

#### Chapter Eight Bonding: General Concepts

#### Quartz



#### **Questions to Consider**

What is meant by the term "chemical bond?" Why do atoms bond with each other to form molecules?

How do atoms bond with each other to form molecules?



#### Types of Chemical Bonds

Figure 8.1 a & b (a) The Interaction of Two Hydrogen Atoms (b) Energy Profile as a Function of the Distance Between the Nuclei of the Hydrogen Atoms



#### Key Ideas in Bonding

Ionic Bonding: Electrons are transferred Covalent Bonding: Electrons are shared equally

What about intermediate cases?

#### Figure 8.2 The Effect of an Electric Field on Hydrogen Fluoride Molecules



| P                                    | olar Molecules         |   |
|--------------------------------------|------------------------|---|
|                                      | loading                |   |
|                                      |                        |   |
| Copyright © Houghton Mifflin Company | . All rights reserved. | 8 |



#### Electronegativity

# Figure 8.3 The Pauling Electronegativity Vaules



If 1ithium and fluorine react, which has more attraction for an electron? Why?

In a bond between fluorine and iodine, which has more attraction for an electron? Why?

### What is the general trend for electronegativity across rows and down columns on the periodic table? Explain the trend.



#### Bond Polarity and Dipole Moments

#### Figure 8.4 An Electrostatic Potential Map of HF



#### The Pauling Electronegativity Values



Arrange the following bonds from most to least polar:

(a.) N-FO-FC-F

(b.)C-FN-OSi-F (c.)H-CIB-CIS-CI

Which of the following bonds would be the least polar yet still be considered polar covalent?

#### Mg-O C-O O-O Si-O N-O

### Which of the following bonds would be the most polar without being considered ionic?

#### Mg-O C-O O-O Si-O N-O

#### Figure 8.5 a-c The Charge Distribution in the Water Molecule



#### Figure 8.6 a-c The Structure and Charge Distribution of the Ammonia Molecule



#### Figure 8.7 a-c The Carbon Dioxide Molecule



Copyright © Houghton Mifflin Company. All rights reserved.

#### e.p. Diagram HCL



#### e.p.Diagram SO<sub>3</sub>



#### e.p. Diagram CH<sub>4</sub>



#### e.p. Diagram $H2_S$



#### Table 8.2 Types of Molecules with Polar Bonds but No Resulting Dipole Moment





#### Ions: Electron Configurations and Sizes

#### Ionic Radii

loading...

#### A Bauxite Mine



#### Table 8.3 Common Ions with Noble Gas Configurations in Ionic Compounds

|                 |                  |                  |                  |                   | FI (          |
|-----------------|------------------|------------------|------------------|-------------------|---------------|
| Group 1A        | Group 2A         | Group 3A         | Group 6A         | Group 7A          | Configuration |
| $H^-, Li^+$     | Be <sup>2+</sup> |                  |                  |                   | [He]          |
| Na <sup>+</sup> | Mg <sup>2+</sup> | Al <sup>3+</sup> | $O^{2-}$         | $F^{-}$           | [Ne]          |
| $\mathbf{K}^+$  | Ca <sup>2+</sup> |                  | $S^{2-}$         | Cl <sup>-</sup>   | [Ar]          |
| Rb <sup>+</sup> | $Sr^{2+}$        |                  | Se <sup>2-</sup> | $\mathrm{Br}^{-}$ | [Kr]          |
| Cs <sup>+</sup> | $Ba^{2+}$        |                  | Te <sup>2-</sup> | Ι-                | [Xe]          |

#### Figure 8.8 Sizes of Ions Related to Positions of the Elements on the Periodic Table



Choose an alkali metal, an alkaline metal, a noble gas, and a halogen so that they constitute an isoelectronic series when the metals and halogen are written as their most stable ions. What is the electron configuration for each species? Determine the number of electrons for each species. Determine the number of protons for each species. Rank the species according to increasing radius. Rank the species according to increasing ionization energy.

