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Note to reader: The use of the non-binary, singular pronouns they, them, their, theirs, 33 

themself, and themselves in this framework is intentional. 34 

Introduction: Mathematical Practices 35 

California schools must prepare students to be powerful users of mathematics to 36 

understand and affect their worlds, in whatever life path they embark upon. This charge 37 

is built on the California Common Core State Standards for Mathematics (CA CCSSM), 38 

which contain two types of standards. The content standards might be more familiar to 39 

many educators; they describe for each grade the mathematical expertise, skills, and 40 

knowledge that students should develop. The criteria to teach and measure math 41 

practices, the Standards for Mathematical Practice (SMPs), describe the ways of 42 

interacting with mathematics individually and collaboratively that make up the practices 43 

of the discipline. Eight SMPs are included in the CA CCSSM. 44 

Habits of Mind and Habits of Interaction 45 

The past several decades in mathematics education has included a national push to 46 

focus on both the habits of mind and habits of interaction that students need in order to 47 

become powerful users of mathematics and better interpret and understand their world. 48 

Habits of mind include making or using mathematical representations, attending to 49 

mathematical structure, persevering in solving problems, and reasoning. Reasoning 50 

includes the following processes: inferencing, conjecturing, generalizing, exemplifying, 51 

proving, arguing, and convincing (Jeannotte & Kieran, 2017). Habits of interaction 52 

include such things as explaining one’s thinking, justifying a solution, making sense of 53 

the thinking of others, and raising worthy questions for discussion. Both kinds of habits 54 

are fundamentally tied to language development and linguistic processes. Supporting 55 



 3 

 

reasoning processes and kinds of interactions involve supporting the development of 56 

language as students engage in these disciplinary practices. By the time California’s 57 

students graduate from high school, they should be comfortable engaging in many 58 

mathematical practices, including those that are central to the SMPs highlighted in this 59 

chapter: exploration, discovery, description, explanation, generalization, and justification 60 

(including proof). 61 

The capacity to use mathematics to understand the world influences every aspect of 62 

life, from participating in our communities to personal finances to everyday tasks such 63 

as cooking and gardening. For example, an understanding of fractions, ratios, and 64 

percentages is crucial to questions of fairness and justice in areas as diverse as 65 

incarceration, environmental and racial justice, and housing policy.  66 

Being able to reason with and about the mathematics behind situations such as the 67 

above (using ideas such as recursion, shape of curves, and rate of change) empowers 68 

Californians in making important and consequential decisions not only for their own 69 

lives, but also for their communities. Making sense of the mathematics behind data-70 

based claims about the benefits or dangers of particular foods or other substances 71 

empowers everyday decision making. This practice of reasoning about the world using 72 

data, described in the Data Science chapter, is another important example.  73 

The ability to reason is a foundational skill for understanding the impact of stereotypes. 74 

Humans are quick to generalize from a small number of examples, and to construct 75 

causal stories to explain observed phenomena. In many situations, this tendency serves 76 

us well: people learn from very few examples that a stove might be painfully hot, and a 77 

Copernican model of a sun-centered universe enabled astronomers to predict the 78 

movement in the sky of planets and stars with reasonable accuracy.  79 

There are, however, many situations in which humans are poorly served by such 80 

generalizations, especially those that lead to the treatment of people based on 81 

characteristics that call forth internal stories about expected capacities, motivation, 82 

behavior, or background. Such emotional stories are often based on little evidence and 83 

are socially buttressed, and action based on these stories does great harm to the 84 
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communities and the individual students that comprise the schools they represent. This 85 

tendency to assume, without adequate justification, that generalizations are valid is 86 

reinforced by many poorly-constructed math assessment questions, e.g., “What is the 87 

next term in this sequence: 1, 2, 4, 8, …?” instead of the more informative and 88 

reasoning-reinforcing “What rule or pattern might generate a sequence that begins 1, 2, 89 

4, 8, ...? According to your rule, what is the next term?” Mathematics education must 90 

prepare students to use mathematics to comprehend and respond to their world, 91 

deepening their understanding of mathematics and of the issues that impact their lives. 92 

The goal is that students learn to “use mathematics to examine… various phenomena 93 

both in one’s immediate life and in the broader social world and to identify relationships 94 

and make connections between them” (Gutstein, 2003, p. 45). 95 

Deeper Practice or More Content Topics? 96 

Mastering high-school level mathematics content to acquire the knowledge needed to 97 

understand the world can embolden students who will continue on to tertiary institutions 98 

where they will be expected to engage in career- and college-level mathematics. 99 

Despite this, there is a well-documented, persistent disconnect between high school 100 

mathematics teachers’ beliefs about what is important for their students to succeed in 101 

college, and what college instructors rate as most important for incoming students’ 102 

success. Even with the adopted the CA CCSSM, ongoing research into instructional 103 

practices, and annual results on statewide testing, this disconnect persists. The ACT’s 104 

National Curriculum Survey (widely administered every three to five years) reported in 105 

2006 that “High school mathematics teachers gave more advanced topics greater 106 

importance than did their postsecondary counterparts. In contrast, postsecondary… 107 

mathematics instructors rated a rigorous understanding of fundamental underlying 108 

mathematics skills and processes as being more important than exposure to more 109 

advanced mathematics topics” (ACT, Inc., 2007, p. 5). Six years later, the same 110 

discrepancy was reflected in the fact that 19 of the 20 topics rated by college faculty as 111 

most important for incoming students are typically taught in ninth grade or earlier (ACT, 112 

Inc., 2013, p. 6). 113 

__________________________________________________________________ 114 
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Ranking of the 20 Content Topics Rated Most Important as Prerequisites by Instructors 115 

of Credit-Bearing First-Year College Mathematics Courses (ACT, Inc., 2013, p. 7) 116 

 Rank Topic 117 

1. Evaluate algebraic expressions 118 

2. Perform addition, subtraction, multiplication, and division on signed rational 119 

numbers 120 

3. Solve linear equations in one variable 121 

4. Solve multistep arithmetic problems 122 

5. Locate points on the number line 123 

6. Perform operations (add, subtract, multiply) on linear expressions 124 

7. Find the slope of a line 125 

8. Find equivalent fractions 126 

9. Find and use multiples and factors 127 

10. Perform operations (add, subtract, multiply) on polynomials 128 

11. Locate points in the coordinate plane 129 

12. Write expressions, equations, or inequalities to represent mathematical and real-130 

world settings 131 

13. Evaluate functions at a given value of x 132 

14. Graph linear equations in two variables 133 

15. Order rational numbers 134 

16. Determine the absolute value of rational numbers 135 

17. Manipulate equations and inequalities to highlight a specific unknown 136 

18. Manipulate expressions containing rational exponents 137 

19. Solve linear inequalities in one variable 138 

20. Solve problems using ratios and proportions 139 

__________________________________________________________________ 140 
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This misunderstanding about the types of experiences that best prepare students for 141 

college mathematics success produces high-school graduates who enter college with a 142 

superficial grasp of superfluous procedures and little conceptual framework. The goal is 143 

to impart a deep, flexible procedural knowledge which helps students to understand 144 

important concepts, and deep conceptual knowledge which helps to make sense of and 145 

connect procedures and ideas. Clarified further, “procedural knowledge learning should 146 

be structured in a way that emphasizes the concepts underpinning the procedures in 147 

order for conceptual knowledge to improve concurrently” (Maciejewski & Star, 2016). In 148 

order to equip students for success in college level mathematics and in jobs that require 149 

an application of mathematical skills to novel situations, the SMPs describe habits and 150 

behaviors that develop and reflect a deep conceptual and procedural understanding.  151 

Unlike the content standards, the SMPs are the same for all grades K–12 (with one 152 

addition in high school [SMP.3.1] below). As students progress through mathematical 153 

content, the opportunities they have to deepen their knowledge of and skills in the 154 

SMPs should increase.  155 

● SMP.1: Make sense of problems and persevere in solving them 156 

● SMP.2: Reason abstractly and quantitatively 157 

● SMP.3: Construct viable arguments and critique the reasoning of others 158 

● SMP.4: Model with mathematics 159 

● SMP.5: Use appropriate tools strategically 160 

● SMP.6: Attend to precision 161 

● SMP.7: Look for and make use of structure 162 

● SMP.8: Look for and express regularity in repeated reasoning 163 

All of the SMPs are crucial, and most worthwhile classroom mathematics activities 164 

require students to engage in all of them to varying degrees throughout the year.  165 

Exploring and Reasoning With and About Mathematics: SMP.3, 7, 8 166 

Certain curricula more clearly represent the SMPs and, as a result, this chapter 167 

addresses the progression through the grades of a cluster of three of the SMPs, 168 

highlighted above: Construct Viable Arguments and Critique the Reasoning of Others 169 
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(SMP.3, including the California-specific high school SMP.3.1 regarding proof); Look for 170 

and Make Use of Structure (SMP.7); and Look for and Express Regularity in Repeated 171 

Reasoning (SMP.8). These practices do not develop without careful attention across all 172 

grade levels and in relation to mathematical content. In addition, these three SMPs all 173 

require a high degree of language proficiency in order to access content knowledge and 174 

reasoning. The California English Language Development (ELD) Standards describe 175 

structures to assist in the building of the English language proficiency for English 176 

learners (Els). The ELD Standards, along with the SMPs and content standards, would 177 

help illustrate how best to integrate language development in the lessons. For many 178 

students, having small groups in which students can do the investigations, critiques, and 179 

reasoning in their native or preferred language may support and strengthen their 180 

understanding. In designated ELD time, the language of critiquing, reasoning, 181 

generalizing, and arguing is a space to help prepare EL students for engagement in the 182 

SMPs and the mathematical content. The framework’s approach integrates the three 183 

SMPs in the context of mathematical investigations to highlight ways that mathematical 184 

practices can come together through exploration and reasoning. The following four 185 

processes might be useful guideposts for designing mathematical investigations that 186 

integrate multiple content and practice standards at the lesson or unit level (see 187 

