Star TM drone and is using clusters of these drones for 1026 

aerial light shows. In 2016, a cluster of 500 drones, controlled by a single laptop and 1027 

one pilot, performed a beautifully choreographed light show  1028 

(https://youtu.be/aOd4-T_p5fA). 1029 

Our large city has an annual festival and is considering adding an outdoor aerial light 1030 

show. The Mayor has asked your team to investigate the idea of using drones to create 1031 

three possible light displays. 1032 

Part I – For each display: 1033 

https://urldefense.proofpoint.com/v2/url?u=https-3A__youtu.be_aOd4-2DT-5Fp5fA&d=DwMBaQ&c=SIStQSL0VMIUJoLS-Q8giiFlA-AKdP7tpJHyQh8DeXk&r=BXeygBX5GbRONobNrgKjiGlMs3ebFm2pjdr6wM3atPE&m=9Si8R_SIFDME8ivungfNZjF1mySS68WeOlpZDFua8Ac&s=ooQVPT1xti1mmTplyocaUs2xrqt7Kjp4hh8wUva6njY&e=
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a) Determine the number of drones required and mathematically describe the initial 1034 

location for each drone device that will result in the sky display (similar to a 1035 

fireworks display) of a static image. 1036 

b) Determine the flight paths of each drone or set of drones that would animate your 1037 

image and describe the animation. (Note that you do not have to actually write a 1038 

program to animate the image, but you do need to mathematically describe the 1039 

flight paths.) 1040 

Students are instructed to work together in three groups to design a solution to the 1041 

problem. All three groups start out by reading the task and discuss the task. They are 1042 

then given access to the video, which includes closed captioning, and then prompted to 1043 

conduct a search for photos and clip art of Ferris wheels as a type of moving light 1044 

system. Some groups want to watch the video several more times to be sure they 1045 

understand. From experience, they know that this is not the kind of problem that allows 1046 

them to find the answer in the back of the textbook. This kind of a problem can be 1047 

approached in a variety of ways, and that the challenge of the openness of the problem 1048 

is thrilling! Students will need to think about the math tools and processes they have 1049 

already learned before and apply them to a new context. This can be understood as the 1050 

“formulate” stage of the Modeling Cycle. The teacher notices three distinct strategies in 1051 

her classroom, particularly in how each has decided to model the changing quantities 1052 

within the problem—or the “compute,” “interpret,” and “validate” stages of the Modelling 1053 

cycle. 1054 

Over the course of the year, students have had several opportunities to engage in the 1055 

math practice of modeling. Students know that math models help both to describe and 1056 

predict real-world situations, and that models can be evaluated and improved. With 1057 

every group member contributing to the brainstorm, students quickly start sketching as 1058 

a way to visualize solution paths. As students are drawing, they explain and label their 1059 

diagrams to show the “initial location,” for example. Some students are eager to get to 1060 

Display 3, where they get to create their own design. 1061 

The teacher notices three unique approaches arising in the groups’ work, particularly in 1062 

how they have decided to model the changing quantities within the problem. The 1063 
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teacher is pleased to see use of visuals and diagrams, as these are important ways of 1064 

seeing and understanding mathematics and critical supports for students. As the 1065 

teacher listens to the small group work, she acknowledges how well the groups are 1066 

making space for everyone’s ideas. At first, the teacher notes that students are not 1067 

writing much, but she has learned not to intervene too quickly. Instead, she allows their 1068 

ideas to build, with the firm belief that her students will make progress. 1069 

Group A: The students in this group have decided to model the problem on the idea of 1070 

pixels in a grid that make up images on a tv screen. The team draws an image of a 1071 

Ferris wheel on the grid, and numbers every “pixel” in their grid that will need to be lit up 1072 

by a drone to represent the circumference of the Ferris wheel. Next, the group has 1073 

decided to model the rotation of the wheel by programming some drones to stay in 1074 

place and some to move in a particular pattern. They know the pixels for the triangle 1075 

don’t move so these drones will be programmed to stay in place. And for the circle, it’s a 1076 

loop.  1077 

 1078 
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Group B: In this group, students have decided to model the Ferris wheel using polar 1079 

coordinates. They decided that programming the coordinates (x,y) for the drones that 1080 

make the circle of the Ferris wheel would require defining a unique x and y for every 1081 

single drone! But, in polar coordinates (r,theta), the outer circle of the Ferris wheel can 1082 

be thought of as many points in the plane sharing the same radius, which means that 1083 

they would only need to change the theta for each drones coordinates and keep the r 1084 

the same. The group determines with coordinates representing the wheel, spokes, and 1085 

triangle posts of the Ferris wheel. To model the rotation of the wheel, the angle (theta) 1086 

that each drone is programmed to will increase by 5° for a total of 72 moves of the circle 1087 

to complete one full rotation of the wheel. To model the rotation of the spokes, the angle 1088 

(theta) that each drone is programmed to will increase by 30° for a total of 12 moves, to 1089 

complete one full rotation of the wheel. The drones placed to represent the base of the 1090 

Ferris wheel are programmed to stay in place. 1091 

  1092 

Group C: This group selected an image of the Great Seattle Wheel to use as their 1093 

guide. They decided to model the image of the Ferris wheel using the equation of a 1094 

circle in the cartesian plane, and various dilations of the outer circle to create inner 1095 

circles that will model the spokes of the wheel. Finally the group decides to utilize online 1096 
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an graphing tool that will allow them to rotate the image within the plane to model the 1097 

turn of the wheel. The group creates equations for 20 lines that start at the center of the 1098 

circle, intersect each concentric circle, and end at the outer circle. While this is a slight 1099 

modification to the 21 spokes on the Great Seattle Wheel, it allows the degrees of each 1100 

arc length to be integer values, which the students agree will be easier to work with. 1101 

These lines separate the circle into 20 equal sectors—each with an arc length of 18°. 1102 

They decide to program a drone at each intersection of the circles and the lines to 1103 

represent the spokes. A discussion ensues about the number of drones that must be 1104 

placed between each spoke intersection on the outer circle to create an outline of the 1105 

circle that looks smooth, the group decides on three for now because 18° is easily 1106 

divided into three. Finally, the group decides to utilize an online graphing tool 1107 

(GeoGebra) that will allow them to rotate the image within the plane to model the turn of 1108 

the wheel. The group discusses the rate of rotation and degree of rotation that would be 1109 

most appropriate to model the movement and speed of the Great Seattle Wheel.  1110 
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1111 

                        1112 

After students have had time to work out the details of their models, each group gives 1113 

prepares a presentation about their approach to the problem. Some students jot a few 1114 

notes down to help them remember key ideas and terms. They prepare to describe their 1115 

model and explain their choices to their peers. Students prepare a poster, using colors 1116 

to highlight key features of their model. The teacher circles around and helps students 1117 

who want to do a quick run-through of their presentation, giving students feedback to 1118 

strengthen their work, supporting language learning by clarifying how content 1119 

vocabulary can be used, and suggesting ways to better convey the information in 1120 

presentation-worthy academic discourse as she does so. Each presentation is followed 1121 

by a short question and answer session with the class. Each presentation poster is 1122 
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displayed at the front of the class, clearly showing a wide range of methods and 1123 

approaches. 1124 

Following these presentations, the teacher conducts a Gallery Walk, allowing smaller 1125 

groups of students to spend a few minutes viewing the posters up close. This activity is 1126 

followed by a whole-class discussion on the different strategies taken by each group, 1127 

including a discussion about the affordances and challenges presented by each choice 1128 

for modeling the changing quantities in the problem. Throughout this process, the 1129 

teacher is taking notes on feedback, including areas of strength and where possible 1130 

improvement is needed as students engage with the modeling cycle. She will use this 1131 

information in responding to the students’ presentations during evaluation, and framing 1132 

the next modeling task. 1133 

Disciplinary Language Development 1134 

This task provides extended opportunity to deepen in the area of mathematical 1135 

modeling within an authentic context. The challenging nature of this task encourages 1136 

collaboration, building on one another’s ideas and key skills using students’ 1137 

mathematical language. In groups, students make use of the full array of mathematical 1138 

resources to construct their models, effecting utilizing prior mathematics learning. The 1139 

visual nature of the task, along with the video, and their presentation posters expand the 1140 

modalities in mathematics, supporting the guidelines in Universal Design for Learning 1141 

(UDL), which move beyond the more typical confined to calculations and symbols. Here, 1142 

the visuals are not support for their models, they are the models themselves. 1143 

The progression of CC2 through the courses 1144 

Investigations that develop the mathematical content of CC2: Exploring Changing 1145 

Quantities should span the range of the DIs, with particular attention paid to culturally 1146 

relevant activities in DI 2 and DI 3, since these types of activities most easily help 1147 

students experience mathematics as a useful lens for their lives. 1148 

In MIC 1, tasks and explorations in this CC should focus mostly on quantities that 1149 

change with respect to time or “step number.” Relationships should be primarily linear 1150 

and exponential, with some other relationships explored only informally (for example, 1151 
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predicting using a plot of known points and a pipe cleaner for interpolating or 1152 

extrapolating). Quantities should include linear measurement (length and distance), 1153 

population growth (e.g., bacteria), and interest (both deposits and debts), among many 1154 

other contexts that generate linear and exponential growth. Most questions begin with 1155 

“When will…?” or “At this time, what will…?” Students must generate many of the 1156 

questions for exploration, and even some of the contexts for questioning. For example, 1157 

“What are some things that affect your life, that change over the course of the school 1158 

year?” can generate contexts to explore. 1159 

In MIC 1, quantities should include linear measurement (length and distance), 1160 

population growth (e.g., bacteria), and interest (both deposits and debts), among many 1161 

other contexts that generate linear and exponential growth. Typically, students will 1162 

approach these situations recursively at first, seeing either a constant additive (linear 1163 

growth: same amount added each time period) or constant multiplicative (exponential 1164 

growth: quantity grows by the same factor or percent each time period). Most of the 1165 

mathematical work emerges from attempts to find or predict the value of the changing 1166 

quantity at a point in the future or at a point in between known values; then to express 1167 

the value of the quantity at an arbitrary point in time. Verbal, graphical, and symbolic 1168 

representations should all appear as appropriate, with emphasis on the connections 1169 

between them and the features of the relationship between quantities that each 1170 

representation helps to make clear. 1171 

Beginning in MIC 1 and continuing through MIC 2, the general notion of function should 1172 

be developed and synthesized through this CC, typically building from different 1173 

situations that generate the same linear or exponential relationship, then noting the 1174 

similarities, and discussing function notation as a way to capture multiple situations at 1175 

once. (See the discussion of abstraction in the “Rigor” section in Chapter 1: 1176 