# What we can "read" from the periodic table:

#### Trends for

- Atomic size
- Ion radius
- Ionization energy
- Electronegativity

Electron configurations Predicting formulas for ionic compounds Ranking polarity of covalent bonds



#### Energy Effects in Binary Ionic Compounds

#### Formation of an Ionic Solid

- 1. Sublimation of the solid metal
- $M(s) \rightarrow M(g)$  [endothermic] 2.Ionization of the metal atoms
- $M(g) \rightarrow M^+(g) + e^-$  [endothermic] 3.Dissociation of the nonmetal
  - ·  $1/_2X_2(g) \rightarrow X(g)$  [endothermic]

#### Formation of an Ionic Solid (continued)

4. Formation of X<sup>-</sup> ions in the gas phase:

- $X(g) + e^- \rightarrow X^-(g)$  [exothermic]
- 5. Formation of the solid MX
  - $M^+(g) + X^-(g) \rightarrow MX(s)$ [quite exothermic]
#### Lithium Fluoride



## Figure 8.9 The Energy Changes Involved in the Formation of Lithium Fluoride from Its Elements



Figure 8.10 a & b The Structure of Lithium Fluoride



Figure 8.11 Comparison of the Energy Changes Involved in the Formation of Solid Sodium Fluoride and Solid Magnesium Oxide



Molten, NaCl Conducts an Electric Current, Indicating the Presence of Mobile Na+ and CI- lons





## Partial Ionic Character of Covalent Bonds

Figure 8.12 a-c The Three Possible Types of Bonds



#### Figure 8.13 The Relationship Between the Ionic Character of a Covalent Bond and the Electronegativity Difference of the Bounded Atoms



## Table 8.1 The Relationship Between Electronegativity and Bond Type





## The Covalent Chemical Bond: A Model

#### Models

Models are attempts to explain how nature operates on the microscopic level based on experiences in the macroscopic world.

### **Fundamental Properties of Models**

- 1. A model does not equal reality.
- 2. Models are oversimplifications, and are therefore often wrong.
- 3. Models become more complicated as they age.
- 4. We must understand the underlying assumptions in a model so that we don't misuse it.

## Table 8.4 Average Bond Energies (kj/mol)

| Single Bonds |     |       |     |       | Multiple | Multiple Bonds |     |
|--------------|-----|-------|-----|-------|----------|----------------|-----|
| Н—Н          | 432 | N—H   | 391 | I—I   | 149      | C=C            | 61  |
| H—F          | 565 | N—N   | 160 | I—Cl  | 208      | C≡C            | 83  |
| H—Cl         | 427 | N—F   | 272 | I—Br  | 175      | 0=0            | 49  |
| H—Br         | 363 | N—Cl  | 200 |       |          | $C=O^*$        | 74  |
| H—I          | 295 | N—Br  | 243 | S—H   | 347      | C≡O            | 107 |
|              |     | N—O   | 201 | S—F   | 327      | N=O            | 60  |
| С—Н          | 413 | O—H   | 467 | S-Cl  | 253      | N=N            | 41  |
| С—С          | 347 | 0—0   | 146 | S—Br  | 218      | N≡N            | 94  |
| C—N          | 305 | O—F   | 190 | s—s   | 266      | C≡N            | 89  |
| С—О          | 358 | O—Cl  | 203 |       |          | C=N            | 61  |
| C—F          | 485 | O—I   | 234 | Si—Si | 340      |                |     |
| C—Cl         | 339 |       |     | Si—H  | 393      |                |     |
| C—Br         | 276 | F—F   | 154 | Si-C  | 360      |                |     |
| C—I          | 240 | F-Cl  | 253 | Si—O  | 452      |                |     |
| C—S          | 259 | F—Br  | 237 |       |          |                |     |
|              |     | Cl-Cl | 239 |       |          |                |     |
|              |     | Cl—Br | 218 |       |          |                |     |
|              |     | Br—Br | 193 |       |          |                |     |

Copyright © Houghton Mifflin Company. All rights reserved.

#### Table 8.5 Bond Lengths for Selected Bonds

| ngle          | Bond Length (pm) | Bond Energy (kJ/mol)<br>347 |
|---------------|------------------|-----------------------------|
| ngle<br>ouble | 154              | 347                         |
| ouble         | 124              |                             |
|               | 154              | 614                         |
| riple         | 120              | 839                         |
| ngle          | 143              | 358                         |
| ouble         | 123              | 745                         |
| ngle          | 143              | 305                         |
| ouble         | 138              | 615                         |
| inle          | 116              | 891                         |
| (             | ouble            | ouble 138<br>iple 116       |



## The Localized Electron Bonding Model

#### Localized Electron Model

A molecule is composed of atoms that are bound together by sharing pairs of electrons using the atomic orbitals of the bound atoms.

#### Localized Electron Model

- 1. Description of valence electron arrangement (Lewis structure).
- 2. Prediction of geometry (VSEPR model).
- 3. Description of atomic orbital types used to share electrons or hold long pairs.