Chapters 6, 7, and 8 for more grade-level guidance on mathematical investigations):  188 

1. Exploring authentic mathematical contexts 189 

2. Discovering regularity in repeated reasoning and structure 190 

3. Abstracting and generalizing from observed regularity and structure 191 

4. Reasoning and communicating with and about mathematics in order to share and 192 

justify conclusions 193 

A classroom where students are engaged in these processes might look different to a 194 

visitor (or to the teacher!) than math classes as portrayed in popular media. While these 195 

processes focus on communication as sharing and justifying mathematical ideas, 196 

mathematical investigations involve multiple communicative processes for connecting 197 

and interacting with others and mathematics. Evidence of SMPs 3, 7, and 8 (among 198 

others) might include the following: 199 
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● Students trying multiple examples and comparing (SMP.1, 7): Ex., “I tried 6; what 200 

did you do?” 201 

● Students challenging each other (SMP.3): Ex., “I see why you think that from 202 

what you tried. I don’t think that always works because….” 203 

● Predictions being shared (often these reflect early noticing of repeated reasoning 204 

and structure, SMP.7 and SMP.8): Ex., “I think that when we try with a hexagon, 205 

we’ll get….” 206 

● Students justifying their predictions (SMP.3, 7, and 8): Ex., “No matter what 207 

number we use, it will always be true that….” 208 

In short, a classroom with evidence of SMP.3, 7, and 8 will include students using their 209 

own understanding to reason about authentic mathematical contexts and to share that 210 

reasoning with others. 211 

It is important to revisit these SMPs as they appear in the CA CCSSM. 212 

● SMP.3: Construct viable arguments and critique the reasoning of others.  213 

Mathematically proficient students understand and use stated assumptions, 214 

definitions, and previously established results in constructing arguments. They 215 

make conjectures and build a logical progression of statements to explore the 216 

truth of their conjectures. They are able to analyze situations by breaking them 217 

into cases, and can recognize and use counterexamples. They justify their 218 

conclusions, communicate them to others, and respond to the arguments of 219 

others. They reason inductively about data, making plausible arguments that take 220 

into account the context from which the data arose. Mathematically proficient 221 

students are also able to compare the effectiveness of two plausible arguments, 222 

distinguish correct logic or reasoning from that which is flawed, and—if there is a 223 

flaw in an argument—explain what it is. Elementary students can construct 224 

arguments using concrete referents such as objects, drawings, diagrams, and 225 

actions. Such arguments can make sense and be correct, even though they are 226 

not generalized or made formal until later grades. Later, students learn to 227 

determine domains to which an argument applies. Students at all grades can 228 

listen or read the arguments of others, decide whether they make sense, and ask 229 
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useful questions to clarify or improve the arguments. CA 3.1 (for higher 230 

mathematics only): Students build proofs by induction and proofs by 231 

contradiction. 232 

It is important to point out that neither “argument” nor “critique” has negative 233 

connotations in this context. In the sense used here, argument is “a reason or set of 234 

reasons given in support of an idea, action or theory,” and critique means “evaluate (a 235 

theory or practice) in a detailed and analytical way” (Oxford, 2019). Everyday notions of 236 

these terms can inadvertently invite students to interpret mathematics classroom 237 

discussions as competitions for status; expressing disagreement can feel like an insult 238 

rather than an invitation for reasoning (Langer-Osuna & Avalos, 2015).  239 

Building a classroom culture in which students can become proficient at constructing 240 

and critiquing arguments requires rich contexts and problems in which multiple 241 

approaches and conclusions can arise, creating a need for generalization and 242 

justification (see figure X below). Teaching for the development of SMPs, especially 243 

SMP.3, includes developing classroom norms for discussions that focus on examining 244 

the “truthiness” (i.e., validity) of the mathematical ideas themselves, rather than 245 

evaluating the student offering ideas in what Boaler (2002, drawing on Pickering, 1995) 246 

referred to as the “dance of agency.” According to Principles to Actions: Ensuring 247 

Mathematical Success for All, “Effective teaching of mathematics facilitates discourse 248 

among students to build shared understanding of mathematical ideas by analyzing and 249 

comparing student approaches and arguments” (NCTM, 2014, p.12). 250 

Suggested Math Class Norms:  

        1. Everyone can learn math to the highest levels  

        2. Mistakes are valuable  

        3. Questions are really important   

        4. Math is about creativity and making sense   

        5. Math is about connections and communicating   

        6. Depth is much more important than speed.  

7. Math class is about learning not about performing 
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8. Everyone has the right to share their thinking 

9. We attend to and make sense of the thinking of others 

It is possible to prompt this culture by valuing the role of skeptic through the use of 251 

purposeful and probing questions, removing or delaying teacher validation of reasoning 252 

in favor of class-negotiated acceptance, and explicitly reminding students frequently that 253 

mathematicians prove claims by reasoning (Boaler 2019). To do so, students must 254 

experience a classroom environment where teachers and all students have the right to 255 

share their thinking and will be supported in doing so. Further, classroom norms must 256 

set the expectation that students respectfully attend to and make sense of the thinking 257 

of others; this is especially important with respect to differences in mathematical ideas, 258 

cultural experiences, and linguistic expressions.  259 

● SMP.7: Look for and make use of structure. 260 

Mathematically-proficient students look closely to discern a pattern or structure. 261 

Young students, for example, might notice that three and seven more is the 262 

same amount as seven and three more, or they may sort a collection of shapes 263 

according to how many sides the shapes have. Later, students will see 7 × 8 264 

equals the well-remembered 7 × 5 + 7 × 3, in preparation for learning about the 265 

distributive property. In the expression x2 + 9x + 14, older students can see the 266 

14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line 267 

in a geometric figure and can use the strategy of drawing an auxiliary line for 268 

solving problems. They also can step back for an overview and shift perspective. 269 

They can see complicated things, such as some algebraic expressions, as single 270 

objects or as being composed of several objects. For example, they can see 5 – 271 

3(x – y)2 as 5 minus a positive number times a square and use that to realize that 272 

its value cannot be more than 5 for any real numbers x and y. 273 

● SMP.8: Look for and express regularity in repeated reasoning. 274 

Mathematically proficient students notice if calculations are repeated, and look 275 

both for general methods and for shortcuts. Upper elementary students might 276 

notice when dividing 25 by 11 that they are repeating the same calculations over 277 

and over again, and conclude they have a repeating decimal. By paying attention 278 
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to the calculation of slope as they repeatedly check whether points are on the 279 

line through (1, 2) with slope 3, middle school students might abstract the 280 

equation (y – 2)/(x – 1) = 3. Noticing the regularity in the way terms cancel when 281 

expanding (x – 1)(x + 1), (x – 1)(x2 + x + 1), and (x – 1)(x3 + x2 + x + 1) might lead 282 

them to the general formula for the sum of a geometric series. As they work to 283 

solve a problem, mathematically proficient students maintain oversight of the 284 

process, while attending to the details. They continually evaluate the 285 

reasonableness of their intermediate results. 286 

Patterns in SMP.7 might be numeric, geometric, algebraic, or a combination. Structure 287 

is “the arrangement of and relations between the parts or elements of something 288 

complex” (Oxford 2019). SMP.7 and SMP.8 are key to abstracting. Stepping back from 289 

concrete objects to consider, all at the same time, a class of objects in terms of some 290 

set of identical properties—and generalizing—extending a known result to a larger 291 

class. Reasoning abstractly and developing, testing, and refining generalizations are 292 

essential components of doing mathematics, including solving problems (National 293 

Governors Association Center for Best Practices [NGACBP], 2010). 294 

Abstracting, Generalizing, Argumentation 295 

Bringing all three SMPs together—abstracting, generalizing, and argumentation—points 296 

to the power of classroom discussions and other collaborative activities where students 297 

make sense of mathematics together. Teacher facilitation of high-quality mathematics 298 

discourse is the key to unlocking these practices for students and bringing them 299 

holistically into practice. Historically, proficiency in mathematics has been defined as an 300 

individual cognitive construct. However, the past three decades of mathematics 301 

classroom research has revealed the ways in which learning and doing mathematics is 302 

rooted in social activity (Lerman, 2000; National Academies of Sciences, Engineering, 303 

and Medicine, 2018). Still, merely asking students to talk to each other in math class is 304 

insufficient. The facilitation of high-quality discourse needs to be intentional, especially 305 

with attention to language development. Random assignments for student interactions 306 

could prevent high-quality math discourse. Intentional patterns of grouping, such as 307 

primary language grouping, to support effective interactions and communication is 308 
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important.  Another option is to consider assigning a student to serve as a bilingual 309 

broker for each small group of ELs and English-only students. This student is given 310 

extra training and support to provide the language support leading to understanding by 311 

each group member and an appreciation of everyone's thinking. In the following 312 

progressions through the grade bands, the framework illustrates ways that students 313 

might progress in the SMPs through such classroom discourse activity, based on 314 

thoughtful whole-class and small-group activities where students are offered plentiful 315 

opportunities to grapple with and discuss mathematical ideas and problems through 316 

engagement in the SMPs—especially SMP.3, 7, and 8.  317 

Progressions in the Mathematical Practices 318 

Young learners begin to engage with mathematical ideas through real-world contexts. 319 

As domains of mathematics become more accessible to students, they can increasingly 320 

explore purely mathematical contexts; for instance, even young learners who have 321 

become comfortable with the natural numbers—as a context in which reasoning can 322 

occur—can explore patterns in even and odd numbers and use shared definitions to 323 

reason about them. Yet even as students increasingly explore mathematical worlds, 324 

opportunities to mathematize the real world continue to be important from the early 325 

grades into adulthood (as illustrated in both the Number Sense and Data Science 326 

chapters of this framework). 327 

While the practice standards remain the same across grade levels, the ways in which 328 

students engage in the practices progress and develop through experience and 329 

opportunity. In early grades, mathematical reasoning is primarily representation-based: 330 

