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Introduction 24 

A society without mathematical affection is like a city without concerts, 25 
parks, or museums. To miss out on mathematics is to live without an 26 

opportunity to play with beautiful ideas and see the world in a new light. 27 

—Francis Su (2020) 28 

Welcome to the 2021 Mathematics Framework for California Public Schools, 29 

Transitional Kindergarten Through Grade Twelve (Math Framework). This framework 30 
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serves as a guide to implementing the California Common Core State Standards for 31 

Mathematics (CA CCSSM or the Standards). Built upon underlying and updated 32 

principles of focus, coherence, and rigor, the Standards hold the promise of enabling all 33 

California students to become powerful users of mathematics in order to better 34 

understand and positively impact the world—in their careers, in college, and in civic life. 35 

Mathematics as a Gatekeeper or a Launchpad? 36 

Be careful how you interpret the world: It is like that. 37 

—Erich Heller (1952) 38 

Mathematics provides a set of lenses that provide important ways to understand many 39 

situations and ideas. The ability to use this mathematical lens flexibly and accurately 40 

enables the people of California to apply mathematical understandings in ways that 41 

influence their communities and the larger world in many important ways. In this way, 42 

math continuous to play a role in how we conceive of our careers, evidence-based civic 43 

discourse and policy-making, and the examination of assumptions and principles 44 

underlying action. All students are capable of making these contributions and achieving 45 

these abilities to very high levels. As a guide to implementing the Standards, this 46 

framework lays out mathematical learning experiences that can move California closer 47 

to the goal of mathematical power for all. 48 

Unfortunately, the subject and community of mathematics has a history of exclusion and 49 

filtering, rather than inclusion and welcoming. There persists a mentality that some 50 

children are “bad in math” (or otherwise don’t belong) from many sources and at many 51 

levels. Girls and Black and Brown children, notably, represent groups that more often 52 

receive messages that they are not good in math compared to White and male 53 

counterparts (Shah & Leonardo, 2017). As early as preschool and kindergarten, 54 

research and policy documents use deficit-oriented labels to describe Black and Latinx 55 

and poor children’s mathematical learning and position them as already behind their 56 

white and middle-class peers (NCSM & TODOS, 2016).  57 

Students internalize many of those messages to such a degree that switching their self-58 

identity from “bad at math” to “love math” is rare. Students also self-select out of 59 
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mathematics because they perceive that mathematics lacks relevance for them, and no 60 

longer recognize the inherent value or purpose in learning math. The fixed mindset 61 

about math ability reflected in these beliefs helps to explain the exclusionary role that 62 

mathematics plays in students’ opportunities, and leads to widespread inequities in the 63 

discipline of mathematics such as: 64 

● Students who are perceived as “weak” in math are often informally tracked 65 

before grade seven in ways that severely limit their experiences with and 66 

approaches to math (Butler, 2008) and their future options (Parker et al, 2014). 67 

See also Chapter Eight: Grades 9–12. 68 

● Students who do not quickly and accurately perform rote procedures get 69 

discouraged and decide not to persist in mathematically-oriented studies. 70 

● Students who are learning the English language are deemed incapable of 71 

handling, and denied access to, grade-level authentic mathematics. 72 

● Students with learning differences that affect performance on computational 73 

tasks are denied access to richer mathematics, even when the learning 74 

differences might not affect other mathematical domains (Lambert, 2018). 75 

● Students who do not have the opportunity to accelerate their math courses in 76 

middle and high school can be denied entry into prestigious colleges. 77 

Many factors contribute to mathematics exclusion. As one example, consider a system 78 

described in more detail in chapters seven (Grades 6–8) and eight (Grades 9–12): 79 

Though many high schools offer integrated mathematics, high school mathematics 80 

courses are often structured in such a way (e.g., algebra-geometry-algebra 2- 81 

precalculus) that calculus is only available to students who are considered “advanced” 82 

in middle school—that is, taking algebra as a grade-eight student. In order to reach 83 

algebra in grade eight, students must take all of middle grades math, grades 6–8, in just 84 

two years (or else skip some foundational material). This means that many school 85 

systems are organized to effectively decide which students can reach calculus when 86 

they begin grade six. This reality is responsible for considerable racial- and gender-87 

based inequities and to the majority of students being filtered out of a STEM pathway 88 

(Joseph, Hailu, Boston, 2017). Moreover, English learners have disproportionately less 89 
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access, are placed more often in remedial classes and are steered away from STEM 90 

courses and pathways (National Academies of Sciences, Engineering, and Medicine, 91 