Introduction.) Problems framed in terms of abstract functions (that is, functions given as 1177 

formulas, graphs, or tables without an accompanying context) should frequently include 1178 

prompts to “invent a context that this function (or equation or expression) might 1179 

represent.” This prompt helps maintain the connection between mathematics and 1180 

students’ lives that is so important in order for students to see mathematics as having 1181 

value. 1182 
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In MIC 2, measured and observed quantities that change relative to other quantities 1183 

besides time or step number should be investigated, in addition to the time/step 1184 

relationships in MIC 1. Relationships modeled should expand to include quadratic, in 1185 

addition to linear and exponential relationships explored in MIC 1. The general idea of 1186 

function should be further developed as an abstraction of repeated efforts to 1187 

understand, describe, and use relationships in particular contexts.  1188 

In MIC—Data, the focus is the creation of function models for relationships that are 1189 

observed through data, and the use and interpretation of those models. At first, these 1190 

models should be guided by student-generated ad-hoc methods, such as: 1191 

● We used a yardstick on the graph and moved it around until it was as close as 1192 

possible to all the dots. 1193 

● We measured the distance the car went when we raised the high end of the ramp 1194 

to different heights. When we graphed it, it looked sort of like a line going up. On 1195 

average, raising the ramp by 1 inch increased the car’s distance by 3¼ inches, 1196 

so we decided to try 3.25 as the slope for our line. 1197 

● We used Desmos to graph the area for different scale factors, and it curved 1198 

upward. So we first tried graphing exponential functions to see if they would 1199 

match up, but none of them looked right. Then we tried quadratic functions and 1200 

just played around with the numbers until they looked right with our dots. 1201 

Such ad-hoc methods should lead to discussions about what makes one proposed 1202 

function “fit” the data better than another, and activities and should develop a 1203 

conceptual idea (not by-hand computational skill) that the “best fit” function minimizes 1204 

the total distance of all the data points from the function—while pointing out that it is 1205 

actually vertical distances that are minimized, and that most software systems minimize 1206 

the sum of the squared vertical distances, not the sum of the (absolute) vertical 1207 

distances. 1208 

Later, students use appropriate technological tools to generate “best fit” functions, and 1209 

use those functions as models for the relationships, in order to predict one quantity 1210 

given the other. Extrapolating beyond known data should be contrasted with 1211 

interpolating within. 1212 
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In MIC—Modeling, functional models will be driven by understood or theorized 1213 

underlying structure governing the relationship between quantities, rather than by data 1214 

about the relationship. For instance, the notion that speed of a vehicle changes at a 1215 

constant rate if a constant force is applied is consistent with many students’ experience 1216 

(within a reasonable range and with some important simplifying assumptions!). Given 1217 

this, a relationship between time and distance traveled can be developed and used to 1218 

answer questions about the context. Data points can then be used to select the 1219 

parameters (constants) of the model. (The mathematics of this example has been used 1220 

in one of California’s longest court cases over a speeding ticket: 1221 

https://www.pressdemocrat.com/article/news/gps-or-not-teen-must-pay-190-speeding-1222 

ticket/).  1223 

In all courses, investigations should include situations requiring solving equations and 1224 

systems of equations. Such questions as these will necessitate such solutions: 1225 

● When will one quantity reach a fixed value?  1226 

● When will two different quantities that change over time be equal? 1227 

● When will one be greater than the other? 1228 

● At a fixed time, what is the rank order of the quantities? 1229 

● What value of (one quantity) corresponds to (a) specified value(s) of (other 1230 

quantity(ies))? 1231 

CA CCSSM Content in CC2 1232 

CC 2: Exploring changing quantities includes much of the content of the CA CCSSM 1233 

Conceptual Categories below:  1234 

● Functions 1235 

● Modeling 1236 

● Algebra 1237 

Modeling and Algebra are also heavily represented in CC3: Taking Wholes Apart, 1238 

Putting Parts Together. In addition, CC2 includes some CA CCSSM domains from other 1239 

Conceptual categories. Also note that many investigations in CC1: Telling Stories with 1240 

https://www.pressdemocrat.com/article/news/gps-or-not-teen-must-pay-190-speeding-ticket/
https://www.pressdemocrat.com/article/news/gps-or-not-teen-must-pay-190-speeding-ticket/
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Data will involve extensive work in CC2 content. The specific domains that should be 1241 

emphasized in CC2 investigations are highlighted by course below. 1242 

CA CCSSM domains by course 1243 

MIC 1: domains of emphasis for investigations in CC2 (from the CA CCSSM 1244 

Mathematics I model course outline): 1245 

● Number and Quantity 1246 

○ Quantities 1247 

● Algebra 1248 

○ Creating Equations 1249 

○ Reasoning with Equations and Inequalities 1250 

● Functions 1251 

○ Interpreting Functions 1252 

○ Building Functions (modeling a relationship) 1253 

○ Linear, Quadratic, and Exponential Models (linear and exponential in MIC 1254 

1) 1255 

● Statistics and Probability 1256 

○ Interpreting Categorical and Quantitative Data (interpret linear models) 1257 

MIC 2: domains of emphasis for investigations in CC2 (from the CA CCSSM 1258 

Mathematics II model course outline): 1259 

● Algebra 1260 

○ Creating Equations 1261 

○ Reasoning with Equations and Inequalities 1262 

● Functions 1263 

○ Interpreting Functions 1264 

○ Building Functions (modeling a relationship) 1265 

○ Linear, Quadratic, and Exponential Models 1266 

MIC—Data: domains of emphasis for investigations in CC2: 1267 

● Statistics and Probability 1268 

○ Interpreting Categorical and Quantitative Data 1269 
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○ Making Inferences and Justifying Conclusions 1270 

● Algebra 1271 

○ Creating Equations 1272 

○ Reasoning with Equations and Inequalities 1273 

● Functions 1274 

○ Interpreting Functions 1275 

○ Building Functions 1276 

○ Linear, Quadratic, and Exponential Models 1277 

○ Trigonometric Functions (model periodic phenomena)  1278 

MIC—Modeling: domains of emphasis for investigations in CC2: 1279 

● Statistics and Probability 1280 

○ Interpreting Categorical and Quantitative Data 1281 

○ Making Inferences and Justifying Conclusions 1282 

● Algebra 1283 

○ Creating Equations 1284 

○ Reasoning with Equations and Inequalities 1285 

● Functions 1286 

○ Interpreting Functions 1287 

○ Building Functions 1288 

○ Linear, Quadratic, and Exponential Models 1289 

○ Trigonometric Functions (model periodic phenomena) 1290 

CC 3: Taking Wholes Apart, Putting Parts Together 1291 

Students enter high school with many experiences of taking wholes apart and putting 1292 

parts together: 1293 

● Decomposing numbers by place value 1294 

● Assembling sub-products in an area representation of two-digit by two-digit 1295 

multiplication 1296 

● Finding area of a plane figure by decomposing into rectangular or triangular 1297 

pieces 1298 
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● Exploring polygons and polyhedra in terms of faces, edges, vertices, and angles 1299 

Breaking down challenges and ideas into manageable pieces, and assembling 1300 

understanding of smaller parts into understanding of a larger whole, are fundamental 1301 

aspects of learning, doing, and using mathematics. Often these processes are closely 1302 

tied with SMP 7 (Look for and make use of structure). This Content Connection spans 1303 

and connects many typically-separate content clusters in algebra and geometry. Plane 1304 

figures in geometry, for example, are made up of points, lines/line segments and 1305 

circles/circular arcs (and perhaps other curves); angles, lengths, and areas are some 1306 

parts that can be measured or calculated. Decomposing an area computation into parts 1307 

can lead to an algebraic formulation as a quadratic expression, in which the terms in the 1308 

expression have actual geometric meaning for students. 1309 

It is common to hear teacher stories of students who “know how to do all the parts, but 1310 

they can’t put them together.” Mathematics textbooks often handle this challenge by 1311 

doing the intellectual work of breaking down wholes and of assembling parts for the 1312 

students (perhaps assuming that by reading repeated examples, students will 1313 

eventually be able to replicate). Word problems in which exactly the mathematically 1314 

relevant information is included, sub-problems that lay out intermediate calculations and 1315 

all reasoning, and references to almost-identical worked examples, are all ways of 1316 

avoiding—rather than developing—the ability to assemble understanding. 1317 

Situations that are presented with insufficient or (mathematically) extraneous 1318 

information, investigations requiring students to decide how to split up the workload 1319 

(and thus needing to assemble understanding at the conclusion), and problems 1320 

requiring piecing together factors affecting behavior (such as the function assembly 1321 

problems in the high school section of Chapter Four) are all ways to engage in this CC. 1322 

This Content Connection can serve as a vehicle for student exploration of larger-scale 1323 

problems and projects, many of which will intersect with other CCs as well. 1324 

Investigations in this CC will require students to decompose challenges into 1325 

manageable pieces, and assemble understanding of smaller parts into understanding of 1326 

a larger whole. When an investigation is included in this CC, it is crucial that 1327 
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decomposing and assembly is a student task, not one that is taken on by teacher or 1328 

text.  1329 

Vignette: Blood Insulin levels  1330 

Grade level: MIC I/Integrated Math 1/Algebra I 1331 

Ms. Alfie loved science and all things mathematics. She found that her Mathematics I 1332 

students came to her from various backgrounds and experiences and they did not feel 1333 

the same as she did about STEM subjects. She was excited to teach Integrated 1334 

Mathematics I using Core Plus with the goal of exciting her students about the role 1335 

mathematics plays in the world around them.  1336 

Ms. Alife was midway through the first year of IMI and felt her students were ready for a 1337 

math investigation that included medicine, coming from Core Plus 1. In her materials 1338 

she found several examples that included the concept of half-life and she wondered 1339 

how she could use a medicine context to introduce exponential functions. She also 1340 

wondered how students would embrace the topic, knowing that fractions and number 1341 

sense were not topics students felt confident about. The activities they had completed 1342 

around linear functions earlier in the year had helped them learn to interpret slope as a 1343 

fraction and interpreting slopes within the context of the problem. For example, Ms. 1344 

Alife’s students were happy to consider an equation in the form y = 3/4x + 5 as starting 1345 

at the y intercept, (0,5) and increasing 3/4 of a unit vertically for every horizontal step. 1346 

They also thought about it as 3 steps up and 4 steps right for every unit. She wanted to 1347 

challenge and extend her students’ thinking about rates of change that were not 1348 

constant, for example exponential decay in context, i.e., every 60-minute increase in 1349 

time the amount of drug might decrease by 50 percent in the body.  1350 

Ms. Alife began the unit by doing a graph talk, using real world data from the Centers for 1351 

Disease Control (CDC). A graph talk is a math routine where students were asked to 1352 

study the graph and be ready to share what they notice and wonder (see also 1353 

https://www.youcubed.org/resource/data-talks/). Ms. Alfie purposefully left the title of the 1354 

graph off and asked students to brainstorm what the data was about. This is analogous 1355 

https://www.youcubed.org/resource/data-talks/
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to students reading a news article and having to develop a “headline” that captures the 1356 

main idea.  1357 

 1358 

https://www.cdc.gov/media/releases/2017/p0718-diabetes-report-infographic.html    1359 

As students discussed the graph and the information they wondered if the graph 1360 

showed participation in sports, academic clubs, or favorite television shows. Her 1361 

students did not come close to the actual story (a way of creating a narrative to express 1362 

what is being communicated) of the graph which shows data of the estimated age-1363 

adjusted prevalence of diagnosed diabetes cases in the U.S. for adults in 2013 to 2015. 1364 