When justifying a claim about even and odd numbers, students will typically refer to 331 

some representation like countable objects, a story, or a number line or other drawing. 332 

Representational and visual thinking remains important through high school and 333 

beyond.  334 

As students become comfortable in additional mathematical contexts and develop more 335 

shared understanding in those contexts, reasoning may sometimes stay at that level 336 

and rely on mathematical definitions and prior results. However, teachers should 337 
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recognize the importance of concrete ways of making conjectures and justifying them 338 

mathematically, to avoid unduly privileging more abstract reasoning. Moving too early to 339 

abstract reasoning, before all students have an adequate base of representations 340 

(physical, visual, contextual, or verbal) with which to reason, can have the effect that 341 

many students experience mathematical arguments as meaningless abstract 342 

manipulation. Ample mathematical reasoning and argumentation with concrete 343 

representations (such as appropriate manipulatives and visual representations) and with 344 

contextual examples helps to foster a classroom learning environment that provides 345 

access for and builds understanding for all students. (Note that concrete is used here 346 

not in the sense of tangible and physical, but in the sense of making sense; see 347 

Gravemeijer, 1997; Van Den Heuvel-Panhuizen, 2003.) 348 

The principle of learning an abstract idea through access to concrete representations 349 

and examples is not just applicable at younger grades; it applies any time that a new 350 

concept is encountered. For example, students in grades five and six, working on their 351 

understanding of percentage, benefit from a bar representation that is used in 352 

increasingly abstract ways, finally simplifying to a double number line (Van Den Heuvel-353 

Panhuizen, 2003). The use of representations and visuals provides scaffolding that 354 

English learners and others may use to connect the academic language to their 355 

conceptual understanding. 356 

Consider a sixth-grade class that is using such a bar representation to explore 357 

percentages. Different students will see different uses of the representation, and use it 358 

to reason in different ways. Some may quickly generalize calculation patterns that they 359 

observe (SMP.7), and begin to calculate without reference to the bar representation: “If 360 

the price after a 25% discount is $96, then I just divide that by three and add it to $96 to 361 

get the original price of $128.”  362 

This realization can be used productively, both to help these students to connect their 363 

method to the sense-making bar representation (SMP.8) and to help other students 364 

understand their classmates’ ideas. One useful routine for this is careful selecting, 365 

sequencing, and connecting of student work as described in 5 Practices for 366 
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Orchestrating Productive Mathematics Discussions (Smith & Stein, 2018). However, it is 367 

easy—even when attempting to implement the 5 Practices routine—to hold up the work 368 

of students who have moved beyond the concrete representation as the preferred 369 

method (because it might appear to be quicker, or more generalized, or closer to a final 370 

understanding teachers hope all students will reach). This can create the false notion 371 

that reliance on sense-making representations is an indication of weakness. Therefore, 372 

it is important for teachers to support all students to make sense of each other’s 373 

approaches by building connections between them. 374 

Evidence from neuroscience suggests that some of the most effective understandings 375 

come about when connections are made between visual/physical and numerical or 376 

symbolic representations 377 

of ideas (see figure from 378 

NCTM, 2014). When 379 

students relate numbers 380 

to visual representations, 381 

they make connections 382 

between brain pathways 383 

that link ideas they hold in 384 

different parts of the brain. 385 

These connections are 386 

important to students at all ages and grade levels (Boaler, Chen, Williams & Cordero, 387 

2016). 388 

At all grades, students should have ample experience in all of the processes above 389 

(exploring authentic contexts, discovering regularity and structure, abstracting and 390 

generalizing, and reasoning and communicating). As with the modeling cycle (see 391 

Chapter 8: Mathematics: Investigating and Connecting, Grades Nine through Twelve), 392 

some of these processes are historically emphasized far more than others, contributing 393 

to many students’ loss of a belief in mathematics as a sense-making activity. Classroom 394 

activities that are designed to engage students in these processes therefore must be 395 

sufficiently open ended, to allow students room to explore, must give access to the 396 
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regularity and structure that is present, and must allow generalization to broader 397 

settings. 398 

Teaching practices for SMP development 399 

Principles to Action: Ensuring Mathematical Success for All (NCTM, 2014) lays out eight 400 

“Mathematics Teaching Practices:” 401 

1. Establish mathematics goals to focus learning. 402 

2. Implement tasks that promote reasoning and problem solving. 403 

3. Use and connect mathematical representations. 404 

4. Facilitate meaningful mathematical discourse. 405 

5. Pose purposeful questions. 406 

6. Build procedural fluency from conceptual understanding.  407 

7. Support productive struggle in learning mathematics. 408 

8. Elicit and use evidence of student thinking. 409 

Detailed discussion of teaching is in Chapter 2: Teaching for Equity and Engagement, 410 

and (NCTM, 2014) contains detailed discussion of these teaching practices; here we 411 

limit the list to items that are specifically important for developing SMPs, especially 412 

SMP.3, 7, and 8. 413 

First, mathematical goals (Teaching Practice 1) must include SMPs as a central driver 414 

of activity design at a more detailed level than simply “this is a rich task, and students 415 

will engage in all eight SMPs.” Second, posing purposeful questions (Teaching Practice 416 

5) is crucial in establishing students’ inclination to engage in the SMPs as they 417 

encounter mathematical situations. Reprinted here is a framework for teacher question 418 

types (NCTM, 2014). All question types are important; type 1 (Gathering information) is 419 

traditionally over-represented while types 2, 3, and 4 help make clear that students are 420 

expected to engage in the SMPs. 421 

   

Question type Description Examples 
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1 Gathering 

information 

Students recall facts, 

definitions, or 

procedures. 

When you write an equation, what 

does the equal sign tell you? 

What is the formula for finding the 

area of a rectangle? 

What does the interquartile range 

indicate for a set of data? 

2 Probing 

thinking 

Students explain, 

elaborate, or clarify 

their thinking, including 

articulating the steps in 

solution methods or the 

completion of a task. 

As you drew that number line, what 

decisions did you make so that you 

could represent 7 fourths on it? 

Can you show and explain more 

about how you used a table to find 

the answer to the Smartphone Plans 

task? 

It is still not clear how you figured out 

that 20 was the scale factor, so can 

you explain it another way? 

3 Making the 

mathematics 

visible 

Students discuss 

mathematical 

structures and make 

connections among 

mathematical ideas 

and relationships. 

What does your equation have to 

do with the band concert situation? 

How does that array relate to 

multiplication and division? 

In what ways might the normal 

distribution apply to this situation? 

4 Encouraging 

reflection and 

justification 

Students reveal deeper 

understanding of their 

reasoning and actions, 

including making an 

argument for the 

validity of their work. 

How might you prove that 51 is the 

solution? 

How do you know that the sum of two 

odd numbers will always be even? 

Why does plan A in the Smartphone 

Plans task start out cheaper but 

become more expensive in the long 

run? 
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Finally, this table from (Barnes & Toncheff, 2016) helps to connect the mathematical 422 

teaching practices above (MTPs) with all of the SMPs. 423 

Standards for Mathematical 

Practice (SMP) 

Teacher Action 

Connections 

Mathematics lessons 

align to the essential 

learning standards and 

teachers clearly 

communicate them to 

students (MTP1). 

Lessons include 

complex tasks (MTP2), 

opportunities for visible 

thinking (MTP8 and 

MTP4), and intentional 

questioning (MTP5) to 

promote deeper 

mathematical thinking 

(MTP6). Teachers 

design lessons from the 

student’s perspective to 

provide multiple 

opportunities to make 

sense of the 

mathematics (MTP7). 

Mathematics Teaching 

Practices (MTP) 

SMP1 Make sense of problems 

and persevere in solving 

them. 

MTP1 Establish mathematics 

goals to focus learning. 

SMP2 Reason abstractly and 

quantitatively. 

MTP2 Implement tasks that 

promote reasoning and 

problem solving. 

SMP3 Construct viable 

arguments and critique 

the reasoning of others. 

MTP3 Use and connect 

mathematical 

representations. 

SMP4 Model with mathematics. To build SMP1, 

teachers focus on 

MTP7 and MTP2. 

To build SMP2, 

teachers focus on 

MTP2 and MTP3. 

To build SMP3, teachers 

focus on MTP4 and MTP5. 

To build SMP4, 

teachers focus on 

MTP3 and MTP8. 

To build SMP5, 

teachers focus on 

MTP2 and MTP3. 

MTP4 Facilitate meaningful 

mathematical discourse. 

SMP5 Use appropriate tools 

strategically. 

MTP5 Pose purposeful 

questions. 

SMP6 Attend to precision. MTP6 Build procedural fluency 

from conceptual 

understanding. 
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SMP7 Look for and make use of 

structure. 

To build SMP6, 

teachers focus on 

MTP4 and MTP2. 

To build SMP7 and SMP8, 

teachers focus on tasks 

(MTP2). 

MTP7 Support productive 

struggle in learning 

mathematics. 

SMP8 Look for and express 

regularity in repeated 

reasoning. 

MTP8 Elicit and use evidence 

of student thinking. 

K–5 Progression of SMPs 3, 7, and 8 424 

Imagine a teacher puts the number 36 on the board and asks students to determine all 425 

the ways they can make 36. In the context of an open problem such as this, young 426 

learners conjecture, notice patterns, use the structure of place value, notice and make 427 

use of properties of operations, and make sense of the reasoning of others. These 428 

practices often occur together as part of classroom discussions that focus on 429 

argumentation and reasoning through engaging mathematical contexts. The choice of 430 

number here makes a big difference; a grade-three teacher might choose 36 to build 431 

multiplication ideas; a kindergarten teacher might use 12 to both formatively assess and 432 

work to strengthen students’ emerging operation understanding. 433 

Consider, for example, the following first-grade snapshot of a number talk activity. 434 

Number talks are brief, daily activities that support number sense. Prior to the lesson, 435 

the teacher understands that presenting a question or problem to the whole class and 436 

asking for individual responses will be challenging for some English learners. In the 437 

designated ELD lessons prior to this whole-group instruction, the teacher practices the 438 

discourse needed to explain their thinking and problem solving while giving them the 439 

language they need to be able to participate.  440 
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First-Grade Snapshot: Number Talks for Reasoning 

Big Idea: Flexibility in composing and decomposing numbers 

The teacher introduces the number talk by placing the problem 7+3 on the board, 

waiting patiently as small silent thumbs pop up communicating they are ready to offer 

an answer and the strategy they used to figure it out. The teacher selects a first 

student, Iggy, to share. 

