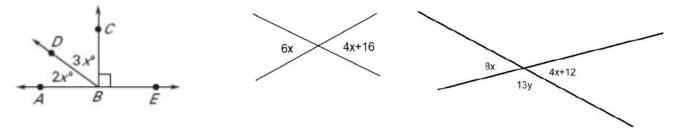

Name _____ Date _____ Per ____

Review Section:

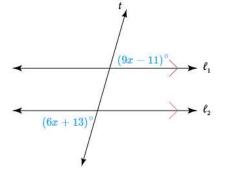
1. Find a counterexample to show that this statement is not true. If two angles are congruent, then they are vertical.


2. If point (p, q) is $\frac{3}{4}$ of the way from A to B, what are the values of q and q?

3. Consider the statement: If James has at least two \$10 bills, then he has at least \$20.

a. Is this a true statement? Justify your reasoning.

- b. Write the converse of this statement. Is this a true statement? Expalin.
- 4. Find the value of the variable.

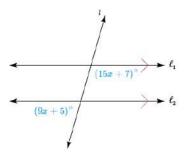


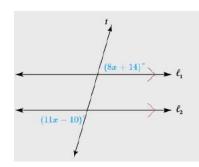
Geometry Chapter 2 Test

Section: Properties of Parallel Lines

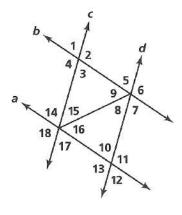
Use the figure to answer each question in this section.

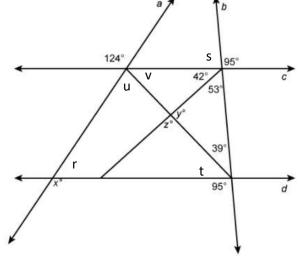
- 5. If $c \parallel d$, $a \parallel b$, and $m \ge 17 = 45^{\circ}$, then $m \ge 6 = _$
- 6. If $\angle 15 \cong \angle 8$ then which two lines are parallel? Explain your answer.
- 7. Find the value of x.

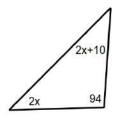


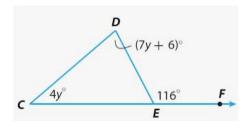

- 8. Use the figure to the right. Lines *a*, *b*, *c*, and *d* intersect as shown.
 - a. Which pair of lines are parallel?
 - b. Find the value of the variables.

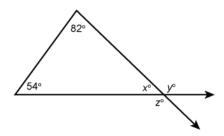
v = _____ x = _____ y = _____ z = _____


r = _____ s = _____ t = _____ u= ____


9. Find the value of the variable that will make the lines parallel.

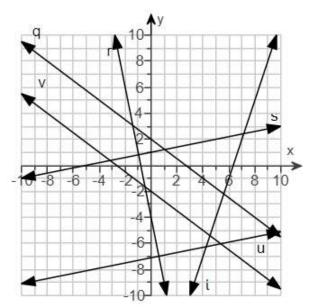





Section: Triangle Sum and Exterior Angle Theorem

10. Find the values of the variable.

11. Given the figure, find the values of the variables.


Section: Slopes of Parallel and Perpendicular Lines

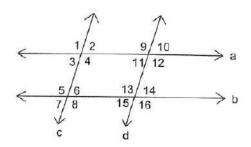
12. Are the lines parallel, perpendicular, or neither?

$$y = \frac{2}{3}x - 2$$
$$3x + 2y = 6$$

- 13. Write an equation for a line (in slope-intercept form) parallel to y = -5x 3 and passing through the point (2, -12)
- 14. Write an equation for a line (in slope intercept form) perpendicular to the line y = -2x + 4 and passes through the point (-4, -1)

15. Given the following figure, find which lines will be parallel and/or perpendicular. Verify by using slopes.

Section Proofs


16. Given *a* ∥ *b*, *b* ∥ *c* Prove *a* ∥ *c*

Statement	Reason
1.	1.
2. $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$	2.
3.	3. Substitution Property
4.	4.

17. Given: $\overline{FD} \parallel \overline{CA}$ $\angle 3 \cong \angle 4$ Prove: $\angle 5 \cong \angle 6$	$ \begin{array}{c} F \\ 3 \\ 2 \\ B \\ D \\ 4 \\ 1 \\ A \\ \end{array} $
Statement	Reason
1.	1.
$2. \angle 1 \cong \angle 4$	2.
3.	3. Vertical Angles are Congruent
$4. \angle 3 \cong \angle 6$	4.
$5. \angle 3 \cong \angle 1$	5.
6. ∠3 ≅ ∠5	6.
7. ∠5 ≅ ∠6	7.

18. Given: $a \parallel b$ Prove: $\angle 9$ and $\angle 14$ are supplementary

Statement	Reason
1.	1.
2. $m \angle 9 + m \angle 11 = 180$	2.
$3. \angle 11 \cong \angle 14$	3.
4.	4. Definition of Congruent Angles
5.	5. Substitution Property
6.	6.