But Ms. Alfie knows that with more experiences with interpreting graphs and other visual 1365 

display of data, her students would learn to identify the main themes. 1366 

The activity was supported by Ms. Alfie’s collaboration with a teacher who provided 1367 

designated ELD instruction to the English learners in her class. ELD support included 1368 

helping the students to understand and develop the critical language and grammatical 1369 

structures necessary for successful engagement in this activity. The students were 1370 

prepared when, after the data talk and the story reveal, Ms. Alfie asked the class to 1371 

spend 20 minutes in small groups looking up information on diabetes. Each group had 1372 

three types of roles: the recorder, the searcher/investigator, and brainstormers. Ms. Alfie 1373 

was aware that for many students in the community, diabetes was not any medical 1374 

condition, but one that affected family members deeply. She framed the investigation 1375 

around using math and data science more specifically to understand the prevalence and 1376 

treatments of diabetes. This was a mathematical investigation of a real-world problem, 1377 

https://www.cdc.gov/media/releases/2017/p0718-diabetes-report-infographic.html
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and it relied on scaffolding the context with specific medical vocabulary. On this 1378 

language foundation, the first step in understanding a real-world phenomenon is to 1379 

gather information. She asked each group to share the research they had found and as 1380 

a class the discussion continued about the disease as well as the use of prescription 1381 

drugs to improve the health and well-being of people living with the disease. Ms. Alfie 1382 

then asked students to look for more information about diabetes and the hormone, 1383 

insulin, and the role it plays in the body. Information was not just limited to online 1384 

research. The community clinic also had pamphlets and health advice about diabetes. 1385 

The students discussed the difference between public information (in the form of a 1386 

pamphlet) can differ from online internet searches and sources. Ms. Alfie used these 1387 

different texts to focus students as they looked closer at issues around the dosing of 1388 

insulin, as it is a common therapy for diabetes.   1389 

First Ms. Alife shared with students the function:  y = 10(0.95)x. She explained to 1390 

students that the body metabolizes drugs in an interesting way and while different 1391 

bodies process drugs differently we can model the metabolism of a drug with a function. 1392 

Her EL students had worked with the science vocabulary in the lesson, and helped 1393 

support her when other students needed support with understanding the meaning of 1394 

“metabolize.” Students looked up varying definitions and came to understand that it 1395 

means to “break down” over time in this context. (Assess the EL students’ 1396 

understanding of phrasal verbs such as “break down,” or for that matter, “look up” as 1397 

well, and do a mini-lesson on these linguistic structures, if necessary.) And it turns out 1398 

that different medicines break down at different rates in our bodies. Although it seems 1399 

like a straight-forward definition, many students could possibly do all computations 1400 

without ever understanding this central idea.  1401 

Ms. Alfie returned to the idea of representing data in the form of a story. She told 1402 

students the equation told a story of insulin metabolism and she asked students to use 1403 

DESMOS to illustrate and study the function. In groups, students were asked to study 1404 

the graph and make a table of values where x represented time and y represented the 1405 

units of insulin that were injected at t=0. Together, they brainstormed responses to the 1406 

question: What story does the function illustrate? Or put another way, how does the 1407 

function behave? 1408 
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 1409 

Students worked together graphing the function and thinking about what the values 1410 

meant in the table as well as the values that were in the function. Students did not 1411 

always agree on how to interpret the graph or the values of the function. When they 1412 

disagreed, members took turns explaining their reasoning, and responding to questions 1413 

from their peers. To explain more clearly and avoid unnecessary confusion, they 1414 

decided to label their axes, agree on phrases such as, “When x is 20, y is [blank],” and 1415 

so on. They discussed as a class how the function was decreasing and how the output 1416 

was decreasing in a way that was not linear. 1417 
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 1418 

Ms. Alfie asked students to think using various forms of mathematical representations 1419 

beyond graphs. She introduced the table above to stimulate more thinking.  1420 

She posed the following questions: 1421 

● What is the initial amount of insulin administered?  1422 

● How much time has passed when the amount of insulin is 50 percent? 1423 

● When does the amount of insulin reach zero? 1424 

As the lesson continued students asked questions about how often a drug should be 1425 

administered and why some types of medicine say one time per day, two times per day 1426 

and three times per day. The lesson continued with students analyzing different 1427 

equations for drug metabolism such as penicillin, where the half-life is about 1.4 hours. 1428 

As a way of wrapping up the investigation, the teacher asked students to connect what 1429 

they had learned about how insulin metabolizes in the body over time with the broader 1430 

theme of diabetes awareness and treatment in the community. This reinforced the use 1431 

of mathematics, as well as the terms and language acquired in the lesson, and helped 1432 

students solidify their understanding. Some students still had lingering questions, such 1433 
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as: Do people have different metabolic rates? Why do some people take different 1434 

dosages of insulin? Why do some take it at different times of the day? From the 1435 

students work and conversation, Ms. Alfie knew that the lesson had sparked solid 1436 

mathematical thinking about variables. She wondered if a representative from the 1437 

community health center could come speak with her class about these questions.  1438 

The progression of CC3 through the courses 1439 

In MIC 1, students interpret the structure of expressions by connecting parts of an 1440 

expression (terms, factors, coefficients) with their meaning in the given context 1441 

(primarily in linear expressions and in exponential expressions with integer exponents). 1442 

They build new functions from existing ones—for instance, a constant term plus a 1443 

proportional term, or a constant multiple of f(x) = x3—and examine the effect of these 1444 

combinations of known functions, and the meaning of these effects in terms of the 1445 

quantities represented. In plane geometry, they experiment to see that, and then 1446 

demonstrate why, a combination (composition) of rigid transformations is another rigid 1447 

transformation, and build up rigid motions as compositions in order to demonstrate 1448 

congruence of different figures. Steps in geometric constructions are understood as 1449 

ways to build additional structure that can be used to produce a desired result (such as 1450 

a copy of a segment or angle, or an equilateral triangle). 1451 

MIC 2 uses CC3 investigations to explore properties of the real numbers as ways in 1452 

which real numbers can be combined, and to extend these properties to new numbers 1453 

(e.g. extending properties of exponents to rational exponents).  Investigating the 1454 

structure of expressions by understanding the contributions of different parts to the 1455 

whole expression continues from MIC 1. Equivalent expressions, and arithmetic with 1456 

polynomials and rational expressions, are explored as different ways to put parts 1457 

together, in order to highlight different features. Composing functions is a new way to 1458 

build new functions from old, and frames the exploration of graph transformations such 1459 

as replacing f(x) by f(kx), kf(x), or f(x + k) for specific values of k. Finally, explorations of 1460 

probabilistic events made up of smaller events drives the ideas of independence and 1461 

conditional probability.  1462 
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In MIC—Data, investigations begin by searching for or gathering data about students’ 1463 

authentic questions, with the aim of exploring the effects of one or more quantity(ies) on 1464 

another quantity of interest, and exploring the way that those effects combine. Thus, 1465 

functional models developed to represent relationships between quantities may have 1466 

parts (such as terms, factors, coefficients) corresponding to different factors influencing 1467 

the quantity of interest. Thus, understanding the structure of polynomial and rational 1468 

functions is a means to explaining observed relationships, and writing equivalent 1469 

expressions helps to explain different characteristics of those observed relationships. 1470 

Geometric measurement and dimension, and modeling with geometry, serve to build 1471 

models of systems that generate the data being explored. For example, gathering data 1472 

on leaf surface area of a species of plant as a function of some linear measurement 1473 

(e.g. height or stem/trunk diameter), and then attempting to use that data to estimate 1474 

leaf surface area for a larger specimen, will require that students wrestle with questions 1475 

of dimension (does leaf surface area grow more like the surface area of the trunk or like 1476 

the volume of the trunk?). 1477 

In MIC—Modeling, students may investigate features of quadratic functions (assembled 1478 

from , , and constant terms) that lead to two real zeros, one real zero, and no real 1479 

zeros; the latter leads to complex roots and a demonstration of the Fundamental 1480 

Theorem of Algebra for quadratics, as well as to understanding the relationship between 1481 

zeros and factors of polynomials. Polynomials up to degree 3 can be developed to meet 1482 

building design challenges involving scaling (How much paint? How much trim? What 1483 

capacity is needed for the heating system?), emphasizing the meaning in context of 1484 

each term.  1485 

CA CCSSM Content in CC3 1486 

CC3: Taking Wholes Apart, Putting Parts Together includes much of the content of the 1487 

CA CCSSM Conceptual Categories below:  1488 

● Modeling 1489 

● Algebra 1490 
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Modeling and Algebra are also heavily represented in CC2: Exploring Changing 1491 

Quantities. In addition, CC3 includes some CA CCSSM domains from other Conceptual 1492 

categories. The specific domains that should be emphasized in CC3 investigations are 1493 

highlighted by course below. 1494 

CA CCSSM domains by course 1495 

MIC 1: domains of emphasis for investigations in CC3 (from the CA CCSSM 1496 

Mathematics I model course outline): 1497 

● Algebra 1498 

○ Seeing Structure in Expressions 1499 

● Functions 1500 

○ Building Functions (from existing functions) 1501 

● Geometry 1502 

○ Congruence (rigid motions, geometric constructions) 1503 

MIC 2: domains of emphasis for investigations in CC3 (from the CA CCSSM 1504 

Mathematics II model course outline): 1505 

● Number and Quantity 1506 

○ The Real Number System 1507 

○ The Complex Number System 1508 

● Algebra 1509 

○ Seeing Structure in Equations 1510 

○ Arithmetic with Polynomials and Rational Expressions 1511 

● Functions 1512 

○ Building Functions (from existing function) 1513 

● Statistics and Probability 1514 

○ Conditional Probability and the Rules of Probability 1515 

MIC—Data: domains of emphasis for investigations in CC3: 1516 

● Algebra 1517 

○ Seeing Structure in Expressions 1518 

○ Arithmetic with Polynomials and Rational Expressions 1519 
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● Geometry 1520 

○ Geometric Measurement and Dimension 1521 

○ Modeling with Geometry 1522 

MIC—Modeling: domains of emphasis for investigations in CC2: 1523 

● Number and Quantity 1524 

○ The Complex Number System 1525 

● Algebra 1526 

○ Seeing Structure in Expressions 1527 

○ Arithmetic with Polynomials and Rational Expressions 1528 

● Geometry 1529 

○ Geometric Measurement and Dimension 1530 

○ Modeling with Geometry 1531 

CC4: Discovering Shape and Space  1532 

Developing mathematical tools to explore and understand the physical world should 1533 

continue to motivate explorations in shape and space. As in other areas, maintaining 1534 

connection to concrete situations and authentic questions is crucial and this content 1535 

area could be investigated in any of the ways—to understand, predict or affect. 1536 

Geometric situations and questions encourage different modes of thought than do 1537 

numerical, algebraic, and computational work. It is important to realize that “visual 1538 

thinking” or “geometric reasoning” is as legitimate as algebraic or computational 1539 

thinking; and geometric thinking can provide access more readily to rich mathematical 1540 

work for some students (Driscoll et al., 2007). The CA CCSSM supports this visual 1541 

thinking by defining congruence and similarity in terms of dilations and rigid motions of 1542 

the plane, and through its emphasis on physical models, transparencies, and 1543 

geometry software.  1544 

As emphasized throughout this framework, flexibility in moving between different 1545 

representations and points of view brings great mathematical power. Students should 1546 

not experience geometry primarily as a way to formalize visual thinking into algebraic 1547 

or numerical representations. Instead, they should have occasion to gain insight into 1548 
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situations presented numerically or algebraically by transforming them into geometric 1549 

representations, as well as the more common algebraic or numerical representations 1550 

of geometric situations. For example, students can use similar triangles to explore 1551 

questions about integer-coordinate points on a line presented algebraically (Driscoll et 1552 

al., 2017). 1553 

In grades three through five, students develop many foundational notions of two- and 1554 

three-dimensional geometry, such as area (including surface area of three-1555 

dimensional figures), perimeter, angle measure, and volume. Shape and space work 1556 

in grades six through eight is largely about connecting these notions to each other, to 1557 

students’ lives, and to other areas of mathematics.  1558 

In grade six, for example, two-dimensional and three-dimensional figures are related 1559 

to each other via nets and surface area (6.G.4), two-dimensional figures are related to 1560 

algebraic representation via coordinate geometry (6.G.3), and volume is connected to 1561 

fraction operations by exploring the size of a cube that could completely pack a 1562 

shoebox with fractional edge lengths (6.G.2). In grade seven, relationships between 1563 

angle or side measurements of two-dimensional figures and their overall shape 1564 