Teacher: Iggy, how did you figure out 7+3? 

Iggy: I knew 7+2 is 9 and 9+1 is 10. 

Teacher records Iggy’s thinking on the board and re-voices their response, 

then probes Iggy further: Iggy, where did the 2 and the 1 come from? 

Iggy: That number. 

Teacher: Which number? Who can add on to Iggy’s strategy? How did they 

know to add 2 more and then 1 more? Sam? 

Sam: 2 and 1 are both in 3. Iggy broke down 3.  

Teacher: You noticed that 2 + 1 is 3. Iggy is that what you did? Did you think, 

let me break down 3 because I know 7+2 is 9 and 9 +1 is 10? 

Iggy: Yes 

Teacher: Who else wants to share how they figured out the answer? Alex? 

Alex: Counting on? I did like, I started with 7 and then I counted, 8, 9, 10. 

Teacher records Alex’s thinking and re-voices their response, then adds: So 

that’s a different strategy? (Alex nods.) Did anyone else count on like Alex? 

The teacher selects other students who share their own strategies and make sense of 

their peers’ reasoning, all based in a relatively straightforward computation problem. 

This approach supports mathematical sense-making and communication. While 

students certainly arrive at the answer “10,” the focus of the activity is making sense 

of the addition problem, thinking flexibly and creatively about a range of ways to solve 

it, communicating one’s thinking and making sense of the reasoning of others.  

Exploring authentic mathematical contexts 441 
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Authentic (from Chapter 1: Introduction): An authentic problem, activity, or context is 442 

one in which students investigate or struggle with situations or questions about which 443 

they actually wonder. Some principles for authentic problems include 1) Problems have 444 

a real purpose; 2) Relevance to learners and their world; 3) Doing mathematics adds 445 

something; and 4) Problems foster discussion (Özgün-Koca, Chelst, Edwards, & Lewis, 446 

2019). 447 

Culturally Responsive-Sustaining Education: Education that recognizes and builds 448 

on multiple expressions of diversity (e.g., race, social class, gender, language, sexual 449 

orientation, religion, ability) as assets for teaching and learning. (NYSED, 2019) 450 

SMP.3, 7, and 8 describe ways of exploring mathematical contexts such as numerical 451 

patterns, geometry, and place value structure. These activities might involve multiple 452 

visual representations, such as fractions represented in both area models like 453 

partitioned circles and linear models like number lines. Allowing students to explore the 454 

same mathematical ideas and operations using multiple representations and strategies 455 

is crucial for students to develop flexible ways of thinking about numbers and shapes 456 

(e.g., Rule of Four [http://www.sfusdmath.org/rule-of-four.html]). Students of all grade 457 

levels should engage in opportunities to create important brain connections through 458 

seeing mathematical ideas in different ways (also see Chapter 2: Teaching for Equity 459 

and Engagement). 460 

At the elementary level, students work with numbers with which they are currently 461 

familiar. This may mean they generalize in ways that will be revisited and revised in the 462 

later grades, as new numbers and mathematical principles are introduced. For example, 463 

at the early elementary level, students may appropriately generalize about the behavior 464 

of positive whole numbers in ways that are revisited at the later elementary grades with 465 

the introduction of fractions (later called rational numbers), and then again later on at 466 

advanced grades with the introduction of imaginary numbers or irrational numbers. 467 

Students may also use everyday contexts and examples in order to make arguments. 468 

For example, a student might offer a story about two friends sharing cookies to 469 

demonstrate that an odd number, when divided by two, has a remainder of one. In the 470 
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Data Science chapter, we further illustrate ways that everyday contexts can become 471 

generative for learning and doing mathematics together. Importantly, contexts should be 472 

authentic to students (as defined above)—not the fake contexts used in many textbooks 473 

that require students to suspend their common sense in order to engage with the 474 

intended mathematics (see Boaler, 2009). It is important to make mathematical contexts 475 

culturally relevant to ensure that diverse student experiences are considered and 476 

possibly make connections with students’ families. Chapter 2 offers examples of 477 

culturally relevant contexts for learning mathematics.  478 

Discovering regularity in repeated reasoning and structure 479 

Students at the elementary level may notice and use structures such as place value, 480 

properties of operations, and attributes about shapes to make conjectures and solve 481 

problems. Additionally, students notice and make use of regularity in repeated 482 

reasoning. At the elementary level, students may notice, through repeatedly multiplying 483 

with the number 4, that it is always the same as doubling twice. Students might also 484 

notice a pattern in the change of a product when the factor is increased by 1. For 485 

example, that since 7 x 8 = 56, then 7 x 9 will be 7 more than 56. These regularities may 486 

lead to claims about general methods or the development of shortcuts based on 487 

conceptual reasoning.  488 

A variety of reasoning activities support students in thinking flexibly about operations 489 

with numbers and relationships between numbers. In number talks and dot talks, 490 

students share and connect multiple strategies by explaining why the strategies work or 491 

comparing advantages and disadvantages. The Number Sense chapter offers a grade 492 

two number talk vignette where children work on doubles posed as addition problems. 493 

In the vignettes, students share strategies to solve 13 + 13. Many of the strategies 494 

made use of place value structure and counting strategies. As students in the snapshot 495 

offer ideas and take the ideas of their peers into consideration, some students revise 496 

their answers. In a “Collect and Display” activity (Zwiers, et al, 2017), teachers can 497 

scribe student responses (using students’ exact words whenever possible and 498 

attributing authorship) on a graphic organizer on the board during the whole class 499 

discussion comparing two mathematical ideas, such as expressions and equations. In a 500 
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“Compare and Connect” activity (Zwiers, et al, 2017), students relate the expressions to 501 

the diagrams by asking specific questions about how two different-looking 502 

representations could possibly mean the same thing. For example, a teacher might ask, 503 

“Where is the 2w in this picture?” or “Which term shows this line on the rectangle?” 504 

Abstracting or generalizing from observed structure and regularity 505 

Young learners might explore place value structure through manipulatives like ten 506 

frames. In a number talk with ten-frame pictures, students offer various strategies used 507 

to figure out the quantity shown. Students also attend to and discern patterns and 508 

structure as they construct and critique arguments. A student might notice that four sets 509 

of six gives the same total as six sets of four, and that this applies to three sets of seven 510 

and seven sets of three, and so on, to conjecture about the commutative property 511 

during a number talk.  512 

Reasoning and communicating to share and justify 513 

Part of constructing mathematical arguments includes understanding and using 514 

previously established mathematical assumptions, definitions, and results. For example, 515 

an elementary aged student might conjecture that two different shapes have equal area 516 

because, as the class has already recognized and agreed upon, the shapes are each 517 

half of the same rectangle. The student draws on prior knowledge already been 518 

demonstrated mathematically in order to make their argument. 519 
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Constructing and critiquing mathematical arguments includes exploring the truth of 520 

particular conjectures through cases and counterexamples. At the elementary level, a 521 

student may use, for example, a rhombus as a counterexample to the conjecture that all 522 

quadrilaterals with four equal sides are squares. Students may use multiplication with 523 

fractions, decimals, one, or zero to counter the conjecture that multiplying always leads 524 

to a larger number.  525 

6–8 Progression of SMP.3, 7, and 8 526 

Students in middle school build on early experiences to deepen their interactions with 527 

mathematics and with others as they do mathematics together. During the elementary 528 

grades, students typically draw on concrete manipulatives and representation in order to 529 

engage in mathematical reasoning and argumentation. At the middle-school level, 530 

students may rely more on symbolic representations, such as expressions and 531 

equations, in addition to concrete referents (such as algebra tiles and area models for 532 

algebraic expressions; physical or drawn examples of geometric objects; and computer-533 

generated simulation models of data-generating contexts). Number talks (Parrish, 2010; 534 

Humphreys & Parker, 2015) and number strings (a series of related number talks or 535 

problems designed to build towards big mathematical ideas; see Fosnot & Dolk, 2002) 536 

are useful at the middle school level as well, and offer a range of opportunities for 537 

students to build on their elementary grades experiences to make sense of 538 

mathematical ideas with peers. For example, consider the following classroom 539 

snapshot: 540 
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Grade Seven Snapshot: Estimating using structure 

Big Idea: Connecting multiple approaches leads to flexible, transferable 

understanding 

Prior to the lesson, a seventh-grade teacher, in order to ensure that all students, 

including English learners, are supported, engages students in an activity to practice 

the discourse needed to explain their thinking and problem solving. This activity, they 

hope, will also increase participation. The activity transitions into the teacher 

introducing the number string activity and writes this problem (from 

http://www.mathtalks.net) on the board:  

Are there more inches in a mile or seconds in a day?  

After some wait time for individual thinking, the teacher asks students to show where 

they are in their thinking using their fingers, a routine the class knows well: closed fist 

for “still trying to find an approach to try;” one finger for “have an approach and haven’t 

got an answer yet;” two fingers for “have an answer with an explanation, and not very 

confident;” three fingers for “have an answer and an explanation that I’m confident in;” 

and four fingers for “have tried two or more approaches and confirmed my answer.” 

After a little more wait, she asks students to show again their status, and she chooses 

a student holding up two fingers: 

Teacher: Can you describe your approach that might help us figure out which is 

bigger? 