2018). 92 

When we consider the fact that many competitive colleges and universities (those that 93 

accept less than 25 percent of applicants) have calculus as an unstated requirement, 94 

the inequitable pathway becomes even more problematic. Many students remain 95 

unaware that their status at the end of fifth grade can help or hinder their ability to 96 

attend a top university; if they are not in the advanced math track and on a pathway to 97 

calculus in each of the subsequent six years of school, they will not meet this unstated 98 

admission requirement. This mathematics pathway system, typical of many school 99 

districts, counters the evidence that shows all fifth graders are capable of eventually 100 

learning calculus when provided appropriate messaging, teaching, and support. The 101 

system of providing pathways to calculus to only some students has resulted in too 102 

many potential STEM students—especially Latinx and African American students—103 

being denied important opportunities. At the same time, too many students are blocked 104 

from pursuing non-STEM careers by arbitrary or irrelevant math hurdles. Mathematics 105 

education needs to support students whether they choose to pursue STEM disciplines, 106 

or other promising majors that prepare them for careers in other fields like law, politics, 107 

design, and the media. Math also needs to be relevant for students who pursue careers 108 

directly after high school, without attending college (Daro & Asturias, 2019). Schooling 109 

practices that lead to such race- and gender-correlated disparities can even lead to 110 

legal liabilities for districts and schools (Lawyers’ Committee for Civil Rights of the San 111 

Francisco Bay Area, 2013). A fuller discussion of one example is included in Chapter 8: 112 

Grades 9–12. The middle- and high-school chapters (chapters 7 and 8) outline an 113 

approach that enables all students to move to calculus with grade level courses, 6, 7, 114 

and 8 in middle school.  115 

Mathematics education can also serve as a launchpad to understanding and acting in 116 

the world through and with mathematics. While every level of schooling must focus on 117 

providing access to mathematical power for all students, a critical component needed to 118 

open mathematics doorways for all students is change at the high school level. In 119 
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Catalyzing Change in Middle School Mathematics, NCTM suggests that the purpose of 120 

school mathematics expand to include the development of positive mathematical 121 

identities and a strong sense of agency (see Aguirre, Mayfield-Ingram, & Martin, 2013). 122 

NCTM further urges educators to focus on dismantling structural obstacles that stand in 123 

the way of rich mathematical experiences for all students, and organize middle school 124 

mathematics along a common shared pathway grounded in the use of mathematical 125 

practices and processes that support mathematical understanding. Pathways that 126 

provide access to higher-level mathematics from a typical grade nine course are 127 

described in Chapter Eight: Grades 9–12. In local educational agencies where high 128 

school administrators commit to such pathways and vow to support communities of 129 

teachers and students in succeeding in grade-level appropriate mathematics, middle 130 

schools can avoid compressing or skipping important mathematical courses that can 131 

race students through fundamental content. Nor will they need to track students into 132 

different pathways. More fundamentally, all stakeholders need to work to shift the 133 

definition of mathematics success away from acceleration, and focus on depth of 134 

learning.  135 

Learning Mathematics: for All 136 

Students learn best when they are actively engaged in questioning, struggling, problem 137 

solving, reasoning, communicating, and explaining. The research is overwhelmingly 138 

clear that powerful mathematics classrooms thrive when students feel a sense of 139 

agency (a willingness to engage in the discipline, based in a belief in progress through 140 

engagement) and an understanding that the intellectual authority in mathematics rests 141 

in mathematical reasoning itself (in other words, that mathematics makes sense) 142 

(Boaler, 2019 a, b; Boaler, Cordero & Dieckmann, 2019; Anderson, Boaler & 143 

Dieckmann, 2018; Schoenfeld, 2014). These factors support students’ as they develop 144 

their own identities as powerful math learners and users. Further, active-learning 145 

experiences enable students to engage in a full range of mathematical activity—146 

exploring, noticing, questioning, solving, justifying, explaining, representing and 147 

analyzing—making clear that mathematics represents far more than calculating. 148 
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Research is also clear that all students are capable of becoming powerful math learners 149 

and users (Boaler, 2019a, c). This notion runs counter to many students’ ideas about 150 

school math. Most adults can recall times when they received messages during their 151 

school or college years that they were not cut out for math-based fields. The race-, 152 

class-, and gender-based differences in those who pursue more advanced mathematics 153 

make it clear that the messages students receive about who belongs in math are biased 154 

along racial, socioeconomic status, language, and gender lines. This has led to 155 

considerable inequities in mathematics. 156 

Sarah-Jane Leslie, Andrei Cimpian, and colleagues (2015) interviewed university 157 

professors in different subject areas to see how prevalent the idea of a “gift” was—the 158 

concept that people need a special ability to be successful in a particular field. The 159 

results were staggering; the more prevalent the idea of a gift was, in any academic field, 160 

the fewer women and people of color were in that field. This outcome held across all 161 

thirty subjects in the study. More math professors believed that students needed a gift 162 

than any other professor of STEM content. The study highlights the subtle ways that 163 

students are dissuaded from continuing in mathematics. It underscores the important 164 

role math teachers play in communicating messages that math success can only be 165 

achieved by a few students. This pervasive belief more often influences women and 166 

people of color to conclude they will not find success in classes or studies that rely on 167 

knowledge of mathematics.  168 

Negative messages, either explicit (“I think you’d be happier if you didn’t take that hard 169 

math class”) or implicit (“I’m just not a math person”), both imply that only some people 170 

will succeed. Perceptions can also be personal (“math just doesn’t seem to be your 171 

strength”) or general (“this test isn’t showing me that these students have what it takes 172 

in math. My other class aced this test”). And they can also be linked to labels (“low 173 

kids,” “bubble kids,” “slow kids”), which positions students in ways that lead to a 174 

differentiated and unjust mathematics education.  175 

Thus, concerns about equity in mathematics learning are front and center throughout 176 

the framework. Some overarching principles that guide work towards equity in 177 

mathematics include the following: 178 



7 

 