(7.G.2), between three-dimensional figures and their two-dimensional slices (7.G.3), 1565 

between linear and area measurements of two-dimensional figures (7.G.4), and 1566 

between geometric concepts and real-world contexts (7.G.6) are all important foci. 1567 

In grade eight, two important relationships between different plane figures are defined 1568 

and explored in depth (congruence and similarity), and used as contexts for reasoning 1569 

in the manner discussed in Chapter 4: Exploring, Discovering, and Reasoning With and 1570 

About Mathematics, the Pythagorean Theorem is developed as a relationship between 1571 

an angle measure in a triangle and the area measures of three squares (8.G.6). Also, in 1572 

grade eight, several clusters in the Expressions and Equations domain should 1573 

sometimes be approached from a geometric point of view, with algebraic 1574 

representations coming later: In an investigation, proportional relationships between 1575 

quantities can be first encountered as a graph, leading to natural questions about points 1576 

of intersection (8.EE.7, 8.EE.8) or the meaning of slope (8.EE.6).Mathematicians often 1577 

need to employ a variety of points of view in a situation in order to gain fuller 1578 

understanding. This can be literal: It is much easier to understand a three dimensional 1579 
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geometric solid if one can look at it from many directions. But there are many other 1580 

settings in which looking at the same mathematical scene in different ways provides 1581 

insight. 1582 

Vignette: Finding the Volume of a Complex Shape.  1583 

Course: Integrated 2/MIC 2/MIC—Modeling with Functions 1584 

Marina Lopez is preparing to teach her integrated high-school mathematics class 3, with 1585 

a group-based interactive task that will help prepare students for learning calculus. She 1586 

is using an approach that gives students the opportunity to explore a mathematics 1587 

problem before being taught formal content that might help them solve it (Deslauriers et 1588 

al, 2019). Her plan is to ask students to consider ways to find the volume of a complex 1589 

shape, specifically a lemon. Prior to doing this, activity Marina has spent time in her 1590 

class building and reinforcing group-work norms and she has previously made use of a 1591 

structured approach to group work known as Complex Instruction (Cohen and Lotan, 1592 

2014) and specifically assigning roles in groups. She continues to use this because of 1593 

the ways it makes authentic use of different roles to reinforce the fact that students are 1594 

important resources for each other. 1595 

She opens the task on the first day holding up a lemon and asks the class, “How can we 1596 

find the volume of a lemon?” While a few hands are immediately raised she does not 1597 

call on anyone but tells the group they will have an opportunity over the next two days of 1598 

class to answer the question using lemons and various resources. As students work in 1599 

groups to tackle this problem, they will review what volume is and how it is measured, 1600 

and how it relates to other measures of shapes such as surface area.  1601 

Marina knows that concrete materials are not just for elementary students. 1602 

Mathematicians use models, illustrations, and visual representations to explore ideas, 1603 

strategies that are highlighted in guidelines of UDL. When students visualize they bring 1604 

important brain pathways into their learning of mathematics. Prior to class Marina has 1605 

setup a table at the back with different supplies including different colors of modeling 1606 

clay, vases, knives and cutting boards, pipe cleaners, scissors and a few other 1607 

materials. Groups are free to choose from the assortment of materials provided. To 1608 

facilitate the use of materials, students are instructed that only the resource manager is 1609 
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allowed to get up to get supplies from the resource table and they can only have 3 1610 

supplies out at one time. During the early weeks of her class Marina helped her class 1611 

develop a set of group work norms and has previously used roles for groupwork so 1612 

students are used to these structures and have been working on engaging productively 1613 

in groups (see also Cabana, Shreve & Woodbury, 2014).  1614 

 1615 

Image of supply table. 1616 

Animated noise begins to fill the room as students start talking in their groups and 1617 

sharing their ideas. With much experience in group work, students exhaust the 1618 

brainstorm process to collect as many ideas as possible and invite each group member 1619 

to share their ideas. When ideas are not clear, they ask clarifying questions posted on 1620 

the wall that promote justification and help students understand. Students also take one 1621 

idea as a spark and build off it, elaborating and extending in new ways. Over time, these 1622 

ideas become the group’s ideas, not just the ideas from one person. They have been 1623 

given one lemon for today but have also been told they will be able to get a second 1624 

lemon tomorrow, so they have some freedom to play and even mess up their lemons. 1625 

As groups begin to dig into the problem, Marina reminds students to capture their ideas 1626 

with notes, drawing, and sketches so that they don’t lose track of their thinking. 1627 

Students know not to worry about “complete sentences or perfect spelling” since they 1628 

are just trying out ideas. Marina listens closely to discussion in each group, making 1629 

quick notes of what she hears students saying. Their language is exploratory and 1630 
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imaginative at this stage of the lesson, e.g., “Would peeling the lemon help?” and “What 1631 

about squeezing the lemon first?” and, “Is this a good way to cut it up?” Some of the 1632 

students in class are multilingual and are designated at different levels of English 1633 

development. As designed, these students not only have access to the task, but also 1634 

multiple opportunities to use language to explore their ideas and share their 1635 

mathematical thinking. The concrete materials, small-group work, and structured group 1636 

presentations all provide key supports in language developments. 1637 

One group decided to use a bowl and water from the drinking fountain to see how the 1638 

height of the water changes once the lemon is under the water. They draw a quick 1639 

sketch to describe their idea (below). The students decide to use a marker to mark up 1640 

the bowl like a beaker and begin filling it with water. 1641 

 1642 

Another group has selected modeling clay and is attempting to make a mold of the 1643 

lemon. They record their plan and describe that they will carefully fill the mold with 1644 

water, and then find a way to measure the amount of water the mold holds. 1645 

 1646 

A third group has opted to use a knife and cutting board. They have decided that the 1647 

shape of the lemon is very close to that of a sphere, so they can use the volume of a 1648 
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sphere formula to approximate the volume. To measure the lemons diameter and 1649 

radius, they will cut the lemon in half, as shown in their diagram: 1650 

As this first period nears its end, Marina reminds students 1651 

that they will be getting new lemons tomorrow so if they want to consider using the 1652 

knives and cutting boards provided now would be the time. She also reminds them to be 1653 

sure to document the work they did today and where they want to start tomorrow. They 1654 

should plan to keep discussing and working as homework so they can be ready to 1655 

create posters and present on day two.   1656 

For the second day of the project, students pick up where their work the previous day 1657 

ended. One group finalizes its ideas and begins creating a poster to share their 1658 

strategies with the class. Adam and Andres’ group managed to try two ideas, but they 1659 

engage in a debate over the best ways to present their work. Marina reminds her 1660 

students that the group’s Reporter should take the lead in the creation of the poster, but 1661 

that other roles in the group should be ready to share-out later in class. She says this as 1662 

she walks among groups handing out additional lemons.  1663 

Marina knows that this is a group-worthy task because it draws on many aspects of 1664 

mathematical thinking. Students are making connections to science and ideas of 1665 

measurement through displacement, and to surface area, and still others groups are 1666 

using a sort of “decomposition” approach by forming small cylinders. As she continues 1667 

to circulate Marina, eyes the different strategies she sees groups using to document 1668 

their progress, and starts noting how she can sequence the group presentations so they 1669 

meet specific learning targets she wants to highlight with this lesson.   1670 

After the 15 minutes pass, Marina calls her students back together and asks a group 1671 

who attempted to use a water displacement method (but was not able to finish) to share 1672 
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first. As they share, she writes key phrases and words on the board that highlight their 1673 

creative problem solving and calls on a second group that got further using a similar 1674 

method. Marina asks this group to share their thinking and build on the work of the first 1675 

group. Marina refers to her notes capturing what she heard during the groupwork as a 1676 

way to highlight examples of mathematical language they were using. As this second 1677 

group wraps up, Julio questions the group by wondering how the displacement method 1678 

(shown below) might relate to his group’s method of negative space.   1679 

 1680 

Marina invites Julio’s group to present next. This group presents a solution using 1681 

modeling clay surrounding the lemon and molded into the shape of a rectangular prism. 1682 

First, they found the volume of their prism with the lemon inside, then they explained 1683 

that they removed the lemon from the modeling clay and reformed it in the shape of a 1684 

rectangular prism and found the volume again. They explained that the difference 1685 

between the two volumes had to be the same as the volume of the lemon. 1686 
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 1687 

Other students in the class respond to this group’s idea with enthusiasm, excited by 1688 

their creativity. One student from the team that used a displacement approach raised 1689 

her hand and connected with the idea that this team’s method was kind of like an 1690 

“opposite” of what her team did. Several students nodded in agreement. The fact that 1691 

students intuited the idea of “opposite” indicates that they paying attention to the 1692 

relationship among methods, namely their inverse relationship which they cannot yet 1693 

define completely. This is cognitively complex work which develops over time, and 1694 

students are reaching into their mathematics to find words that convey their ideas.  1695 

Finally, Marina asks a fourth group to share their explanation. Silvia explains that the 1696 

group tried many things, but their favorite method involved slicing up the lemon into 1697 

many pieces. The group decided that each slice could be thought of like a very short 1698 

cylinder. So, the group found the volume of each slice using the formula for the volume 1699 

of a cylinder and then added them all together.  1700 

 1701 

As Silvia explains her groups work, several other students appear to be taking notes 1702 

and multiple hands are immediately raised to ask questions.  1703 
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A whole class discussion ensues around the various strategies that groups utilized. 1704 

Marina is careful not to rush the discussion, and to unpack students’ comments and 1705 

questions that she does not understand at first. At times, other students rephrase for 1706 

one another to see if the idea is clearer. Marina poses the questions:  1707 

● “What are the strengths and challenges to these approaches?” 1708 

● Which approach would you say is most accurate?” 1709 

● How do you know?”  1710 

This metacognitive part of the lesson helps students move beyond just the lemon itself, 1711 

towards noticing the methods they use in their analysis. The students take turns 1712 

commenting on and comparing each other’s strategies. Marina closes the class period 1713 

by acknowledging the various mathematical practices that students engaged with and 1714 

highlights the multiple dimensions of content that students utilized.   1715 

The progression of CC4 through the courses 1716 

For a more detailed description of the content in progression, see the Geometry, 7–8, 1717 

High School progression (Common Core State Standards Writing Team, 2016). 1718 

Shape and space are explored in several parallel and connected strands: Properties of 1719 

geometric figures and the logical connections between them, geometric measurement, 1720 

and coordinate geometry.  1721 

Coordinate geometry is first introduced in fifth grade, and is an important way that 1722 

geometry can be connected to algebra, in ways that make clear the usefulness of 1723 

algebraic tools and that illuminate meaning in many algebraic representations. In MIC 1 1724 

and 2, students use coordinates to prove simple geometric theorems, motivated by 1725 

noticing features that seem to be true, and then trying to answer “Will that always be 1726 

true? How can we know for sure?” In MIC 2, they switch between geometric and 1727 

algebraic (equation) descriptions of conic sections, when such different points of view 1728 

are helpful to answering authentic questions about a context. 1729 

Geometric measurement is a strand that extends across the full K–12 grade range. In 1730 

MIC 2, students use dissection and transformation arguments to informally justify 1731 