Courtney: I remember there are about 5,000 feet in a mile, so there are about 

50,000 inches in a mile since there are about 10 inches in a foot. I rounded 

them both down. But then with seconds, I tried to figure out 24 × 60 and if I 

round those, it’s only about 1,200 seconds but that seems too small. [Teacher 

scribes both calculations, including units where the student included them.] 

Teacher: Is there anyone else who thinks they can go a little farther with this 

idea? 

http://www.mathtalks.net/
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Tristán: I tried the same thing but I got 60,000 inches in a mile instead of 

50,000. 

Courtney: Did you round 12 inches in a foot down to 10? 

Tristán: Oh yeah, I didn’t. 

Teacher: Courtney, can you explain again why you thought something wasn’t 

right with your method? 

Courtney: When I tried to figure out the number of seconds, the number 

seemed too small—it was a lot smaller than the 50,000 I got for inches in a 

mile. 

Bethney: You did 24 × 60? 

Courtney: Yeah. 

Bethney: Where did you get the 60? 

Courtney: Seconds in a minute. And the 24 is hours in a day. Wait… [Teacher 

adds units to the 24 × 60 on the board from earlier] 

Bethney: I thought it was minutes in an hour [Teacher adds alternate unit to 

60]. So, 24 × 60 is how many minutes in a day. 

Courtney: Oh, so I have to times that by 60 again.  

Teacher: So, Courtney, now it sounds like you think you could do 24 × 60 and 

then multiply by 60 again? [scribes (24 × 60) × 60 on board]. Can somebody 

else help me with units on these? What quantity is each of these numbers 

representing? 

Cameron: The 24 is hours per day, and the first 60 is minutes per hour. 

Michael: So, the thing in parentheses is minutes per day. And then the second 

60 is seconds per minute. 

The discussion continues, exploring several ways that students computed and 

estimated 24 hours/day × 60 minutes/hour × 60 seconds/minute and 5,280 feet/mile × 

12 inches/foot. After several methods had been compared and connected, and 

students seemed to agree (with justification) that there are more seconds in a day 

than inches in a mile, the teacher added to the problem statement: 
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Teacher: What if I add this to the problem? [scribes on board “or breaths in a 

typical human lifetime?”] 

After more wait time and a repeat of the finger routine, the teacher selects a 

student displaying three fingers, who hasn’t already participated: 

Teacher: Ji-U, can you describe part of your approach? 

Ji-U: I counted while I breathed, and decided that a breath takes about four 

seconds. 

Teacher: Who else did something to decide how long a breath takes? [[most 

students raise hand] How long did you estimate? [chorus of four seconds, five 

seconds, six seconds] 

The conversation continues with students adapting strategies from earlier, including: 

● I searched and found to use 79 years for average lifespan 

● Approximated number of seconds in a life, using earlier calculation of 

seconds/year, then divided by 5 seconds/breath 

● Replaced 60 seconds/minute in earlier calculation with 15 breaths/minute to get 

number of breaths in a year since I thought each breath was 4 seconds 

● Realized that 24 × 60 × 15 × 79 has to be much bigger than 24 × 60 × 60 since 

15 × 79 is more than 60 

● So, there are more breaths in a 79-year human life! 

The teacher concludes this final number talk in the string by asking students to think 

about and then share with a neighbor some descriptions of what they learned or 

noticed during the talk. Then a few students share something interesting their partner 

noticed, while the teacher highlights strategies that involve significant use of place 

value structure, others which make use of rounding with an explanation of the effect of 

the rounding, and others which compare products that share factors by comparing the 

other factors. 
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The number string offered students the opportunity to notice their own errors without 

the teacher’s evaluation. As students made sense of the problems in multiple ways, 

they reflected on their own thinking, made connections, and revised their own 

thinking. Rather than positioning the student as lacking in mathematical competence, 

the number string positioned Student 1’s error as an invitation for further sense-

making, and as a normal part of doing mathematics. The teacher highlighted 

strategies which made significant use of structure of numbers and of operations. 

Exploring authentic mathematical contexts 541 

//callout box 542 

Authentic: An authentic problem, activity, or context is one in which students 543 

investigate or struggle with situations or questions about which they actually wonder. 544 

(from Chapter 1: Introduction) 545 

callout box// 546 

Middle-school students become increasingly sophisticated observers of their everyday 547 

worlds as they develop new interests in understanding themselves and their 548 

communities. These budding interests can become engaging real-world contexts for 549 

mathematizing. The Data Science chapter offers examples of middle school students 550 

exploring data about the world around them.  551 

Mathematical contexts to explore, in addition to those carrying forward from earlier 552 

grades (number patterns and two-dimensional geometry), include the structure of 553 

operations, more sophisticated number patterns, proportional situations and other linear 554 

functions, and patterns in computation.  555 

Discovering regularity in repeated reasoning and structure 556 

Students at the middle level may build on their knowledge of place value structure and 557 

expand their use of structures, properties of operations, and attributes about shapes to 558 

make conjectures and solve problems. For example, middle-school students might draw 559 

on tables of equivalent ratios to conjecture about underlying multiplicative relationships.  560 
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Abstracting and generalizing from observed regularity and structure 561 

Students might notice during a mathematical discussion that interior angle sums 562 

regularly increase in relation to the number of sides in a polygon and use this repeated 563 

reasoning to conjecture a rule for the sum of interior angles in any polygon. In a 564 

Compare and Connect activity (Zwiers, et al., 2017), students compare and contrast two 565 

mathematical representations (e.g., place value blocks, number line, numeral, words, 566 

fraction blocks) or two solution strategies (e.g., finding the eleventh tile pattern number 567 

recursively—”there were four more tiles each time, so I just added four to the four 568 

starting tiles, ten times”—compared to noticing a relationship 569 

between the figure number and the number of tiles—“I 570 

noticed that each side is always one more than the figure 571 

number, so I did 4 times the figure number plus 1. And then 572 

I had to take away 4 because I counted the corners twice.”) 573 

together. As a whole class, students might address the 574 

following questions: 575 

● Why did these two different-looking strategies lead to the same results? 576 

● How do these two different-looking visuals represent the same idea? 577 

● Why did these two similar-looking strategies lead to different results? 578 

● How do these two similar-looking visuals represent different ideas? 579 

The reference (Inside Mathematics, n.d.) includes a grade-eight illustration (with video) 580 

of SMP 7 (Look for and make use of structure) from the South San Francisco Unified 581 

School District. It illustrates students noticing mathematical structure in a concrete 582 

context—namely, water flowing in a closed system from one container into another. 583 

After observing the relationship between the two quantities (the water level in each 584 

container), they note constant rates of change and starting value. Students then apply 585 

the structure they discover, in order to recognize graphs corresponding to different 586 

systems—evidence of abstracting. Teacher moves that support their investigation 587 

include modeling of academic language, building on and connecting student ideas, 588 

restating student ideas, and more. 589 

 1        2            3 
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The Education Development Center (2016) has built student dialogue snapshots to 590 

illustrate the SMPs. The grade 6–7 example Consecutive Sums illustrates students 591 

working on the problem “in how many ways can a number be written as a sum of 592 

consecutive positive integers?” They work many examples, notice a pattern to their 593 

calculations, and connect that pattern to some structure of the numbers they are 594 

working with. They are then able to generalize that structure and develop a general 595 

strategy for writing integers as sums of consecutive integers. 596 

Reasoning and communicating to share and justify 597 

Part of constructing mathematical arguments includes understanding and using 598 

previously established mathematical assumptions, definitions, and results. Students 599 

might conjecture that the diagonals of a parallelogram bisect each other, after having 600 

experimented with a representative selection of possible parallelograms. Like in the 601 

elementary grades, where students may conjecture about shapes and area, students at 602 

the middle-school level continue this practice with mathematical content that builds on 603 

foundational ideas.  604 

Constructing and critiquing mathematical arguments includes exploring the truth of 605 

particular conjectures through cases and counterexamples. An important use of 606 

counterexamples in middle school is the use of numerical counterexamples to identify 607 

common errors in algebraic manipulation, such as thinking that 5 – 2x is equivalent to 608 

3x. 609 

In Boaler and colleagues’ Youcubed summer camp for middle-school students, which 610 

significantly increased achievement in a short period of time (Boaler 2019), students 611 

were taught that reasoning is a crucially important part of mathematics. They were told 612 

that scientists build evidence for theories by making predictions and then performing 613 

experiments to check their predictions; mathematicians, on the other hand, prove their 614 

claims by reasoning. Students were also told that it was important to reason well and to 615 

be convincing and there are three levels of being convincing: 1) It is easiest to convince 616 

yourself of something, 2) it is a little harder to convince a friend, and 3) the highest level 617 

of all is to convince a skeptic. Students were asked to be really convincing and also to 618 

be skeptics. An exchange between a convincer and a skeptic might include: 619 
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Jackie: I think that the difference between even and odd numbers is that when 620 

you divide them into two equal groups, even numbers have no left overs and odd 621 

numbers always have 1 leftover. 622 

Soren: How do you know it’s always one left over? 623 

Jackie: Because, like, if you divide any odd number in half, like, look it—take the 624 

number 5, it would be two groups of two and then one left over. Or the number 7, 625 

it would be two groups of three and then one left over. There is always one left 626 

over.  627 

Soren: Can you prove it? Maybe it just works for 5 and 7. 628 

Jackie: Well, it’s kind like, it will always be one left over because if it was two left 629 

over, they would just go in each of the groups, or if it was three left over, two 630 

would go in each of the groups. So, there’s always only one left over.  631 

In the summer camp, students loved being skeptics; and when others were presenting, 632 

they learned to ask questions of each other such as: “How do you know that works?” 633 

“Why did you use that method?” and “Can you prove it to us?” In essence, students 634 

were learning to “construct viable arguments and critique the reasoning of others.” After 635 

only 18 lessons the students improved their achievement by the equivalent of 2.8 years 636 

of school. Students related their increased achievement to the classroom environment 637 

that encouraged discussion, convincing, and skepticism (see 638 

https://vimeo.com/245472639), as illustrated by this interview with two students, TJ and 639 