● Access to an engaging and humanizing education—a socio-cultural, human 179 

endeavor—is a universal right, central among civil rights. 180 

● All students deserve powerful mathematics; we reject ideas of natural gifts and 181 

talents (Cimpian et al, 2015; Boaler, 2019) and the “cult of the genius” (Ellenberg, 182 

2015). 183 

● “I treat everyone the same” is not enough: Active efforts in mathematics teaching 184 

are required in order to counter the cultural forces that have led to and continue 185 

to perpetuate current inequities (Langer-Osuna, 2011).  186 

● Student engagement must be a design goal of mathematics curriculum design, 187 

co-equal with content goals. 188 

● Mathematics pathways must open mathematics to all students, eliminating 189 

option-limiting tracking. 190 

● Students’ cultural backgrounds, experiences, and language are resources for 191 

learning mathematics (González, Moll, & Amanti, 2006; Turner & Celedón-192 

Pattichis, 2011; Moschkovich, 2013).  193 

● All students, regardless of background, language of origin, differences, or 194 

foundational knowledge are capable and deserving of depth of understanding 195 

and engagement in rich math tasks. 196 

Research on Mathematics Learning and Neuroscience  197 

Hard work and persistence is more important for success in mathematics than natural 198 

ability. Actually, I would give this advice to anyone working in any field, but it’s 199 

especially important in mathematics and physics where the traditional view was that 200 

natural ability was the primary factor in success.” 201 

—Maria Klawe, Mathematician, Harvey Mudd President 202 

(in Williams, 2018) 203 

A strong cultural myth is the idea of a math brain—that people are born with a brain that 204 

is suited (or not) for math. But the last few decades have seen the emergence of 205 

technologies that have given researchers access into the workings of the mind and 206 
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brain. Now scientists can study children and adults working on mathematics and watch 207 

their brain activity; they can look at brain growth and brain degeneration, and they can 208 

see the impact of different emotional conditions on brain activity. This work has 209 

shown—resoundingly—that we all have the capacity to learn mathematics to very high 210 

levels. Multiple studies have shown the incredible capacity of brains to grow and change 211 

within a short period of time (Huber et al, 2018; Luculano et al, 2015; Abiola & Dhindsa, 212 

2011; Maguire, Woollett, & Spiers, 2006; Woollett & Maguire, 2011). 213 

Every time we learn, our brains form, strengthen, or connect brain pathways in a 214 

process of almost constant change and adaptation (Doidge, 2007; Boaler, 2019a). 215 

Neuroscience research that has emerged in recent years shows the incredible potential 216 

for all people has been accompanied by cases of people accomplishing the highest 217 

levels of achievement in mathematics despite the reality that some started with 218 

significant disadvantages. 219 

An important goal of this framework is to replace ideas of innate mathematics “talent” 220 

and “giftedness” with the recognition that every student is on a growth pathway. There is 221 

no cutoff determining when one child is gifted and another is not. Fixed-ability 222 

messages have contributed to the widespread myth of the math brain, 223 

underachievement in mathematics, and aversion to high-level study. The evidence that 224 

all students have the potential to reach high levels is particularly important for students 225 

diagnosed with special needs, many of whom are set on low-level pathways, even as 226 

research is showing the capacity of all brains to rewire and change (Boaler & LaMar, 227 

2019). 228 

A second important finding from the neuroscience research is the value of periods of 229 

struggle and its effect on the brain. Psychologist Jason Moser and his colleagues 230 

showed that when adults were taking tests, they experienced more brain growth and 231 

activity when they made mistakes than when they scored correctly (Moser, et al, 232 

2011)—a conclusion illustrating how the process of mistake making can be a time when 233 

people are most challenged and engaged in struggle. The importance of struggle has 234 

been shown through both brain-based and behavior-based studies. Daniel Coyle 235 
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(2009), for example, studied the highest achieving people in different fields of work and 236 

found a characteristic shared by these achievers was a willingness to struggle—to work 237 

“at the edge of their understanding,” make mistakes, correct them, move on, and create 238 

more. This, he found, was the optimal approach to accelerate learning. This evidence 239 

becomes particularly important when we consider that students often struggle in math 240 

class, decide they do not have “a math brain,” and give up. It is important for teachers to 241 

share the research on the benefits of struggle for our brains; this is a liberating message 242 

for students that encourages them to persevere, rather than give up. Videos to u this 243 

underscore this message with students are available to share from Youcubed at 244 

https://www.youcubed.org/resource/videos/.  245 

A third meaningful result from studies of the brain is the importance of brain 246 

connections. Vinod Menon (2015) and a team of researchers at Stanford Universityhave 247 

studied the interacting networks in the brain, particularly focusing on the ways the brain 248 

works when it is solving problems—including mathematics problems. They found that 249 

even when people are engaged with a simple arithmetic question, five different areas of 250 

the brain are involved, two of which are visual pathways. The dorsal visual pathway is 251 

the main brain region for representing quantity. 252 

Menon and other neuroscientists have also found that communication between the 253 

different brain areas enhances learning and performance. Researchers Joonkoo Park 254 

and Elizabeth Brannon (2013) have reported a study in which they found that different 255 

areas of the brain were involved when people worked with symbols, such as numerals, 256 

than when they worked with visual and spatial information, such as an array of dots. 257 