72 

 

formulas for circumference and area of circles and volume formulas for various 3-1732 

dimensional figures. They explore the effect of scaling all linear measurements on area 1733 

and volume measurements. All of these can be developed and used in the context of 1734 

investigations that generate authentic questions for students: I wonder how much…; I 1735 

wonder how long… etc. In MIC—Data and MIC—Modeling, geometric models of 1736 

physical objects help to build models for data-driven or model-driven investigations. 1737 

While exploration of shape and space should be one of the easiest areas to motivate 1738 

through investigations generating authentic questions, many students do not experience 1739 

high school geometry this way. The strand that is the exploration of properties of 1740 

geometric figures and the logical connections between them is the biggest culprit. One 1741 

challenge is that proving things that students consider obvious is not motivating. As in 1742 

most areas, much of the work of instructional designers (whether designing instructional 1743 

materials or creating lesson plans) is to design activities in which students experience 1744 

questions as authentic: that is, something they actually wonder about. After all, the 1745 

mathematics of proof was originally developed to answer questions about which people 1746 

were actually curious, and “it is useful for individuals to experience intellectual 1747 

perturbations that are similar to those that resulted in the discovery of new knowledge” 1748 

(Fuller, Rabin, & Harel, 2011). Thus, the mathematical activity of exploration of a 1749 

context and deciding what might be true (by noticing patterns from examples) needs to 1750 

be far more heavily represented in geometry class than is typical. 1751 

Middle school notions of congruence and similarity for plane figures are informal, based 1752 

on work with transparencies or other tools that enable direct comparison. 1753 

Experimentation with transformations continues in MIC 1, while definitions are made 1754 

more precise. Congruence is defined in terms of rigid motions of the plane, and—1755 

because precisely finding and using rigid motions can be tedious—students show that 1756 

triangles can be shown to be congruent using measurement instead. Triangle 1757 

congruence criteria, demonstrated in terms of the rigid motion definition of congruence, 1758 

need to answer an authentic question, perhaps as simple as “what’s the least 1759 

information you can give your partner about your triangle, so that they can create a 1760 

triangle that you are both certain is congruent to your original?” Similarly for geometric 1761 

constructions: they must answer a wonder—“I wonder if…” or “I wonder how….” 1762 
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MIC 2 introduces similarity, by adding dilations to the rigid transformations that define 1763 

congruence. Students prove a variety of geometric theorems, with a focus on 1764 

understanding reasoning and not on a rigid form of proof. As mentioned in CC2, the 1765 

relationship between lengths of corresponding sides of similar right triangles gives rise 1766 

to the fact that their ratios are constant, and thus to names for those ratios 1767 

(trigonometric functions).  1768 

As MIC—Data and MIC—Modeling are both based in real-world-generated contexts, 1769 

they do not include standards about exploration of shape in plane geometry, though 1770 

some explorations may make use of and reinforce understanding developed in MIC 1 1771 

and 2. For instance, design challenges in MIC—Modeling might have design constraints 1772 

that call on plane geometry results. 1773 

CA CCSSM Content in CC4 1774 

CC4: Discovering Shape and Space includes primarily the content of the CA CCSSM 1775 

Conceptual Category Geometry. Investigations in CC4 will often involve quantities that 1776 

change in related ways (e.g. lengths of sides in similar triangles) and will often require 1777 

consideration of relationships between parts and wholes (e.g. the effect of scaling linear 1778 

dimensions on area and volume measurements); thus, many investigations will pair 1779 

CC4 with CC2 or CC3. The specific domains that should be emphasized in CC4 1780 

investigations are highlighted by course below. 1781 

CA CCSSM domains by course 1782 

MIC 1: domains of emphasis for investigations in CC4 (from the CA CCSSM 1783 

Mathematics I model course outline): 1784 

● Geometry 1785 

○ Congruence 1786 

○ Expressing Geometric Properties with Equations 1787 

MIC 2: domains of emphasis for investigations in CC4 (from the CA CCSSM 1788 

Mathematics II model course outline): 1789 

● Functions 1790 
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○ Trigonometric Functions 1791 

● Geometry 1792 

○ Congruence 1793 

○ Similarity, Right Triangles, and Trigonometry 1794 

○ Circles 1795 

○ Expressing Geometric Properties with Equations 1796 

○ Geometric Measurement and Dimension 1797 

MIC—Data: domains of emphasis for investigations in CC4: 1798 

● Functions 1799 

○ Trigonometric Functions (for modeling periodic phenomena) 1800 

● Geometry 1801 

○ Expressing Geometric Properties with Equations 1802 

○ Geometric Measurement and Dimension 1803 

○ Modeling with Geometry 1804 

MIC—Modeling: domains of emphasis for investigations in CC4: 1805 

● Functions 1806 

○ Trigonometric Functions (for modeling periodic phenomena) 1807 

● Geometry 1808 

○ Expressing Geometric Properties with Equations 1809 

○ Geometric Measurement and Dimension 1810 

○ Modeling with Geometry 1811 

The Integrated Mathematics Pathway 1812 

Many schools and districts in California have implemented an “Integrated Mathematics 1813 

Pathway” according to the course outlines in the CA CCSSM. In recognition of this 1814 

investment, this Framework continues to support these pathways, as the field strives to 1815 

develop truly integrated approaches (in the sense of the Definition of Integration above) 1816 

to the teaching and learning of higher mathematics content. The standards for the 1817 

Integrated Pathway, by course, begin on p. 85 of the CA CCSSM. 1818 

(https://www.cde.ca.gov/be/st/ss/documents/ccssmathstandardaug2013.pdf) 1819 

https://www.cde.ca.gov/be/st/ss/documents/ccssmathstandardaug2013.pdf
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These courses are described here. 1820 

Integrated Math I 1821 

The fundamental purpose of the Mathematics I course is to formalize and extend 1822 

students’ understanding of linear functions and their applications. The critical topics of 1823 

study deepen and extend understanding of linear relationships—in part, by contrasting 1824 

them with exponential phenomena and, in part, by applying linear models to data that 1825 

exhibit a linear trend. Mathematics I uses properties and theorems involving congruent 1826 

figures to deepen and extend geometric knowledge gained in prior grade levels. The 1827 

courses in the Integrated Pathway follow the structure introduced in the K–8 grade 1828 

levels of the California Common Core State Standards for Mathematics (CA CCSSM); 1829 

they present mathematics as a coherent subject and blend standards from different 1830 

conceptual categories. 1831 

The standards in the integrated Mathematics I course come from the following 1832 

conceptual categories: Modeling, Functions, Number and Quantity, Algebra, Geometry, 1833 

and Statistics and Probability. The content of the course is explained in the addendum 1834 

according to these conceptual categories, but teachers and administrators alike should 1835 

note that the standards are not listed here in the order in which they should be taught. 1836 

Moreover, the standards are not topics to be checked off after being covered in isolated 1837 

units of instruction; rather, they provide content to be developed throughout the school 1838 

year through rich instructional experiences. 1839 

What Students Learn in Mathematics I 1840 

Students in Mathematics I continue their work with expressions and modeling and 1841 

analysis of situations. In previous grade levels, students informally defined, evaluated, 1842 

and compared functions, using them to model relationships between quantities. In 1843 

Mathematics I, students learn function notation and develop the concepts of domain and 1844 

range. Students move beyond viewing functions as processes that take inputs and yield 1845 

outputs and begin to view functions as objects that can be combined with operations 1846 

(e.g., finding). They explore many examples of functions, including sequences. They 1847 

interpret functions that are represented graphically, numerically, symbolically, and 1848 
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verbally, translating between representations and understanding the limitations of 1849 

various representa- tions. They work with functions given by graphs and tables, keeping 1850 

in mind that these representations are likely to be approximate and incomplete, 1851 

depending upon the context. Students’ work includes functions that can be described or 1852 

approximated by formulas, as well as those that cannot. When functions describe 1853 

relationships between quantities arising from a context, students reason with the units in 1854 

which those quantities are measured. Students build on and informally extend their 1855 

understanding of integer exponents to consider exponential functions. They compare 1856 

and contrast linear and exponential functions, distinguishing between additive and 1857 

multiplicative change. They also interpret arithmetic sequences as linear functions and 1858 

geometric sequences as exponential functions. 1859 

Students who are prepared for Mathematics I have learned to solve linear equations in 1860 

one variable and have applied graphical and algebraic methods to analyze and solve 1861 

systems of linear equations in two variables. Mathematics I builds on these earlier 1862 

experiences by asking students to analyze and explain the process of solving an 1863 

equation and to justify the process used in solving a system of equations. Students 1864 

develop fluency in writing, interpreting, and translating between various forms of linear 1865 

equations and inequalities and using them to solve problems. They master solving 1866 

linear equations and apply related solution techniques and the laws of exponents to the 1867 

creation and solving of simple 1868 

exponential equations. Students explore systems of equations and inequalities, finding 1869 

and interpreting solutions. All of this work is based on understanding quantities and the 1870 

relationships between them. 1871 

In Mathematics I, students build on their prior experiences with data, developing more 1872 

formal means of assessing how a model fits data. Students use regression techniques 1873 

to describe approximately linear relationships between quantities. They use graphical 1874 

representations and knowledge of the context to make judgments about the 1875 

appropriateness of linear models. With linear models, they look at residuals to analyze 1876 

the goodness of fit. 1877 
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In previous grade levels, students were asked to draw triangles based on given 1878 

measurements. They also gained experience with rigid motions (translations, 1879 

reflections, and rotations) and developed notions about what it means for two objects to 1880 

be congruent. In Mathematics I, students establish triangle congruence criteria based 1881 

on analyses of rigid motions and formal constructions. They solve problems about 1882 

triangles, quadrilaterals, and other polygons. They apply reasoning to complete 1883 

geometric constructions and explain why the constructions work. Finally, building on 1884 

their work with the Pythagorean Theorem in the grade-eight standards to find distances, 1885 

students use a rectangular coordinate system to verify geometric relationships, 1886 

including properties of special triangles and quadrilaterals and slopes of parallel and 1887 

perpendicular lines. 1888 

Connecting Mathematical Practices and Content 1889 

The Standards for Mathematical Practice (SMPs) apply throughout each course and, 1890 

together with the Standards for Mathematical Content, prescribe that students 1891 

experience mathematics as a coherent, relevant, and meaningful subject. The SMPs 1892 

represent a picture of what it looks like for students to do mathematics and, to the extent 1893 

possible, content instruction should include attention to appropriate practice standards. 1894 

The CA CCSSM call for an intense focus on the most critical material, allowing depth in 1895 

learning, which is carried out through the SMPs. Connecting practices and content 1896 

happens in the context of working on problems; the very first SMP is to make sense of 1897 

problems and persevere in solving them. Table XX gives examples of how students can 1898 

engage in the SMPs in Mathematics I. 1899 

Table XX. Standards for Mathematical Practice—Explanation and Examples for 1900 

Mathematics  1901 

Standards for 
Mathematical Practice 

Explanation and Examples 
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SMP.1 

Make sense of 
problems and 
persevere in solving 
them. 

Students persevere when attempting to understand 
the differences between linear and exponential 
functions. They make diagrams of geometric 
problems to help make sense of the problems. 

SMP.2 

Reason abstractly and 
quantitatively. 

Quantitative reasoning entails habits of creating a 
coherent representation of the problem at hand; 
considering the units involved; attending to the meaning 
of quantities, not just how to compute them; and knowing 
and flexibly using different properties of operations and 
objects. 