José: 640 

Interviewer: So, what did it take in summer math camp to be successful? 641 

TJ: Being able to communicate with your partner as you go. 642 

José: And being able to show visuals, not just numbers. 643 

TJ: Being able to explain things well.   644 

José: And then someone says how, or why or... 645 

TJ & José: Prove it! [laughing]. 646 

José: Uh, what, what is that called, a, um.... 647 

https://vimeo.com/245472639
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TJ: Skeptical question. 648 

José: Yeah, skep-, yeah, skeptic. 649 

Interviewer: And what does that mean and how does that feel? 650 

TJ: It’s fun to be.  651 

José: [laughs] 652 

Interviewer: Can you explain? 653 

TJ: Because like it helps the other person that’s not being skeptical... 654 

José: Think about the problem. 655 

TJ: Yes. For example, if Carlos said like, “This is a square,” and I’m like, “Prove 656 

it.” 657 

José: Mmm, it has all, um, it, okay, it has all even sides and all, and all the 658 

corners are ninety degrees. 659 

TJ: Why? 660 

José: ‘Cause it is. 661 

TJ: Prove it! 662 

José: It is!  [laughs]   663 

TJ: [laughs]   664 

José: I just proved it. 665 

There are many routines that help support students in being the skeptic, including tools 666 

to support English learners and others to develop the necessary language: In a 667 

“Critique, Correct, Clarify” activity (Zwiers et al., 2017), students are provided with 668 

teacher-made or curated ambiguous or incomplete mathematical arguments (e.g., “1/2 669 

is the same as 3/6 because you do the same to the top and bottom” or “2 hundreds is 670 

more than 25 tens because hundreds are bigger than tens”). Students practice 671 

respectfully making sense of, critiquing, and suggesting revisions together. In a “Three 672 

Reads” activity (Zwiers et al., 2017), students make sense of word problems and other 673 

mathematical texts by discussing with each other: 1) the context of the situation, 2) 674 

relevant quantities (things that can be counted or measured), and 3) what mathematical 675 

questions we might ask about them before revealing what question the teacher has for 676 

them to answer. 677 
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High School Progression of SMP.3, 7, and 8 678 

In high school, students build on their earlier experiences in developing their inclination 679 

and ability to explore, discover, generalize and abstract, and argue. It is important that 680 

high school teachers understand when designing student activities that the Standards 681 

for Mathematical Practice are as important as the content standards and must be 682 

developed together. The University of California, California State Universities, and 683 

California Community Colleges have a joint Statement on Competencies in 684 

Mathematics Expected of Entering College Students (ICAS, 2013) makes this clear, 685 

with expectations for students such as: 686 

“A view that mathematics makes sense—students should perceive mathematics 687 

as a way of understanding, not as a sequence of algorithms to be memorized 688 

and applied.” (p. 3) 689 

“students should be able to find patterns, make conjectures, and test those 690 

conjectures; they should recognize that abstraction and generalization are 691 

important sources of the power of mathematics; they should understand that 692 

mathematical structures are useful as representations of phenomena in the 693 

physical world….” (p. 3) 694 

“Taken together the Standards of Mathematical Practice should be viewed as an 695 

integrated whole where each component should be visible in every unit of 696 

instruction.” (p. 7) 697 

Exploring authentic mathematical contexts 698 

//callout box 699 

Authentic: An authentic problem, activity, or context is one in which students 700 

investigate or struggle with situations or questions about which they actually wonder. 701 

(from Chapter 1: Introduction) 702 

callout box// 703 

By high school, students have a wide array of contexts available for exploration. They 704 

continue to explore non-mathematical contexts—in the real world, in puzzles, etc. The 705 

Data Science chapter addresses one set of tools for exploring such contexts, and 706 

mathematical modeling represents another (overlapping) set. Often, data and modeling 707 
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approaches yield mathematical contexts which then can be explored in the manner 708 

discussed here. 709 

SMPs 7 and 8 afford opportunities to explore mathematical contexts and situations. 710 

Numerical patterns, geometry, and place value-based structure in the early grades, 711 

supplemented by structure and properties of operations in upper elementary and middle 712 

school, expand in high school to focus on algebraic, statistical, and geometric structure 713 

and repeated reasoning. 714 

Important objects in algebraic settings include variables (letters or other symbols 715 

representing arbitrary elements of some specified set of numbers; distinct from 716 

unknowns and constants), graphs (often but not always graphs of functions), equations, 717 

expressions, and functions (often given by algebraic expressions—formulas—or implied 718 

by tables or graphs). 719 

One very important skill in working with functions is to move fluently between 720 

contextual, graphical, symbolic, and numerical (e.g., table of values) representations of 721 

a function. Thus, activities that induce a need to switch representations are crucial. The 722 

exercise of moving from a formula (symbolic representation) to a graph is vastly 723 

overrepresented in most students’ experience, often via sample values (numerical 724 

representation) and connecting dots. Examples of other pairings are described here. 725 

An engaging and important way to introduce patterns, expressions and functions, is 726 

through the context of visual or physical patterns (an easy-to-understand context). 727 

Students can first be asked to describe the growth of such a pattern with words, and 728 

then move to symbolic representations. In this way, students can learn that algebra is a 729 

useful tool for describing the patterns in the world and for communication. Note the 730 

examples below showing patterns for this type of work: 731 
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How do you see the shape growing? 

Where are the extra squares? 

(http://www.youcubed.org) 

 

 

Further examples of this visual approach to algebra (with videos of lessons) can be 732 

seen at http://www.visualpatterns.org/ and https://www.youcubed.org/algebra/ 733 

 734 

“Guess my rule” games (with student-generated sequences) require students to attempt 735 

to move from numerical representations to formulas. Students often can find a recursive 736 

formula first; “find the 100th term”-type questions force an attempt to move to a formula 737 

in terms of the sequence number. It is important that students have some experience 738 

http://www.youcubed.org/
http://www.visualpatterns.org/
https://www.youcubed.org/algebra/
https://www.youcubed.org/algebra/
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with “guess my rule” games whose rule does not match the most obvious formula, as 739 

any finite set of initial values cannot determine an infinite sequence. As an example, the 740 

sequence 1, 2, 4, 8 is generated nicely by the function 741 

; the next term is 40, not 16! However, in 742 

many instances (including most applications) the “simplest” rule that fits the given data 743 

is a good one to explore first. 744 

In the other direction, “build this graph” activities require student teams to try to build 745 

given graphs (perhaps visually modeling real-world data) from graphs of well-746 

understood “simple” functions—perhaps monomials such as , perhaps also  747 

and , or whatever set of “parent” functions is already understood. The graph to the 748 

right contains the graphs of  and , together with their sum 749 

. This type of decomposition of a (graph of a) function is very 750 

important in many applied settings, in which (for example) different causal factors might 751 

act on very different time scales. 752 

Discovering regularity in repeated reasoning and structure 753 

To explore a context with an eye for algebraic structure is to consider the parts that 754 

make up or might make up an algebraic object such as a function, visual representation, 755 

graph, expression, or equation, and to try to build some understanding of the object as a 756 

whole from knowledge about its parts. Noticing regularity in repeated reasoning in an 757 

algebraic context often leads to discoveries that similar reasoning is required for 758 

different parameter values (e.g., comparing the processes of transforming the graph of 759 

 into the graphs for the functions , , and , leading to general 760 

statements about graphing functions of the form ).  761 
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Euler’s Polyhedron Formula 762 

(https://commons.wikimedia.org/wiki/File:Euler%27s_Polyhedron_Formula.svg) 763 

In a geometric context, structural exploration (SMP 7) examines the relationships 764 

between objects and their parts: polyhedra and their faces, edges, and vertices; circles 765 

and their radii, perimeters, and areas; areas in the plane and their bounding curves. 766 

Repeated reasoning occurs when exploring the sum of interior angles for polygons with 767 

different numbers of sides, discovering Euler’s formula V – E + F = 2 (see figure), 768 

exploring possible tilings of the plane with regular polygons, and more. 769 

For instance, a “guess my rule” game (for the sequence –6, –13, –26, –45,...), followed 770 

by “predict the 100th number in the sequence,” can lead to a rich exploration of 771 

quadratics and the meaning and impact of the quadratic, linear, and constant terms—772 

and eventually to the quadratic function . Carefully-designed 773 

prompts and/or a series of “guess my rule” constraints can help student teams discover 774 

the relationship between the coefficient of  and the constant second difference of a 775 

sequence (here, the constant second difference of the sequence is –6, so the coefficient 776 

https://commons.wikimedia.org/wiki/File:Euler%27s_Polyhedron_Formula.svg
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of  is –3). Further exploration, perhaps graphical, can uncover the idea of finding a 777 

linear function to add to  so that the sum generates the original sequence for 778 

whole-number inputs. 779 

Exploring the general behavior of  could be motivated by comparing sequences, 780 

using questions like “which 781 

sequence will have a higher 782 

value in the long run? How 783 

do you know?”  784 

To try to predict the general 785 

behavior (that is, the shape 786 

of the graph) of , student 787 

teams should consider the 788 

known shape of the graph of 789 

, explore what 790 

happens to the graph if they 791 

multiply every output value 792 

by 3 and then take the 793 

opposite of every output, 794 

then perhaps sketch the two 795 

functions  and 796 

 both on a plane 797 

and add the output values for 798 

many sample values for , to 799 

get a sense for the shape of 800 

. Sharing 801 

strategies, and being 802 

accountable for 803 

understanding and using 804 

other teams’ strategies, will ensure that students have ample opportunity to connect 805 
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across approaches and be prepared to notice patterns and repeated reasoning when 806 

tackling similar problems.  807 

It is important to note that producing by hand a reasonably accurate graph of a function 808 

given by a formula is not a goal in its own right. Instead, it can be a means towards the 809 

end of deeply and flexibly understanding the meaning of a graph and the relationship 810 