The researchers also found that mathematics learning and performance were optimized 258 

when these two areas of the brain were communicating with each other. We can learn 259 

mathematical ideas through numbers, but we can also learn them through words, 260 

visuals, models, algorithms, multiple representations, tables, and graphs; from moving 261 

and touching; and from other representations. But when we learn by using two or more 262 

of these means and the different areas of the brain responsible for each communicate 263 

with each other, the learning experience is maximized.  264 

https://www.youcubed.org/resource/videos/
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For this reason, this framework highlights examples that are multi-dimensional, with 265 

mathematical experiences that are visual, physical, numerical, and more. These 266 

approaches are consistent with the principles of Universal Design for Learning (UDL), a 267 

framework designed to make learning more accessible, that helps all students. Visual 268 

and physical representations of mathematics are not only for young children, nor are 269 

they merely a prelude to abstraction or higher-level mathematics (Boaler et al, 2016). 270 

Some of the most important high-level mathematical work and thinking—such as the 271 

work of Fields medal winner Maryam Mirzakhani—is visual. 272 

The three areas of neuroscientific research with evidence showing the potential of 273 

brains to grow and change, the importance of times of struggle, and the value in 274 

engaging with mathematics in multi-dimensional ways, should be shared with students. 275 

When messages such as these were shown in a free online class offered through a 276 

randomized controlled trial, students significantly increased their mathematics 277 

engagement in class and improved later achievement (Boaler et al, 2018). This 278 

information is shared through freely available lessons and videos on 279 

https://youcubed.org.   280 

Research on Mindset 281 

The neuroscientific evidence that shows the potential of all students to reach high levels 282 

in mathematics is the evidence base that underpins the importance of mindset 283 

messages. Stanford University psychologist Carol Dweck and her colleagues have 284 

conducted decades of research studies in different subjects and fields showing that 285 

what people believe about their potential changes the ways their brains operate and 286 

their actual achievement. One of the important studies Dweck and her colleagues 287 

conducted took place in mathematics classes at Columbia University (Carr et al., 2012), 288 

where researchers found that young women received messaging that they did not 289 

belong in the discipline. Moreover, when students with a fixed mindset heard the 290 

message that math was not for women, they dropped out. Those with a growth mindset, 291 

however, protected by the belief that anyone can learn anything, ultimately rejected the 292 

stereotype and persisted. 293 

https://youcubed.org/
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A related idea that teachers should challenge comes from social comparison. Students 294 

often believe that brains must be fixed, because some people appear to get ideas faster 295 

and to be naturally “gifted” at certain subjects. What these students do not realize is that 296 

brains grow and change every day. Each moment is an opportunity for brain growth and 297 

development and some students have developed stronger pathways on a different 298 

timeline. Teachers should strive to reinforce the idea that all students can develop those 299 

pathways at any time if they take the right approach to learning.  300 

It is similarly important for teachers to start the first class of the year by sharing the 301 

science of brain growth and clarifying the idea that, although students are all unique, 302 

anyone can learn the content that is being taught, and productive learning is in part due 303 

to their thinking. This message is liberating, and overrides any prevailing messaging 304 

from teachers that success in math can only be achieved by a few students. When 305 

students learn about brain growth and mindset, they realize something critically 306 

important—no matter where they are in their learning, they can improve and eventually 307 

excel (Blackwell, Trzesniewski & Dweck, 2007). Various resources for sharing mindset 308 

messages and opportunities with students are provided here: 309 

https://www.youcubed.org/resource/mindset-boosting-videos/  310 

Mathematics: Tools for Making Sense 311 

Without mathematics, there’s nothing you can do. Everything around you is 312 

mathematics. Everything around you is numbers. 313 

—Shakuntala Devi, Author & “Human Calculator” 314 

Mathematics grows out of curiosity about the world. Humans are born with an intuitive 315 

sense of numerical magnitude (Feigenson, Dehaene, & Spelke 2004), and this intuitive 316 

sense develops in early life into knowledge of number words, numerals, and the 317 

quantities they represent. 318 

Give babies a set of blocks, and they will build and order them, fascinated by the ways 319 

the edges line up. Children will look up at the sky and be delighted by the V formations 320 

in which birds fly. Count a set of objects with a young child, move the objects and count 321 

them again, and they will be enchanted by the fact they still have the same number. 322 

https://www.youcubed.org/resource/mindset-boosting-videos/
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Human minds want to see and understand patterns (Devlin, 2006). But the joy and 323 

fascination young children experience with mathematics is quickly replaced by dread 324 

and dislike when mathematics is introduced as a dry set of methods they think they just 325 

have to accept and remember. 326 

Young students’ work in mathematics is firmly rooted in their experiences in the world 327 