#### **Lewis Structures**

#### Lewis Structure

Shows how valence electrons are arranged among atoms in a molecule.

Reflects central idea that stability of a compound relates to noble gas electron configuration.

#### Lewis Structures

- 1. Sum the valence electrons.
- 2. Place bonding electrons between pairs of atoms.
- 3. Atoms usually have noble gas configurations.

## Figure 8.14 G.N. Lewis



## React 8

# Draw a Lewis structure for each of the following molecules:

- H<sub>2</sub>
- N<sub>2</sub>
- O<sub>2</sub>
- F<sub>2</sub>

## A Diamond Anvil Cell Used to Study Materials at Very High Pressures





 $\sqrt{}$ 

 $H_2O$ 

V NH3

V C Cly

 $O_2$ 

Draw a Lewis structure for each of the **following** molecules: HF CH<sub>3</sub>OH

# React 10

Draw a Lewis structure for each of the following molecules: CO  $CO_2$ CH<sub>3</sub>OH BF<sub>3</sub>  $C_2H_6O$  $NO_3$ XeO, PCI<sub>5</sub>  $NO_3^-$ BEHZ



## Molecular Structure: The VSEPR Model

#### VSEPR Model

The structure around a given atom is determined principally by minimizing electron pair repulsions.

## Predicting a VSEPR Structure

- 1. Draw Lewis structure.
- 2. Put pairs as far apart as possible.
- 3. Determine positions of atoms from the way electron pairs are shared.
- 4. Determine the name of molecular structure from positions of the atoms.

| VSEPR   |  |
|---------|--|
| loading |  |
|         |  |

| VSEPR: Two Electron Pairs |  |
|---------------------------|--|
|                           |  |
| loading                   |  |
|                           |  |
|                           |  |
|                           |  |

## Linear Molecules with Two Identical Bonds



Copyright © Houghton Mifflin Company. All rights reserved.

| VSEPR: Three Electron Pairs |  |
|-----------------------------|--|
|                             |  |
| loading                     |  |
|                             |  |
|                             |  |

## Planar Molecules with Three Identical Bonds 120 Degrees Apart



| loading |  |
|---------|--|
| ioaunig |  |
|         |  |
|         |  |

Balloons Tied Together Naturally Form Tetrahedral Shape



### Tetrahedral Molecules with Four Identical Bonds 109.5 Degrees Apart


### Figure 8.15 The Molecular Structure of Methane





#### Figure 8.16 a-c The Molecular Structure of Ammonia is a Trigonal Pyramid



#### Figure 8.17 a-c The Tetrahedral Arrangement of Oxygen In a Water Molecule



Figure 8.19 a & b In a Bonding Pair of Electrons the Electrons are Shared by Two Nuclei (b) In a Lone Pair, Both **Electrons Must** Be Close to a Single Nucleus



## Figure 8.18 The Bond Angles In the CH4, NH<sub>3</sub>, and H<sub>2</sub>0 Molecules



#### Table 8.6 Arrangements of Electron Pairs Around an Atom Yielding Minimum Repulsion



Table 8.7 Structures of **Molecules** that Have Four Electron Pairs Around the Central Atom



Table 8.8 Structures of Molecules with Five **Electron Pairs** Around the **Central Atom** 



#### Figure 9.22a The Structure of the PCI5 Molecule



#### Figure 8.21 a-c Three Possible Arrangements of the Electron Pairs in the I<sub>3</sub>- Ion



#### **VSEPR:** Iodine Pentafluoride

| loading |  |
|---------|--|
|         |  |
|         |  |

#### Figure 8.20 a & b Possible Electron Pair Arrangements for XeF<sup>4</sup>



Figure 8.22 a-c The Molecular Structure of Methanol



#### Queen Bee



### React 11

Determine the shape for each of the following molecules, and include bond angles:

- HCN
- $PH_3$
- $SF_4$

O<sub>3</sub> KrF<sub>4</sub>

### Reaver To determine the shape of a molecule, what is always the first step?

- How do we treat multiple bonds in VSEPR theory?
- If more than one atom can exceed the octet rule, where do the extra electrons go?

# React 13

True or false:

A molecule that has polar bonds will always be polar.

- -If true, explain why.
- -If false, provide a counter-example.

# React 14

True or false:

Lone pairs make a molecule polar.

- -If true, explain why.
- -If false, provide a counter-example.