SMP.3 

Construct viable 
arguments and critique 
the reasoning of others. 
Students build proofs by 
induction and proofs by 
contradiction. CA 3.1 
(for higher mathematics 
only). 

Students reason through the solving of equations, 
recognizing that solving an equation involves more 
than simply following rote rules and steps. They use 
language such as “If ____, then _____” when 
explaining their solution methods and provide 
justification for their reasoning. 

SMP.4 

Model with mathematics. 

Students apply their mathematical understanding of 
linear and exponential functions to many real-world 
problems, such as linear and exponential growth. 
Students also discover mathematics through 
experimentation and by examining patterns in data from 
real-world contexts. 

SMP.5 

Use appropriate tools 
strategically. 

Students develop a general understanding of the 
graph of an equation or function as a representation of 
that object, and they use tools such as graphing 
calculators or graphing software to create graphs in 
more complex examples, understanding how to 
interpret the results. 

SMP.6 

Attend to precision. 

Students use clear definitions in discussion with others 
and in their own reasoning. They state the meaning of 
the symbols they choose, including using the equal sign 
consistently and appropriately. They are careful about 
specifying units of measure and labeling axes to clarify 
the correspondence with quantities in a problem. 
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SMP.7 

Look for and make use of 
structure. 

Students recognize the significance of an existing line in 
a geometric figure and can use the strategy of drawing 
an auxiliary line for solving problems. They also can step 
back for an overview and shift perspective. They can see 
complicated things, such as some algebraic expressions, 
as single objects or as being composed of several 
objects. 

SMP.8 

Look for and express 
regularity in repeated 
reasoning. 

Students see that the key feature of a line in the plane is 
an equal difference in outputs over equal intervals of 
inputs, and that the result of evaluating the expression         

 for points on the line is always equal to a certain 
number m. Therefore, if (x, y) is a generic point on this 

line, the equation  will give a general 
equation of that line. 

SMP.4 holds a special place throughout the higher mathematics curriculum, as 1902 

Modeling is considered its own conceptual category. Although the Modeling category 1903 

does not include specific standards, the idea of using mathematics to model the world 1904 

pervades all higher mathematics courses and should hold a significant place in 1905 

instruction. Some standards are marked with a star () symbol to indicate that they are 1906 

modeling standards—that is, they may be applied to real-world modeling situations 1907 

more so than other standards. In the description of the Mathematics I content standards 1908 

that follow, Modeling is covered first to emphasize its importance in the higher 1909 

mathematics curriculum. 1910 

Integrated Math II 1911 

The Mathematics II course focuses on quadratic expressions, equations, and functions 1912 

and on comparing the characteristics and behavior of these expressions, equations, and 1913 

functions to those of linear and exponential relationships from Mathematics I. The need 1914 

for extending the set of rational numbers arises, and students are introduced to real and 1915 

complex numbers. Links between probability and data are explored through conditional 1916 

probability and counting methods and involve the use of probability and data in making 1917 

and evaluating decisions. 1918 
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The study of similarity leads to an understanding of right-triangle trigonometry and 1919 

connects to quadratics through Pythagorean relationships. Circles, with their quadratic 1920 

algebraic representations, finish out the course. 1921 

The courses in the Integrated Pathway follow the structure introduced in the K–8 grade 1922 

levels of the California Common Core State Standards for Mathematics (CA CCSSM); 1923 

they present mathematics as a coherent subject and blend standards from different 1924 

conceptual categories. 1925 

The standards in the integrated Mathematics II course come from the following 1926 

conceptual categories: Modeling, Functions, Number and Quantity, Algebra, Geometry, 1927 

and Statistics and Probability. The course content is explained below according to these 1928 

conceptual categories, but teachers and administrators alike should note that the 1929 

standards are not listed here in the order in which they should be taught. Moreover, the 1930 

standards are not topics to be checked off after being covered in isolated units of 1931 

instruction; rather, they provide content to be developed throughout the school year 1932 

through rich instructional experiences. 1933 

What Students Learn in Mathematics II 1934 

In Mathematics II, students extend the laws of exponents to rational exponents and 1935 

explore distinctions between rational and irrational numbers by considering their 1936 

decimal representations. Students learn that when quadratic equations do not have real 1937 

solutions, the number system can be extended so that solutions exist, analogous to the 1938 

way in which extending whole numbers to negative numbers allows x + 1 = 0 to have a 1939 

solution. Students explore relationships between number systems: whole numbers, 1940 

integers, rational numbers, real numbers, and complex numbers. The guiding principle 1941 

is that equations with no solutions in one number system may have solutions in a larger 1942 

number system. 1943 

Students consider quadratic functions, comparing the key characteristics of quadratic 1944 

functions to those of linear and exponential functions. They select from these functions 1945 

to model phenomena. Students learn to anticipate the graph of a quadratic function by 1946 

interpreting various forms of quadratic expressions. In particular, they identify the real 1947 
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solutions of a quadratic equation as the zeros of a related quadratic function. Students 1948 

also learn that when quadratic equations do not have real solutions, the graph of the 1949 

related quadratic function does not cross the horizontal axis. Additionally, students 1950 

expand their experience with functions to include more specialized functions—absolute 1951 

value, step, and other piecewise-defined functions. 1952 

Students in Mathematics II focus on the structure of expressions, writing equivalent 1953 

expressions to clarify and reveal aspects of the quantities represented. Students create 1954 

and solve equations, inequalities, and systems of equations involving exponential and 1955 

quadratic expressions. 1956 

Building on probability concepts introduced in the middle grades, students use the 1957 

language of set theory to expand their ability to compute and interpret theoretical and 1958 

experimental probabilities for compound events, attending to mutually exclusive events, 1959 

independent events, and conditional probability. Students use probability to make 1960 

informed decisions, and they should make use of geometric probability models 1961 

whenever possible. 1962 

Students apply their earlier experience with dilations and proportional reasoning to build 1963 

a formal understanding of similarity. They identify criteria for similarity of triangles, use 1964 

similarity to solve problems, and apply similarity in right triangles to understand right-1965 

triangle trigonometry, with particular attention to special right triangles and the 1966 

Pythagorean Theorem. In Mathematics II, students develop facility with geometric proof. 1967 

They use what they know about congruence and similarity to prove theorems involving 1968 

lines, angles, triangles, and other polygons. They also explore a variety of formats for 1969 

writing proofs. 1970 

In Mathematics II, students prove basic theorems about circles, chords, secants, 1971 

tangents, and angle measures. In the Cartesian coordinate system, students use the 1972 

distance formula to write the equation of a circle when given the radius and the 1973 

coordinates of its center, and the equation of a parabola with a vertical axis when given 1974 

an equation of its horizontal directrix and the coordinates of its focus. Given an equation 1975 

of a circle, students draw the graph in the coordinate plane and apply techniques for 1976 

solving quadratic equations to determine intersections between lines and circles, 1977 
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between lines and parabolas, and between two circles. Students develop informal 1978 

arguments to justify common formulas for circumference, area, and volume of geometric 1979 

objects, especially those related to circles. 1980 

Examples of Key Advances from Mathematics I 1981 

Students extend their previous work with linear and exponential expressions, equations, 1982 

and systems of equations and inequalities to quadratic relationships. 1983 

● A parallel extension occurs from linear and exponential functions to quadratic 1984 

functions: students begin to analyze functions in terms of transformations. 1985 

● Building on their work with transformations, students produce increasingly formal 1986 

arguments about geometric relationships, particularly around notions of similarity. 1987 

Connecting Mathematical Practices and Content 1988 

The Standards for Mathematical Practice (SMPs) apply throughout each course and, 1989 

together with the Standards for Mathematical Content, prescribe that students 1990 

experience mathematics as a coherent, relevant, and meaningful subject. The SMPs 1991 

represent a picture of what it looks like for students to do mathematics and, to the extent 1992 

possible, content instruction should include attention to appropriate practice standards. 1993 

The CA CCSSM call for an intense focus on the most critical material, allowing depth in 1994 

learning, which is carried out through the SMPs. Connecting content and practices 1995 

happens in the context of working on problems, as is evident in the first SMP (“Make 1996 

sense of problems and persevere in solving them”). Table XX offers examples of how 1997 

students can engage in each mathematical practice in the Mathematics II course. 1998 

Table XX. Standards for Mathematical Practice—Explanation and Examples for 1999 

Mathematics II  2000 

Standards for 
Mathematical Practice 

Explanation and 
Examples 

SMP.1 

Make sense of problems 
and persevere in solving 
them. 

Students persevere when attempting to understand the 
differences between quadratic functions and linear and 
exponential functions studied previously. They create 
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diagrams of geometric problems to help make sense of 
the problems. 

SMP.2 

Reason abstractly and 
quantitatively. 

Quantitative reasoning entails habits of creating a 
coherent representation of the problem at hand; 
considering the units involved; attending to the 
meaning of quantities, not just how to compute them; 
and knowing and flexibly using different properties of 
operations and objects. 

SMP.3 

Construct viable 
arguments and critique 
the reasoning of 
others. Students build 
proofs by induction and 
proofs by contradiction. 
CA 3.1 (for higher 
mathematics only). 

Students construct proofs of geometric theorems 
based on congruence criteria of triangles. They 
understand and explain the definition of radian 
measure. 

SMP.4 

Model with mathematics. 

Students apply their mathematical understanding of 
quadratic functions to real-world problems. Students 
also discover mathematics through 
experimentation and by examining patterns in data 
from real-world contexts. 

SMP.5 

Use appropriate tools 
strategically. 

Students develop a general understanding of the 
graph of an equation or function as a representation 
of that object, and they use tools such as graphing 
calculators or graphing software to create graphs in 
more complex examples, understanding how to 
interpret the result. 

SMP.6 

Attend to precision. 

Students begin to understand that a rational number 
has a specific definition and that irrational numbers 
exist. When deciding if an equation 
can describe a function, students make use of the 
definition of function by asking, “Does every input value 
have exactly one output value?” 

SMP.7 

Look for and 
make use of 
structure. 

Students apply the distributive property to develop 

formulas such as . They see 

that the expression  takes the form of “5 
plus ‘something’ squared,” and therefore that 
expression can be no smaller than 5. 

SMP.8 

Look for and express 
regularity in repeated 
reasoning. 