(Piaget and Cook, 1952). Numbers name quantities of objects or measurements such 328 

as time and distance, and operations such as addition and subtraction are represented 329 

by manipulations of such objects or measurements. Soon, the whole numbers 330 

themselves become a context that is concrete enough for students to grow curious 331 

about and to reason within—with real-world and visual representations always available 332 

to support reasoning. 333 

Students who use mathematics powerfully can maintain this connection between 334 

mathematical ideas and meaningful contexts. Historically, too many students lose the 335 

connection at some point between primary grades and graduation from high school. The 336 

resulting experience creates students who see mathematics as an exercise in 337 

memorized procedures that match different problem types. 338 

This framework takes as a given that all students are capable of accessing and 339 

mastering school mathematics in the ways envisioned in CA CCSSM. “Mastering” 340 

means becoming inclined and able to consider novel situations (arising either within or 341 

outside mathematics) through a variety of appropriate mathematical tools, using those 342 

tools to understand the situation and, when desired, to exert their own power to affect 343 

the situation. Thus, mathematical power is not reserved for a few, but available to all. 344 

Translating this potential into reality requires a school mathematics system built to 345 

achieve this purpose. Current structures often reinforce existing factors that allow 346 

access for some while telling others they don’t belong; structures must instead 347 

challenge those factors by providing relevant, authentic mathematical experiences that 348 

make it clear to all students that mathematics is a powerful tool for making sense of and 349 

affecting their worlds. This will be an important contribution to equitable outcomes. 350 
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Audience 351 

The Math Framework is intended to serve many different audiences, each of whom 352 

contribute to the shared mission of helping all students become powerful users of 353 

mathematics as envisioned in the CA CCSSM. First and foremost, the Math Framework 354 

is written for teachers and those educators who have the most direct relationship with 355 

students around their developing mastery of mathematics. As in every academic 356 

subject, developing powerful thinking requires contributions from many; and so this 357 

framework is also directed to: 358 

● parents and caretakers of K–12 students who represent crucial partners in 359 

supporting their students’ mathematical success; 360 

● curricular materials designers and authors whose products help teachers to 361 

implement the Standards through engaging, authentic classrooms; 362 

● educators leading pre-service and teacher preparation programs whose students 363 

face a daunting but exciting challenge of preparing to engage students in 364 

meaningful, coherent mathematics; 365 

● in-service professional learning providers who can help teachers navigate deep 366 

mathematical and pedagogical questions as they strive to create coherent K–12 367 

mathematical journeys for their students; 368 

● instructional coaches and other key allies supporting teachers to improve 369 

students’ experiences of mathematics; 370 

● site, district, and county administrators who want to support improvement in 371 

mathematics experiences for their students; 372 

● college and university instructors of California high school graduates who wish to 373 

use the framework in concert with the Standards to understand the types of 374 

knowledge, skills, and mindsets about mathematics that they can expect of 375 

incoming students; and 376 

● assessment writers who create curriculum, state, and national tests that signal 377 

which content is important and the determine ways students should engage in 378 

the content. 379 
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Updating Coherence, Focus, and Rigor 380 

The CA CCSSM were adopted by the State Board of Education in 2010 and modified in 381 

2013. Over a decade of experiences have made evident the kinds of challenges the 382 

Standards posed for teachers, administrators, curriculum developers, professional 383 

learning providers, and others. When the Standards and the subsequent framework 384 

were each adopted, they both reflected an approach based on identifying major and 385 

minor standards--a recognition that it can be difficult for teachers to address all 386 

standards while maintaining a rich and deep learning experience for all students. This 387 

approach essentially eliminated key areas of content (such as data literacy). This 388 

framework reflects a revised approach, one that advocates for publishers and teachers 389 

avoiding the process of organizing around the detailed content standards, and instead 390 

establishing mathematics that reflect bigger ideas—those that connect many different 391 

standards in a more coherent whole. The Math Framework responds to challenges 392 

posed by each of the underlying principles.  393 

Terms 394 

Big Idea: Big ideas in math are central to the learning of mathematics, link numerous 395 

math understandings into a coherent whole, and provide focal points for students’ 396 

investigations. 397 

Drivers of Investigation: unifying reasons that both elicit curiosity and provide the 398 

motivation for deeply engaging with authentic mathematics  399 

Content Connections: content themes that provide mathematical coherence through 400 

the grades 401 

Authentic: An authentic problem, activity, or context is one in which students 402 

investigate or struggle with situations or questions about which they actually wonder. 403 

Lesson design should be built to elicit that wondering. In contrast, an activity is 404 

inauthentic if students recognize it as a straightforward practice of recently-learned 405 

techniques or procedures, including the repackaging of standard exercises in forced 406 