between a function, its graph, the points on the graph, and the context that generated 811 

the function.  812 

//callout box// Every student should also have easy access and frequent opportunities to 813 

use computer algebra systems to graph functions, thus focusing mental energy on 814 

interpretation and connection. //callout box//  815 

Playing the “guess my rule” game several times (perhaps with a constraint of constant 816 

second differences) would have students noticing the similarity in what they are having 817 

to do each time. The point is not to become fast at sketching the graph of a quadratic, 818 

but to first notice, and then understand, the ways in which the different parts of the 819 

formula can be considered separately to help understand the whole. In other words, 820 

noticing repeated reasoning 821 

leads to the revealing of 822 

structure. 823 

The “build this graph” 824 

example in the previous 825 

section may seem at first 826 

glance to be more difficult 827 

than understanding the 828 

structure of , since the 829 

parts are not necessarily as 830 

apparent as they are in the 831 

formula for . However, consider the graph to the right. If asked to describe the 832 

behavior of this function, students will offer ideas like “as  gets bigger, the function 833 

values generally get bigger; it wiggles up and down and generally goes up.” A student 834 
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team offering such a description has noted the two “parts” of this function’s behavior, 835 

and thus discovered some of its structure. They are well on their way to using graphing 836 

software in identifying  as a likely formula for this function. 837 

Abstracting and generalizing from observed regularity and structure 838 

Observing repetition in reasoning naturally leads to questions such as, “Do we have to 839 

keep doing the same thing with different numbers?” and, “What is the largest set of 840 

examples that we could apply this reasoning to?” Exploring either question involves 841 

examining structure. Students abstract an argument when they phrase it in terms of 842 

properties which might be shared by a number of objects or situations—thus paying 843 

attention to the structure of the objects or situations. They generalize when they extend 844 

an observation or known property to a larger class. 845 

Several rounds of explorations such as the “guess my rule” example above could lead 846 

to any of the following abstractions and generalizations: 847 

● The quadratic term in a quadratic function always dominates over time; that is, 848 

graphs of functions of the form , where a, b, and c are 849 

real numbers, always have the shape of a parabola, and the parabola opens up 850 

or down depending on the sign of . 851 

● If  is as above and you compare , and , then the difference 852 

 is  more than the difference  (generalizing 853 

to non-integer “second differences”). 854 

● To determine a quadratic function, you need to know at least four points on the 855 

graph because with just three you cannot decide whether the second differences 856 

are constant (note that this conjecture is not true, which means it raises a good 857 

opportunity for exploring possible justifications or critiques). 858 

● When adding two functions, the steepness (slope) of the new function at each 859 

input value is also the sum of the two slopes (at that input) of the functions being 860 

added. 861 

https://www.codecogs.com/eqnedit.php?latex=2a%250
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● When comparing two quadratics, the one with the faster-growing quadratic term 862 

(the larger ) always will be larger for large enough values of x, no matter what 863 

the linear and constant terms are. 864 

● When comparing two polynomials, the one with the faster-growing quadratic term 865 

always wins in the long run (generalizing to polynomials from the smaller class of 866 

quadratics). 867 

The “build this function” tasks above might lead to abstractions that are more along the 868 

lines of heuristics for understanding the structure of functions presented graphically: 869 

● When trying to break down a graph, look at the largest-scale pattern you can 870 

see. If the graph generally goes in a straight line, like the  871 

example, try to find that straight line and subtract it out. 872 

● When trying to break down a graph, look at the most important pattern—the one 873 

that causes the biggest ups and/or downs (like the parabolic shape of the 874 

 example). Try to figure out the shape of that pattern, and 875 

subtract it out. 876 

● If there is a periodic up-and-down in the graph, there’s probably a  or 877 

 in the formula. 878 

Reasoning and communicating to share and justify 879 

In many respects, mathematical knowledge and content understanding is developed 880 

and demonstrated socially; it is of little value to find a correct “solution” to a problem 881 

without the ability to communicate to others the validity and meaning of that solution, 882 

and we clarify our thinking through exchange with others. SMP 3 includes these aspects 883 

of the development of arguments: “They justify their conclusions, communicate them to 884 

others, and respond to the arguments of others.” In order to create an environment that 885 

makes mathematical practices such as SMP 3 accessible to all students, teachers 886 

should develop routines with students that support being able to communicate their 887 

thoughts and ideas, as well as work socially in a classroom of mixed language and math 888 

knowledge. Chapter 2 offers examples of such routines, including reflective discussions, 889 

peer revoicing routines, as well as teacher moves that support the creation of a mixed 890 

language mathematics community.   891 
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An important (implicit) aspect of SMP 3 is a recognition that the authority in 892 

mathematics lies within mathematical reasoning itself. Students come to own their 893 

understanding through constructing and critiquing arguments, and through this process 894 

increase their confidence and their sense of agency in mathematics. Classroom 895 

routines in which students must justify—or at least give evidence for—their abstractions 896 

or generalizations, and in which other students are responsible for questioning 897 

justifications and evidence, help to build the “am I convinced?” and “could I convince a 898 

reasonable skeptic?” meta-thinking that is at the heart of SMP 3. An example would be 899 

a mathematical implementation of the classroom routine “Claim, Evidence, and 900 

Reasoning (CER),” which is popular in science and writing instruction (McNeil & Martin, 901 

2011; see https://my.nsta.org/collection/GBdqFKABr0U_E for science resources). Here, 902 

the different elements of an argument when investigating a problems are: 903 

● Stating a claim 904 

● Giving evidence for that claim 905 

● Producing mathematical reasoning to support the claim 906 

It is important to note that the mathematical reasoning here is of a different sort than 907 

scientific reasoning when CER is used in science: In science, the reasoning is for the 908 

purpose of connecting the evidence to the claim, explaining why the evidence supports 909 

the claim. On the other hand, the mathematical reasoning in the CER routine is 910 

expected to explain why (making use of structure) something is true in general (thus 911 

also explaining why the examples used as evidence are valid.  912 

It is useful to name “giving evidence” and “producing reasoning” as separate processes, 913 

to distinguish between the noticing of pattern and structure (evidence) and the 914 

reasoning to support a general claim. For instance, in exploring a growth pattern, 915 

students might notice that the sum of three consecutive integers always seems to be 916 

divisible by three, and formulate that as a claim: “I think that whenever you add three 917 

numbers in a row, the answer is always a multiple of three.” When it’s clear the student 918 

means three consecutive integers, other students might check additional examples and 919 

contribute additional evidence. But the reasoning step requires something more:  A 920 

https://my.nsta.org/collection/GBdqFKABr0U_E
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numerical fluency argument (“If you take away one from the third number and add it to 921 

the first number, then you just have three times the middle number”), an algebraic 922 

argument (such as “if a is an integer, then ”), or 923 

some other general argument.  924 

Carefully chosen number talks—well-known in the elementary math classroom—can be 925 

implemented in high school as a way to enable students to compare ideas and 926 

approaches with others in a low-stakes environment. They help to build SMP.1 (Make 927 

sense of problems and persevere in solving them) in addition to SMP.3. Well-chosen 928 

routine/tasks, such as number strings, can help build SMP.7 and SMP.8 by building 929 

from specific examples to thinking in terms of structure (abstraction) or larger classes 930 

(generalization). 931 

For example, open number lines (blank, with no numbers marked), used with 932 

multiplication or division, can provide problems for number talks or strings that lead 933 

often to over-generalization—a great thing to happen, as it creates skepticism and 934 

forces a re-evaluation of evidence and a search for convincing justification. 935 
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High School snapshot: Number string on an open number line  

Big Idea: What characteristics matter? 

The teacher introduces the activity by drawing a long horizontal line on the board, with 

arrow heads at both ends, and placing two marks on the line, labeled a and b (with a 

to the left of b).  

 

I’d like you to think about where on the line I should place a + b. Should it go to 

the left of a, between a and b, or to the right of b? 

After most students give thumbs-up in front of their chests (this signal for “I’ve got a 

strategy or explanation”), the teacher explores with the students and discovers that 

most students have tried several possible values for each variable, and concluded 

that a + b must be to the right of b. A few students, however, are having trouble not 

blurting out. The teacher calls on one of these students: 

Teacher: Angel, you are shaking your head. Why is that? 

Angel: Because –1 + 2. 

Quite a few students have an, “Oh, I didn’t think about that” look on their faces. After 

further sharing, every student generates examples for each possible placement of a + 

b. Finally, the teacher moves from the number talk into a more-involved team activity, 

asking—given specific numbers a and b—how to tell where to place a + b. The class 

generates these generalizations (assuming a and b are real numbers, and a < b): 

● If a and b are both positive, then a + b is greater than b 

● If a and b are both negative, then a + b is less than a 

● If a is negative and b is positive, then a + b is between a and b 

In pairs, students generate informal justifications for each of these (which are then 

refined whole-class; for instance, for the third one: b is positive, so adding it to a 

moves to the right of a. So, a + b is greater than a. And a is negative, so adding it to b 

moves to the left of b. So, a + b is less than b.  

 a b 
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The students think they are done, but the teacher assures them that their list of 

possibilities is incomplete. One student volunteers the idea that perhaps b could be 

negative and a positive; other students point out that this is impossible given the 

original condition that a is to the left of b on the number line. Ultimately, one pair 

realizes that one of a or b could be 0, and students modify their list of statements to 

include these possibilities. The teacher asks: “Is there anything I could add to the 

number line that would make it possible to answer the original question?” 

Students quickly agree that if they knew where zero was, they could answer the 

question. At the next math talk opportunity, the teacher again draws a number line 

with just a and b marked on it as before, and asks students this time to think about 

where a∙b should go. After wait time and thumbs, the question is: “What different 

kinds of numbers do you expect to matter?” 

Students discuss in pairs, and most believe that it matters whether a and b are 

positive or negative. Some share examples –2 ∙ –4 is greater than both –2 and –4; –3 

∙ 5 is less than both factors. A few pairs consider what happens if one factor is zero. 