Students notice that consecutive numbers in the 
sequence of squares 1, 4, 9, 16, and 25 always differ 
by an odd number. They use polynomials to 
represent this interesting finding by expressing it as 

. 
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SMP.4 holds a special place throughout the higher mathematics curriculum, as 2001 

Modeling is considered its own conceptual category. Although the Modeling category 2002 

does not include specific standards, the idea of using mathematics to model the world 2003 

pervades all higher mathematics courses and should hold a significant place in 2004 

instruction. Some standards are marked with a star (⋆) symbol to indicate that they are 2005 

modeling standards—that is, they may be applied to real-world modeling situations 2006 

more so than other standards. Modeling in higher mathematics centers on problems 2007 

that arise in everyday life, society, and the workplace. Such problems may draw upon 2008 

mathematical content knowledge and skills articulated in the standards prior to or during 2009 

the Mathematics II course. 2010 

Integrated Math III 2011 

In the Mathematics III course, students expand their repertoire of functions to include 2012 

polynomial, rational, and radical functions. They also expand their study of right-triangle 2013 

trigonometry to include general triangles. And, finally, students bring together all of their 2014 

experience with functions and geometry to create models and solve contextual 2015 

problems. The courses in the Integrated Pathway follow the structure introduced in the 2016 

K–8 grade levels of the California Common Core State Standards for Mathematics (CA 2017 

CCSSM); they present mathematics as a coherent subject and blend standards from 2018 

different conceptual categories. 2019 

The standards in the integrated Mathematics III course come from the following 2020 

conceptual categories: Modeling, Functions, Number and Quantity, Algebra, Geometry, 2021 

and Statistics and Probability. The course content is explained below according to these 2022 

conceptual categories, but teachers and administrators alike should note that the 2023 

standards are not listed here in the order in which they should be taught. Moreover, the 2024 

standards are not topics to be checked off after being covered in isolated units of 2025 

instruction; rather, they provide content to be developed throughout the school year 2026 

through rich instructional experiences. 2027 
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What Students Learn in Mathematics III 2028 

In Mathematics III, students understand the structural similarities between the system of 2029 

polynomials and the system of integers. Students draw on analogies between 2030 

polynomial arithmetic and base-ten computation, focusing on properties of operations, 2031 

particularly the distributive property. They connect multiplication of polynomials with 2032 

multiplication of multi-digit integers and division of polynomials with long division of 2033 

integers. Students identify zeros of polynomials and make connections between zeros 2034 

of polynomials and solutions of polynomial equations. Their work on polynomial 2035 

expressions culminates with the Fundamental Theorem of Algebra. Rational numbers 2036 

extend the arithmetic of integers by allowing division by all numbers except 0. Similarly, 2037 

rational expressions extend the arithmetic of polynomials by allowing division by all 2038 

polynomials except the zero polynomial. A central theme of working with rational 2039 

expressions is that the arithmetic of rational expressions is governed by the same rules 2040 

as the arithmetic of rational numbers. 2041 

Students synthesize and generalize what they have learned about a variety of function 2042 

families. They extend their work with exponential functions to include solving 2043 

exponential equations with logarithms. They explore the effects of transformations on 2044 

graphs of diverse functions, including functions arising in an application, in order to 2045 

abstract the general principle that transformations on a graph always have the same 2046 

effect, regardless of the type of the underlying functions. 2047 

Students develop the Laws of Sines and Cosines in order to find missing measures of 2048 

general (not necessarily right) triangles. They are able to distinguish whether three 2049 

given measures (angles or sides) define 0, 1, 2, or infinitely many triangles. This 2050 

discussion of general triangles opens up the idea of trigonometry applied beyond the 2051 

right triangle—that is, at least to obtuse angles. Students build on this idea to develop 2052 

the notion of radian measure for angles and extend the domain of the trigonometric 2053 

functions to all real numbers. They apply this knowledge to model simple periodic 2054 

phenomena. 2055 

Students see how the visual displays and summary statistics they learned in previous 2056 

grade levels or courses relate to different types of data and to probability distributions. 2057 
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They identify different ways of collecting data—including sample surveys, experiments, 2058 

and simulations—and recognize the role that randomness and careful design play in the 2059 

conclusions that may be drawn. 2060 

Finally, students in Mathematics III extend their understanding of modeling: they identify 2061 

appropriate types of functions to model a situation, adjust parameters to improve the 2062 

model, and compare models by analyzing appropriateness of fit and by making 2063 

judgments about the domain over which a model is a good fit. The description of 2064 

modeling as “the process of choosing and using mathematics and statistics to analyze 2065 

empirical situations, to understand them better, and to make decisions” (National 2066 

Governors Association Center for Best Practices, Council of Chief State School Officers 2067 

[NGA/CCSSO] 2010e) is one of the main themes of this course. The discussion about 2068 

modeling and the diagram of the modeling cycle that appear in this chapter should be 2069 

considered when students apply knowledge of functions, statistics, and geometry in a 2070 

modeling context. 2071 

Examples of Key Advances from Mathematics II 2072 

● Students begin to see polynomials as a system analogous to the integers that 2073 

they can add, subtract, multiply, and so forth. Subsequently, polynomials can be 2074 

extended to rational expressions, which are analogous to rational numbers. 2075 

● Students extend their knowledge of linear, exponential, and quadratic functions 2076 

to include a much broader range of classes of functions. 2077 

● Students begin to examine the role of randomization in statistical design. 2078 

Connecting Mathematical Practices and Content 2079 

The Standards for Mathematical Practice (SMP) apply throughout each course and, 2080 

together with the Standards for Mathematical Content, prescribe that students 2081 

experience mathematics as a coherent, relevant, and meaningful subject. The SMPs 2082 

represent a picture of what it looks like for students to do mathematics and, to the extent 2083 

possible, content instruction should include attention to appropriate practice standards. 2084 

The Mathematics III course offers ample opportunities for students to engage with each 2085 

SMP; table XX offers some examples. 2086 
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Table XX. Standards for Mathematical Practice—Explanation and Examples for 2087 

Mathematics III  2088 

Standards for 
Mathematical Practice 

Explanation and Examples 

SMP.1 

Make sense of problems 
and persevere in solving 
them. 

Students apply their understanding of various functions 
to real-world problems. They approach complex 
mathematics problems and break them down into smaller 
problems, synthesizing the results when presenting 
solutions. 

SMP.2 

Reason abstractly and 
quantitatively. 

Students deepen their understanding of variables—for 
example, by understanding that changing the values of 
the parameters in the expression  has consequences for 
the graph of the function. They interpret these 
parameters in a real-world context. 

SMP.3 

Construct viable arguments 
and critique the reasoning 
of others. Students build 
proofs by induction and 
proofs by contradiction. CA 
3.1 (for higher mathematics 
only). 

Students continue to reason through the solution of an 
equation and justify their reasoning to their peers. 
Students defend their choice of a function when 
modeling a real-world situation. 

SMP.4 

Model with mathematics. 

Students apply their new mathematical understanding to 
real-world problems, making use of their expanding 
repertoire of functions in modeling. Students also 
discover mathematics through experimentation and by 
examining patterns in data from real-world contexts. 

SMP.5 

Use appropriate tools 
strategically. 

Students continue to use graphing technology to deepen 
their understanding of the behavior of polynomial, 
rational, square root, and trigonometric functions. 

SMP.6 

Attend to precision. 

Students make note of the precise definition of complex 
number, understanding that real numbers are a subset of 
complex numbers. They pay attention to units in real-
world problems and use unit analysis as a method for 
verifying their answers. 

SMP.7 

Look for and make use of 
structure. 

Students understand polynomials and rational numbers 
as sets of mathematical objects that have particular 
operations and properties. They understand the 
periodicity of sine and cosine and use these functions to 
model periodic phenomena. 
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SMP.8 

Look for and express 
regularity in repeated 
reasoning. 

Students observe patterns in geometric sums—for 

example, that the first several sums of the form  
can be written as follows:  

 
Students use this observation to make a conjecture 
about any such sum. 

The Traditional High School Pathway 2089 

Most of us are familiar with the Algebra I–geometry–Algebra II sequence of high school 2090 

mathematics courses, as it has been the most common pathway for decades. The six 2091 

conceptual categories for the CA CCSSM at the high school level are Number and 2092 

Quantity, Algebra, Functions, Modeling, Geometry, and Statistics and Probability. In the 2093 

Traditional Pathway described in the CA CCSSM, the standards from these conceptual 2094 

categories have been organized into the three courses of Algebra I, Geometry, and 2095 

Algebra II. Despite having a new set of standards, as of 2013, the outline of the courses 2096 

has not changed significantly, so the outlines below will look familiar to many. The 2097 

standards for the Traditional Pathway, by course, begin on p. 59 of the CA CCSSM. 2098 

(https://www.cde.ca.gov/be/st/ss/documents/ccssmathstandardaug2013.pdf) 2099 

Note that “Traditional Pathway” refers to the organization of content, not to teaching 2100 

practices. Although these courses are traditional in their content, they should be taught 2101 

through active student engagement, as set out in the Mathematics: Investigating and 2102 

Connecting pathway, and whenever possible students should see and work on content 2103 

that is conceptually integrated. 2104 

Algebra I 2105 

The main purpose of Algebra I is to develop students’ fluency with linear, quadratic, and 2106 

exponential functions. The critical areas of instruction involve deepening and extending 2107 

students’ understanding of linear and exponential relationships by comparing and 2108 

contrasting those relationships and by applying linear models to data that exhibit a 2109 

https://www.cde.ca.gov/be/st/ss/documents/ccssmathstandardaug2013.pdf


89 

 

linear trend. In addition, students engage in methods for analyzing, solving, and using 2110 

exponential and quadratic functions. Some of the overarching elements of the Algebra I 2111 

course include the notion of function, solving equations, rates of change and growth 2112 

patterns, graphs as representations of functions, and modeling. 2113 

 2114 

For the Traditional Pathway, the standards in the Algebra I course come from the 2115 

following conceptual categories: Modeling, Functions, Number and Quantity, Algebra, 2116 

and Statistics and Probability. The course content is explained below according to these 2117 

conceptual categories, but teachers and administrators alike should note that the 2118 

standards are not listed here in the order in which they should be taught. Moreover, the 2119 

standards are not simply topics to be checked off from a list during isolated units of 2120 

instruction; rather, they represent content that should be present throughout the school 2121 

year in rich instructional experiences. 2122 
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 2123 

What Students Learn in Algebra I 2124 

In Algebra I, students use reasoning about structure to define and make sense of 2125 

rational exponents and explore the algebraic structure of the rational and real number 2126 
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systems. They understand that numbers in real-world applications often have units 2127 

attached to them—that is, the numbers are considered quantities.  2128 

Student work with numbers and operations throughout elementary and middle school 2129 

leads them to an understanding of the structure of the number system; in Algebra I, 2130 

students explore the structure of algebraic expressions and polynomials. They see that 2131 

certain properties must persist when they work with expressions that are meant to 2132 

represent numbers—which they now write in an abstract form involving variables. When 2133 

two expressions with overlapping domains are set as equal to each other, resulting in 2134 

an equation, there is an implied solution set (be it empty or non-empty), and students 2135 

not only refine their techniques for solving equations and finding the solution set, but 2136 

they can clearly explain the algebraic steps they used to do so. 2137 

Students began their exploration of linear equations in middle school, first by connecting 2138 

proportional equations to graphs, tables, and real-world contexts, and then moving 2139 

toward an understanding of general linear equations (y = mx + b, m ≠ 0) and their 2140 

graphs. In Algebra I, students extend this knowledge to work with absolute value 2141 

equations, linear inequalities, and systems of linear equations. After learning a more 2142 

precise definition of function in this course, students examine this new idea in the 2143 

familiar context of linear equations—for example, by seeing the solution of a linear 2144 

equation as solving for two linear functions. 2145 

Students continue to build their understanding of functions beyond linear types by 2146 

investigating tables, graphs, and equations that build on previous understandings of 2147 

numbers and expressions. They make connections between different representations of 2148 

the same function. They also learn to build functions in a modeling context and solve 2149 

problems related to the resulting functions. Note that in Algebra I the focus is on linear, 2150 

simple exponential, and quadratic equations. 2151 

Finally, students extend their prior experiences with data, using more formal means of 2152 

assessing how a model fits data. Students use regression techniques to describe 2153 

approximately linear relationships between quantities. They use graphical 2154 

representations and knowledge of the context to make judgments about the 2155 
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appropriateness of linear models. With linear models, students look at residuals to 2156 

analyze the goodness of fit. 2157 

Examples of Key Advances from Kindergarten Through Grade Eight 2158 

● Having already extended arithmetic from whole numbers to fractions (grades four 2159 

through six) and from fractions to rational numbers (grade seven), students in 2160 

grade eight encountered specific irrational numbers such as 5 and ð. In Algebra I, 2161 

students begin to understand the real number system. See Chapter Three: 2162 

Number Sense for a detailed progression of how students’ understanding of 2163 

numbers develops through the grades. 2164 

● Students in middle grades worked with measurement units, including units 2165 

obtained by multiplying and dividing quantities. In Algebra I (conceptual category 2166 