“real-world” contexts. Mathematical patterns and puzzles can be more authentic than 407 

such real-world settings. 408 
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Necessitate: An activity or task necessitates a mathematical idea or strategy if the 409 

attempt to understand the situation or task creates for students a need to understand or 410 

use the mathematical idea or strategy. 411 

Coherence 412 

I like crossing the imaginary boundaries people set up between different fields—it's very 413 

refreshing. There are lots of tools, and you don't know which one would work. It's about 414 

being optimistic and trying to connect things. 415 

—Maryam Mirzakhani, Mathematician, 2014 Fields Medalist 416 

Despite their differences and unique complexities, the Standards for Mathematical 417 

Practice (SMPs) and math content standards are intended to be equally important in 418 

planning, curriculum, and instruction (CA CCSSM [2013], p. 3). The content standards, 419 

however, are far more detailed at each grade level, and are more familiar to most 420 

educators; as a result, the content standards continue to provide the organizing 421 

structure for most curriculum and instruction. Because the content standards are more 422 

granular, curriculum developers and teachers find it easy when designing lessons to 423 

begin with one or two content standards and choose tasks and activities which develop 424 

that standard. Too often, this reinforces the concept as an isolated idea.  425 

Because the Standards were then new to California educators (and to curriculum 426 

writers), the 2013 California Mathematics Framework was comprehensive in its 427 

treatment of the content standards; it included descriptions and examples throughout 428 

the framework for most. In the intervening years, many more examples, exemplars, and 429 

models of sample tasks representing illustrations of the mastery intended by each 430 

standard have emerged. Thus, the need is different in 2021: California teachers and 431 

students need mathematics experiences that provide access to the coherent body of 432 

understanding and strategies of the discipline. 433 
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Instructional materials should primarily involve 434 

tasks that invite students to make sense of these 435 

big ideas, elicit wondering in authentic contexts, 436 

and necessitate mathematical investigation. Big 437 

ideas in math are central to the learning of 438 

mathematics, link numerous mathematical 439 

understandings into a coherent whole, and 440 

provide focal points for students’ investigations. 441 

An authentic activity or problem is one in which 442 

students investigate or struggle with situations or 443 

questions about which they actually wonder. 444 

Lesson design should be built to elicit that 445 

wondering.  446 

This framework sets out these organizing ideas to provide coherence and to help 447 

teachers avoid losing the forest for the trees. That is, discrete content standard mastery 448 

does not necessarily assemble in students’ minds into a coherent big-picture view of 449 

mathematics.  450 

This framework’s response to the challenge posed by the principle of coherence are: 451 

focusing on big ideas, both as Drivers of Investigation (the reasons why we do math, 452 

see section below), and Content Connections (both within and across domains, see 453 

section below); progressions of learning across grades (thus, grade-band chapters 454 

rather than individual grade chapters); and relevance to students’ lives. Principles 455 

guiding grade-band chapters include 456 

● design from a smaller set of big ideas, spanning TK–12 in the forms of Drivers of 457 

Investigation and Content Connections (see below), within each grade band; 458 

● a preponderance of student time spent on authentic problems through the lenses 459 

of DIs and CCs (see below) that engage multiple content and practice standards 460 

situated within one or more big ideas; 461 

● a focus on connections: between students’ lives and mathematical ideas and 462 

strategies; and between different mathematical ideas; and 463 

Mathematical notation no more 
is mathematics than musical 
notation is music. A page of 
sheet music represents a piece 
of music, but the notation and 
the music are not the same; the 
music itself happens when the 
notes on the page are sung or 
performed on a musical 
instrument. It is in its 
performance that the music 
comes alive; it exists not on the 
page but in our minds. The 
same is true for mathematics. 

—Keith Devlin (2001) 
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● constant attention to opportunities for students to bring other aspects of their 464 

lives into the math classroom: How does this mathematical way of looking at this 465 

phenomenon compare with other ways to look at it? What problems do you see 466 

in our community that we might analyze? Teachers who relate aspects of 467 

mathematics to students’ cultures often achieve more equitable outcomes 468 

(Hammond, 2014). 469 

Focus 470 

I didn’t want to just know the names of things. I remember really wanting to know how it 471 

all worked. 472 

—Elizabeth Blackburn, Winner of the 2009 Nobel Prize for Physiology or Medicine. 473 

The principle of focus is closely tied to the goal of depth of understanding. The principle 474 

derives from a need to confront the mile-wide but inch-deep mathematics curriculum 475 

experienced by many. 476 

Instructional design built on moving from one content standard to the next underscores 477 

the challenging reality that the Standards simply contain too many concepts and 478 

strategies to address comprehensively in this manner. Teachers often opt to choose 479 

between covering standards at an adequate depth (while skipping some topics), or 480 

including all topics from the Standards for their grade level and compromising 481 

opportunities to reach rich, deep understandings. 482 

One common approach to the coverage-vs-depth challenge is to designate some 483 

content standards more important than others (for example, Student Achievement 484 

Partners). An unintentional result of this, in many schools, is that the standards deemed 485 

“less important” simply are not addressed. 486 

The Standards, however, are not a design for instruction, and should not be used as 487 

such. The Standards lay out expected mastery of content at the grade levels, and 488 

expected mathematical practices at the conclusion of high school. They say little about 489 

how to achieve that mastery or build those practices. 490 
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This framework’s answer to the coverage-vs-depth challenge posed by the principle of 491 

focus is to lay out principles for (and examples of) instructional design that make the 492 