After these considerations are offered and recorded, the teacher asks: 

So, if I tell you where zero is, you think you can place a ∙ b on the line? 

Many students say yes or nod; nobody disagrees. The teacher places zero on the 

number line to the left of a, and invites pairs of students to formulate statements about 

the relationship of a ∙ b to a and b, along the lines of the previous session’s 

statements about addition. Most pairs do not consider non-integer values for a and b, 

and generate statements such as: 

● If a and b are both positive, then a ∙ b is greater than b. 

Some pairs have noticed that if a = 1, then the above statement is not true; the class 

modifies the statement to address this case (either by excluding a = 1 or by adding “or 
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equal to” to the conclusion). If no pairs consider the possibility of a between 0 and 1, 

the teacher might prompt:  

There are some types of numbers I’m worried about that we haven’t considered 

yet. 

This work leads to a significant investigation of statements that can be made and 

justified about the relative locations on the number line of a, b, and a + b, a ∙ b, a – b, 

or a ÷ b. 

Notice several important features of this number string (leading to extended 

investigation): The number line is a familiar mathematical representation that can be 

explored to a great depth. Students easily generate their own examples to engage in 

wondering about the posed questions, and these examples lead to tempting 

generalizations (conjectures). Some of those generalizations turn out to be false, 

forcing students to examine a broader set of examples and to look for structure to 

explain why they are false and how to fix them. Different generalizations will arise in 

different student teams, leading to a need to justify and to critique others’ arguments. 

Additional types of activities can create in students the need to reason and 936 

communicate as ways to support explanations and justifications. These include 937 

producing reports, videos, or materials to model for others (for example, to parents or to 938 

the next-younger class); prediction and estimation activities; and creating contexts. The 939 

last—creating real-life or puzzle-based contexts generating given mathematics such as 940 

a given function type—help to cultivate meta-thinking about structure (what are the parts 941 

of a quadratic function and how might I recreate them in a puzzle or find them in a real-942 

life setting) and to develop a way of seeing the world through the lens of mathematics. 943 

The CA CCSSM identify two particular proof methods in SMP 3.1: Proof by 944 

contradiction and proof by induction. The logic of proof by contradiction is 945 

straightforward to students: “No, that can’t be, because if it was true, then….” The 946 

standard high school examples are proofs that  is irrational, and that there are 947 

infinitely many prime integers. These are both clear examples. Although the second of 948 

these two does not actually require a proof by contradiction, the proof below is most 949 
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easily understood when worked out through the contradiction framework: “What would 950 

happen if there were only finitely many primes?”  951 

The difficulty is to embed such proofs in a context that prompts a wondering, a need to 952 

know, on the part of students; and then to uncover the steps of the argument in such a 953 

way so as not to seem pulled out of thin air. Some approaches attempt to motivate with 954 

historical contexts, others with patterns. For example, suppose we already have 955 

established that every natural number greater than 1 is either prime or is a product of 956 

two or more prime factors. “Maybe 2, 3, 5, 7, 11, and 13 are all the primes we need to 957 

make all integers! No? Well, maybe if we add 17 to the set we have them all?” When 958 

students get tired of the repeated reasoning of finding an integer that is not a product of 959 

the given primes, either students or the teacher can ask whether there might always be 960 

a way of finding an integer that is not a product of integers in the given finite set. This 961 

gives an opening for a proof by contradiction: Let’s pretend (assume) that there are only 962 

finitely many primes—let’s say n of them. Why don’t we call them . Can 963 

you write down an expression for a natural number that is not divisible by any of these 964 

primes? To eventually arrive at a proof requires constructing an integer that can’t 965 

possibly be divisible by any of —Euclid’s choice (call it ) was the product of 966 

all of them, plus 1: . Once an argument is found that  is not 967 

divisible by any of , then since  must be either a prime or a product of 2 968 

or more prime factors that are not in the list , we have found a 969 

contradiction to our initial assumption that  contains all primes. Thus, the 970 

list of primes cannot be finite. 971 

The logic of proof by induction is also straightforward when described informally: The 972 

first case is true, and whenever one case is true, the next one is true as well. Thus, the 973 

chain goes on forever. Such chains of statements, and wonder about whether they go 974 

on forever, might be easier to motivate from patterns than proof by contradiction. For 975 

instance, students might notice, in the context of exploring quadratic functions, that 976 

whenever they substitute an odd integer in for x in the function , they obtain 977 

an output that is a multiple of 8. This naturally leads to the questions, “Is this really true 978 

for all odd integers x?” and, “Could I use the fact that it’s true for  to show that it’s 979 
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true for ?” The formalism of representing “the next odd number” after x as  980 

follows relatively naturally, and “using one case to prove the next” can proceed. This 981 

example should be accompanied by the question, “Why doesn’t the argument work for 982 

even integers?” 983 

As described here, “proof” in high school does not originate with purely mathematical 984 

claims put forth by curriculum or by the teacher (“Prove that alternate interior angles are 985 

congruent”), nor with formal axioms and rules of logic. Rather, proof originates, like all 986 

mathematics, with a need to understand—in the case of proof, a need to understand 987 

why an observed phenomenon is true and that it is true for a defined range of cases. It 988 

is not enough that the curriculum writer or the teacher understand, and wishes for 989 

students to understand. The need to understand—and to understand why—must be 990 

authentic to students for learning to be deep and lasting. Thus, it is important that 991 

students’ experiences with constructing and critiquing arguments (SMP 3)—including 992 

their experiences with formal proof—be embedded as much as possible within a 993 

process beginning with wonder about a context and ending with a social and intellectual 994 

need to understand and justify: 995 

1. Exploring authentic mathematical contexts 996 

2. Discovering regularity in repeated reasoning and structure  997 

3. Abstracting and generalizing from observed regularity and structure 998 

4. Reasoning and communicating with and about mathematics in order to share and 999 

justify conclusions 1000 

Conclusion 1001 

This chapter focuses on key ideas that bring the Standards for Mathematical Practice to 1002 

life. The content focuses on three interrelated practices: 1) Constructing viable 1003 

arguments and critiquing the reasoning of others; 2) Looking for and making use of 1004 

structure; and 3) Looking for and expressing regularity in repeated reasoning. By 1005 

considering these practices together, the chapter focuses on the foundations of 1006 

classroom experiences that center exploring, discovering, and reasoning with and about 1007 

mathematics. While this chapter illustrates the integration of three mathematical 1008 

practices, in fact all SMPs must be taught in an integrated way throughout the year. This 1009 
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vision for teaching and learning mathematics comes out of a several decades-long 1010 

national push in mathematics education to pay more attention to supporting K–12 1011 

students in becoming powerful users of mathematics to help make sense of their world.  1012 

The chapter explores the practices across the elementary-, middle-, and high-school 1013 

grade bands. Included below is an example tracing students’ as they progress with the 1014 

mathematical practices, including some ways in which contexts for learning and doing 1015 

mathematics and the practices themselves might evolve over the grades. Note that 1016 

socialization with these SMPs occurs through language, and so supports for developing 1017 

language for reasoning and interacting with mathematics and others is central to these 1018 

progressions.  1019 

Across the grades, students use everyday contexts and examples in order to explore, 1020 

discover, and reason with and about mathematics. At the early grades, everyday 1021 

contexts might come from familiar activities that children engage in at home, at school 1022 

and within their community. These contexts might include imagined play or familiar 1023 

celebrations with friends, siblings, or cousins; and familiar places such as a park, 1024 

playground, zoo, or school itself. Meaningful contexts are also those that center notions 1025 

of fairness and justice, such as issues related to the environment, social policies, or 1026 

particular problems faced in the community. As teachers better know their students and 1027 

the communities they represent and those create in classrooms, the contexts that 1028 

matter to young children come to the fore.  1029 

In the middle grades, the contexts that are relevant to students continue to include—but 1030 

increasingly go beyond—local, everyday activities and interactions. Middle-school 1031 

students might begin to explore publicly available datasets on current events of interest, 1032 

use familiar digital tools to explore the mathematics around them, and explore 1033 

mathematical topics within everyday contexts like purchasing snacks with friends, 1034 

playing or watching sports, or saving money. By the time they reach high school, 1035 

students have acquired a wide array of contexts to explore, increasingly understanding 1036 

society and the world around them through explorations in data, number, and space.  1037 
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As noted in the CA CCSSM, the SMPs span the entirety of K–12. They develop in 1038 

relation to progressions in mathematics content. At the elementary level, students work 1039 

with numbers with which they are currently familiar, and begin to explore the structure of 1040 

place value, patterns in our base-ten number system (such as even and odd numbers), 1041 

and mathematical relationships (such as different ways to decompose numbers or 1042 

relationships between addition and multiplication). Through these explorations, young 1043 

students conjecture, explain, express agreement and disagreement, and come to make 1044 

sense of data, number, and shapes.  1045 

Students in middle school build on these early experiences to deepen their interactions 1046 

with mathematics and with others as they do mathematics together. During the 1047 

elementary grades, students typically draw on contexts and on concrete manipulatives 1048 

and representations in order to engage in mathematical reasoning and argumentation. 1049 

At the middle school level, students continue to reason with such concrete referents, 1050 

and also begin to draw on symbolic representations (such as expressions and 1051 

equations), graphs, and other representations which have become familiar enough that 1052 

students experience them as concrete. Middle-school students deepen their 1053 

opportunities for sense-making as they move into ratios and proportional relationships, 1054 

expressions and equations, geometric reasoning, and data.  1055 

In high school, students continue to build on earlier experiences as they make sense of 1056 

functions and ways of representing functions, relationships between geometric objects 1057 

and their parts, and data arising in contexts of interest. As students grow through years 1058 

of making sense of and communicating about mathematics with one another and the 1059 

teacher, the same practices that cut across grades K–12 emerge at developmentally 1060 

and mathematically appropriate levels.   1061 
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