N–Q), students apply these skills in a more sophisticated fashion to solve 2167 

problems in which reasoning about units adds insight. 2168 

● Algebraic themes beginning in middle school continue and deepen during high 2169 

school. As early as grades six and seven, students began to use the properties 2170 

of operations to generate equivalent expressions (standards 6.EE.3 and 7.EE.1). 2171 

By grade seven, they began to recognize that rewriting expressions in different 2172 

forms could be useful in problem solving (standard 7.EE.2). In Algebra I, these 2173 

aspects of algebra carry forward as students continue to use properties of 2174 

operations to rewrite expressions, gaining fluency and engaging in what has 2175 

been called “mindful manipulation.” 2176 

● Students in grade eight extended their prior understanding of proportional 2177 

relationships to begin working with functions, with an emphasis on linear 2178 

functions. In Algebra I, students learn linear and quadratic functions. Students 2179 

encounter other kinds of functions to ensure that general principles of working 2180 

with functions are perceived as applying to all functions, as well as to enrich the 2181 

range of quantitative relationships considered in problems. 2182 

● Students in grade eight connected their knowledge about proportional 2183 

relationships, lines, and linear equations (standards 8.EE.5–6). In Algebra I, 2184 

students solidify their understanding of the analytic geometry of lines. They 2185 

understand that in the Cartesian coordinate plane: the graph of any linear 2186 
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equation in two variables is a line; any line is the graph of a linear equation in two 2187 

variables. 2188 

● As students acquire mathematical tools from their study of algebra and functions, 2189 

they apply these tools in statistical contexts (e.g., standard S-ID.6). In a modeling 2190 

context, they might informally fit a quadratic function to a set of data, graphing 2191 

the data and the model function on the same coordinate axes. They also draw on 2192 

skills first learned in middle school to apply basic statistics and simple probability 2193 

in a modeling context. For example, they might estimate a measure of center or 2194 

variation and use it as an input for a rough calculation. 2195 

● Algebra I techniques open an extensive variety of solvable word problems that 2196 

were previously inaccessible or very complex for students in kindergarten 2197 

through grade eight. This expands problem solving dramatically. 2198 
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 2199 

Geometry 2200 

The fundamental purpose of the geometry course is to introduce students to formal 2201 

geometric proofs and the study of plane figures, culminating in the study of right-triangle 2202 

trigonometry and circles. Students begin to formally prove results about the geometry of 2203 

the plane by using previously defined terms and notions. Similarity is explored in greater 2204 

detail, with an emphasis on discovering trigonometric relationships and solving 2205 

problems with right triangles. The correspondence between the plane and the Cartesian 2206 

coordinate system is explored when students connect algebra concepts with geometry 2207 

concepts. Students explore probability concepts and use probability in real-world 2208 

situations. The major mathematical ideas in the geometry course include geometric 2209 
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transformations, proving geometric theorems, congruence and similarity, analytic 2210 

geometry, right-triangle trigonometry, and probability. 2211 

 2212 

The standards in the traditional geometry course come from the following conceptual 2213 

categories: Modeling, Geometry, and Statistics and Probability. The content of the 2214 

course is explained below according to these conceptual categories, but teachers and 2215 

administrators alike should note that the standards are not listed here in the order in 2216 

which they should be taught. Moreover, the standards are not topics to be checked off 2217 
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after being covered in isolated units of instruction; rather, they provide content to be 2218 

developed throughout the school year through rich instructional experiences. 2219 

What Students Learn in Geometry 2220 

Although there are many types of geometry, school mathematics is devoted primarily to 2221 

plane Euclidean geometry, studied both synthetically (without coordinates) and 2222 

analytically (with coordinates). In the higher mathematics courses, students begin to 2223 

formalize their geometry experiences from elementary and middle school, using 2224 

definitions that are more precise and developing careful proofs. The standards for 2225 

grades seven and eight call for students to see two-dimensional shapes as part of a 2226 

generic plane (i.e., the Euclidean plane) and to explore transformations of this plane as 2227 

a way to determine whether two shapes are congruent or similar.  2228 

 2229 

These concepts are formalized in the geometry course, and students use 2230 

transformations to prove geometric theorems. The definition of congruence in terms of 2231 

rigid motions provides a broad understanding of this means of proof, and students 2232 



97 

 

explore the consequences of this definition in terms of congruence criteria and proofs of 2233 

geometric theorems. 2234 

Students investigate triangles and decide when they are similar—and with this 2235 

newfound knowledge and their prior understanding of proportional relationships, they 2236 

define trigonometric ratios and solve problems by using right triangles. They investigate 2237 

circles and prove theorems about them. Connecting to their prior experience with the 2238 

coordinate plane, they prove geometric theorems by using coordinates and describe 2239 

shapes with equations. Students extend their knowledge of area and volume formulas 2240 

to those for circles, cylinders, and other rounded shapes. Finally, continuing the 2241 

development of statistics and probability, students investigate probability concepts in 2242 

precise terms, including the independence of events and conditional probability. 2243 

Examples of Key Advances from Previous Grade Levels or Courses 2244 

● Because concepts such as rotation, reflection, and translation were treated in the 2245 

grade-eight standards mostly in the context of hands-on activities and with an 2246 

emphasis on geometric intuition, the geometry course places equal weight on 2247 

precise definitions. 2248 

● In kindergarten through grade eight, students worked with a variety of geometric 2249 

measures: length, area, volume, angle, surface area, and circumference. In 2250 

geometry, students apply these component skills in tandem with others in the 2251 

course of modeling tasks and other substantial applications (MP.4). 2252 

● The skills that students develop in Algebra I around simplifying and transforming 2253 

square roots will be useful when solving problems that involve distance or area 2254 

and that make use of the Pythagorean Theorem. 2255 

● Students in grade eight learned the Pythagorean Theorem and used it to 2256 

determine distances in a coordinate system (8.G.6–8). In geometry, students 2257 

build on their understanding of distance in coordinate systems and draw on their 2258 

growing command of algebra to connect equations and graphs of circles (G-2259 

GPE.1). 2260 

● The algebraic techniques developed in Algebra I can be applied to study analytic 2261 

geometry. Geometric objects can be analyzed by the algebraic equations that 2262 
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give rise to them. Algebra can be used to prove some basic geometric theorems 2263 

in the Cartesian plane. 2264 

 2265 

Algebra II 2266 

Algebra II course extends students’ understanding of functions and real numbers and 2267 

increases the tools students have for modeling the real world. Students in Algebra II 2268 

extend their notion of number to include complex numbers and see how the introduction 2269 

of this set of numbers yields the solutions of polynomial equations and the Fundamental 2270 

Theorem of Algebra. Students deepen their understanding of the concept of function 2271 

and apply equation-solving and function concepts to many different types of functions. 2272 

The system of polynomial functions, analogous to integers, is extended to the field of 2273 

rational functions, which is analogous to rational numbers. Students explore the 2274 

relationship between exponential functions and their inverses, the logarithmic functions. 2275 

Trigonometric functions are extended to all real numbers, and their graphs and 2276 



99 

 

properties are studied. Finally, students’ knowledge of statistics is extended to include 2277 

under- standing the normal distribution, and students are challenged to make inferences 2278 

based on sampling, experiments, and observational studies. 2279 

For the Traditional Pathway, the standards in the Algebra II course come from the 2280 

following conceptual categories: Modeling, Functions, Number and Quantity, Algebra, 2281 

and Statistics and Probability. The course content is explained below according to these 2282 

conceptual categories, but teachers and administrators alike should note that the 2283 

standards are not listed here in the order in which they should be taught. Moreover, the 2284 

standards are not simply topics to be checked off from a list during isolated units of 2285 

instruction; rather, they represent content that should be present throughout the school 2286 

year in meaningful and rigorous instructional experiences. 2287 
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What Students Learn in Algebra II 2290 

Building on their work with linear, quadratic, and exponential functions, students in 2291 

Algebra II extend their repertoire of functions to include polynomial, rational, and radical 2292 

functions. 2293 

Students work closely with the expressions that define the functions and continue to 2294 

expand and hone their abilities to model situations and to solve equations, including 2295 

solving quadratic equations over the set of complex numbers and solving exponential 2296 

equations using the properties of logarithms. Based on their previous work with 2297 

functions, and on their work with trigonometric ratios and circles in geometry, students 2298 

now use the coordinate plane to extend trigonometry to model periodic phenomena. 2299 

They explore the effects of transformations on graphs of diverse functions, including 2300 

functions arising in applications, in order to abstract the general principle that 2301 

transformations on a graph always have the same effect regardless of the type of 2302 

underlying function. They identify appropriate types of functions to model a situation, 2303 

adjust parameters to improve the model, and compare models by analyzing 2304 

appropriateness of fit and making judgments about the domain over which a model is a 2305 

good fit.  2306 

 2307 
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Students see how the visual displays and summary statistics learned in earlier grade 2309 

levels relate to different types of data and to probability distributions. They identify 2310 

different ways of collecting data—including sample surveys, experiments, and 2311 

simulations—and the role of randomness and careful design in the conclusions that can 2312 

be drawn. 2313 

Examples of Key Advances from Previous Grade Levels or Courses 2314 

● In Algebra I, students added, subtracted, and multiplied polynomials. Students in 2315 

Algebra II divide polynomials that result in remainders, leading to the factor and 2316 

remainder theorems. This is the underpinning for much of advanced algebra, 2317 

including the algebra of rational expressions. 2318 

● Themes from middle-school algebra continue and deepen during high school. As 2319 

early as grade six, students began thinking about solving equations as a process 2320 

of reasoning (6.EE.5). This perspective continues throughout Algebra I and 2321 

Algebra II (A-REI). “Reasoned solving” plays a role in Algebra II because the 2322 

equations students encounter may have extraneous solutions (A-REI.2). 2323 

● In Algebra I, students worked with quadratic equations with no real roots. In 2324 

Algebra II, they extend their knowledge of the number system to include complex 2325 

numbers, and one effect is that they now have a complete theory of quadratic 2326 

equations: Every quadratic equation with complex coefficients has (counting 2327 

multiplicity) two roots in the complex numbers. 2328 

● In grade eight, students learned the Pythagorean Theorem and used it to 2329 

determine distances in a coordinate system (8.G.6–8). In the geometry course, 2330 

students proved theorems using coordinates (G-GPE.4–7). In Algebra II, 2331 

students build on their understanding of distance in coordinate systems and draw 2332 

on their growing command of algebra to connect equations and graphs of conic 2333 

sections (for example, refer to standard G-GPE.1). 2334 

● In geometry, students began trigonometry through a study of right triangles. In 2335 

Algebra II, they extend the three basic functions to the entire unit circle. 2336 

● As students acquire mathematical tools from their study of algebra and functions, 2337 

they apply these tools in statistical contexts (for example, refer to standard S-2338 

ID.6). In a modeling context, students might informally fit an exponential function 2339 
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to a set of data, graphing the data and the model function on the same 2340 

coordinate axes (Partnership for Assessment of Readiness for College and 2341 

Careers 2012). 2342 

 2343 
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