Standards achievable. These principles include as follows: 493 

● Focus on investigations and connections, not individual standards: class 494 

activities should be designed around big ideas, and typically should necessitate 495 

several clusters of content standards and multiple practice standards, as part of 496 

an investigation. Connections between those content standards then becomes 497 

an integral part of the class activity, and not an additional topic to cover. The twin 498 

focus on investigations and connections is reflected in titles and structure of the 499 

grade-banded chapters, chapters 6, 7, and 8, as well as in the Drivers of 500 

Investigation and Content Connections (see below). 501 

● Tasks must be worthy of student engagement. 502 

o Problems (tasks which students do not already have the tools to solve) 503 

precede teaching of the focal mathematics which are necessitated by the 504 

problem. That is, the major point of a problem is to raise questions that 505 

can be answered, and promote students using their intuition, before 506 

learning new mathematical ideas (Deslauriers, McCarty, Miller, Callaghan, 507 

& Kestin, 2019). 508 

o Exercises (tasks which students already have the tools to solve) should 509 

either be embedded in a larger context which is motivating (such as the 510 

Drivers of Investigations, or exploration of patterns, or games), or should 511 

address strategies whose improvement will help students accomplish 512 

some motivating goal. 513 

o Students should learn to see their goal as investigating mathematical 514 

ideas, asking important questions, making conjectures and developing 515 

curiosity about mathematics and mathematical connections. 516 

Rigor 517 

True rigor is productive, being distinguished in this from another rigor which is purely 518 

formal and tiresome, casting a shadow over the problems it touches. 519 

—Émile Picard (1905) 520 
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In this framework, rigor refers to an integrated way in which conceptual understanding, 521 

strategies for problem-solving and computation, and applications are learned, so that 522 

each supports the other. This definition is more specific and somewhat more demanding 523 

than the Common Core State Mathematics Standards’ requirement that “rigor requires 524 

that conceptual understanding, procedural skill and fluency, and application be 525 

approached with equal intensity” (CA CCSSM, 2013, p. 2). 526 

This definition expresses the basis of mathematical rigor: reasoning which enables 527 

understanding “all the way down to the bottom” (Ellenberg, 2014, p. 48), often 528 

expressed in terms of validity and soundness of arguments. According to the definition 529 

used here, conceptual understanding cannot be considered rigorous if it cannot be used 530 

to analyze a novel situation encountered in the world; computational speed and 531 

accuracy cannot be called rigorous unless it is accompanied by conceptual 532 

understanding of the strategy being used, including why it is appropriate in a given 533 

situation; and a correct answer to an application problem is not rigorous if the solver 534 

cannot explain to the client both the ideas of the model used and the methods of 535 

calculation. 536 

In particular, rigor is not about abstraction. In fact, a push for premature abstraction 537 

leads, for many students, to an absence of rigor in the sense used in this framework. It 538 

is true that more advanced mathematics often occurs in more abstract contexts. This 539 

leads many to value more abstract subject matter as a marker of rigor. “Abstraction” in 540 

this case usually means “less connected to reality.”  541 

But mathematical abstraction is in fact deeply connected to reality: When second 542 

graders use a representation with blocks to argue that the sum of two odd numbers is 543 

even, in a way that other students can see would work for any two odd numbers (a 544 

representation-based proof; see Schifter, 2010), they have abstracted the idea of odd 545 

number, and they know that what they say about an odd number applies to one, three, 546 

five, etc. (Such an argument reflects Standard for Mathematical Practice 7: Look for and 547 

make use of structure.) 548 

Abstraction must grow out of experiences in which students experience the same 549 

mathematical ideas and representations showing up and being useful in different 550 
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contexts. When students figure out the size of a population, after 50 months, with a 551 

growth of three percent a month; their bank balance after 50 years if they can earn three 552 

percent interest per year; and the number of people after 50 days who have contracted 553 

a disease that is spreading at three percent per day, they will abstract the notion of a 554 

quantity growing by a certain percentage per time period, and recognize that they can 555 

use the same reasoning in each case to understand the changing quantity. 556 

So the challenge posed by the principle of rigor is to provide all students with 557 

experiences that interweave concepts, problem-solving (including appropriate 558 

computation), and application, such that each supports the other. To meet this 559 

challenge, the Math Framework emphasizes these principles for designing instruction: 560 

● Abstract formulations should follow experiences with multiple contexts that call 561 

forth similar mathematical models.  562 

● Contexts for problem-solving should be chosen to provide representations for 563 

important concepts, so that students may later use those contexts to reason 564 

about the mathematical concepts raised. The Drivers of Investigation (see below) 565 

provide broad reasons to think rigorously (“all the way to the bottom”) in ways 566 

that linkages between and through topics (Content Connections, see below) are 567 

recognized, valued and internalized.  568 

● Computation should serve a genuine need for students to know, typically in a 569 

problem-solving or application context. 570 

● Applications should be authentic to students and should be enacted in a way that 571 

requires students to explain or present solution paths and alternate ideas. 572 

Designing for Coherence, Focus and Rigor: Drivers of 573 

Investigation and Content Connections 574 

With motivating students to learn coherent, focused, and rigorous mathematics as the 575 

goal, this framework identifies three Drivers of Investigation (DIs), which provide the 576 

“why” of learning mathematics, to pair with four categories of Content Connections 577 

(CCs), which provide the “how and what” mathematics (CA-CCSSM) is to be learned in 578 

an activity. So, the DIs propel the learning of the ideas and actions framed in the CCs.  579 
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Drivers of Investigation (DIs) 580 

The Content Connections should be developed through investigation of questions in 581 

authentic contexts; these investigations will naturally fall into one or more of the 582 

following Drivers of Investigation. The DIs are meant to serve a purpose similar to that 583 

of the Crosscutting Concepts in the CA NGSS, as unifying reasons that both elicit 584 

curiosity and provide the motivation for deeply engaging with authentic mathematics. In 585 

practical use, teachers can use these to frame questions or activities at the outset for 586 

the class period, the week, or longer; or refer to these in the middle of an investigation 587 

(perhaps in response to the “Why are we doing this again?” questions), or circle back to 588 

these at the conclusion of an activity to help students see “why it all matters.”  Their 589 

purpose is to pique interest and leverage students’ innate wonder about the world, the 590 

future of the world, and their role in that future, in order to foster a deeper understanding 591 

of the Content Connections and grow into a perspective that mathematics itself is a 592 

lively, flexible endeavor by which we can appreciate and understand so much of the 593 

inner workings of our world. The DIs are: 594 

● DI 1: Making Sense of the World (Understand and Explain) 595 

● DI 2: Predicting What Could Happen (Predict) 596 

● DI 3: Impacting the Future (Affect) 597 

Content Connections (CCs) 598 

The four Content Connections described in the framework organize content and provide 599 

mathematical coherence through the grades: 600 

● CC1: Communicating Stories with Data 601 

● CC2: Exploring Changing Quantities 602 

● CC3: Taking Wholes Apart, Putting Parts Together 603 

● CC4: Discovering Shape and Space 604 

Big ideas that drive design of instructional activities will link one or more Content 605 

Connections, and Standards for Mathematical Practice, with a Driver of Investigation, so 606 

that students can Communicate Stories with Data in order to Predict What Could 607 

Happen, or Illuminate Changing Quantities in order to Impact the Future. The aim of 608 
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the drivers of investigation is to ensure that there is always a reason to care about 609 

mathematical work, and that investigations allow students to make sense, predict, 610 

and/or affect the world. The following diagram is meant to illustrate the ways that the 611 

drivers of investigation relate to content connections and practices, as cross cutting 612 

themes. Any driver of investigation could go with any set of content and practices: 613 

Figure 1: Content connections, Mathematical Practices and Drivers of Investigation 614 

 615 

New to this Framework 616 

To address the needs of California educators in 2021, the Math Framework includes 617 

several new emphases and types of chapters. Unlike 2013, when the framework 618 

featured two separate chapters—one on instruction and one on access—the 2021 619 

framework offers a single chapter, Chapter Two: Teaching for Equity and Engagement, 620 
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which promotes instruction that fosters equitable learning experiences for all, and 621 

challenges the deeply-entrenched policies and practices that lead to inequitable 622 

outcomes. While some people argue for a false dichotomy between equity and high 623 

achievement, this framework rejects that notion in favor of emphasizing ways good 624 

teaching leads to equitable and higher outcomes. Instruction and equity come together 625 

to create instructional designs that bring about equitable outcomes. Our commitment to 626 

equity extends throughout the framework, and every chapter highlights considerations 627 

and approaches designed to help mathematics educators create and maintain equitable 628 

opportunities for all. 629 

Two chapters are devoted to exploring the development, across the TK–12 grade 630 

timeframe, of particular content areas. One such area is number sense across TK–12 631 

(Chapter Three: Number Sense), a crucial foundation for all later mathematics and early 632 

predictor of mathematical perseverance. The other is data science (Chapter Five: Data 633 

Science), which has become tremendously important in the field since the last 634 

framework. The other new chapter, Chapter 4: Exploring, Discovering, and Reasoning 635 

With and About Mathematics, presents the development of a related cluster of SMPs 636 

across the entire TK–12 timeframe. While it is beyond the scope of the Math Framework 637 

to develop such a “progression” for all SMPs, this chapter can guide the careful work 638 

that is required to develop SMPs across the grades. The idea of learning progressions 639 

across multiple grade levels is emphasized further in the grade-banded chapters, 640 

Chapter Six: Grades TK–5, Chapter Seven: Grades 6–8, and Chapter Eight: Grades 9–641 

12. The big ideas for each grade band, in the form of overarching Drivers of 642 

Investigation and Content Connections, provide a structure for promoting relevant and 643 

authentic activities for students, sample tasks, snapshots, and vignettes to illustrate the 644 

building of ideas across grades.  645 
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