Chapter 8

Mendel & Heredity

Mendelian Genetics

- Gregor Mendel- was a Czechoslovakian monk who grew pea plants to study their traits and heredity
- the "Father of Genetics"

Mendel's Work

- Traits- characteristics of an organism
 Ex: height, hair color, shape, blood type
- Heredity- the study of traits that are passed from parents to offspring

 Genetics- field of biology studying heredity & DNA

Mendel's Experiments

Plant Height: tall vs. short plants Flower Color: purple vs. white flowers Seed Color: yellow vs. green seeds Seed Shape: smooth vs. wrinkled seeds Pod Color: green vs. yellow pods Pod Shape:inflated vs. constricted pods

Pea Plant Traits

	Dominant		Recessive
Character	Trait	\sim	Trait
Flower color	Purple	×	White
Flower position	Axial	×	Terminal
Seed color	Yellow	×	Green
Seed shape	Round	×	Wrinkled
Pod shape	Inflated	×	Constricted
Pod color	Green	×	Yellow
Stem length	Tall	×	Dwarf

Dominant & Recessive Traits (Alleles)

- Genes- a segment of DNA that determines an organisms traits
 - An organism has 2 Alleles for each trait(1 from each parent)
- **Dominant Alleles (D)-** stronger genes, are always seen in the organisms appearance
- Recessive Alleles (d)- weaker genes, are hidden by dominant genes
 - Recessive alleles are only seen if an organism has 2 recessive genes for the trait

Dominant vs. recessive

- **Dominant** = Capitol ex: **R** red gene
- **recessive** = lower case ex: **<u>r</u>** white gene

• Genotypes:

RR = red (pure) – 2 dominant genes
Rr = red(hybrid) – 1 dominant, 1 recessive gene
rr = white(pure) – 2 recessive genes

Genotype & Phenotype

Genotype- the combination of genes for a trait

– Ex: Rr, RR, rr

- Phenotype- the physical appearance of a trait
 - Ex: flower color- red or white

Genotype

Phenotype

Principles of Genetics

- Principle of Dominance- one gene for a trait may hide the other gene and prevent it from being expressed(seen)
 - Ex: dominant hides recessive, **Rr** = red

White gene is hidden

• **Principle of Segregation-** the 2 genes for a trait separate when sex cells(gametes) are formed

- Ex: Eggs & sperm only contain 1 gene for each trait

Principles of Genetics

- Principle of Independent Assortmentgenes for different traits separate independently of one another during the formation of gametes(egg & sperm)
 - Ex: there is a 50:50 chance of getting a specific gene from each parent

Incomplete Dominance

 Incomplete Dominance is a rare occurrence when 2 genes blend together to form a trait

RR' = pink

Probability

 Probability is the likelihood that a gene or trait will be inherited

Duelling Idiots and Other Probability Puzzlers PAUL J. NAHIN

Punnett Squares

 Punnett squares are charts that show possible gene combinations when 2 organisms produce offspring

Monohybrid Cross

- A cross involving only 1 trait
- Both parents are hybrids in monohybrid cross
- * Both parents have 1 dominant & 1 recessive gene for the trait

Ex: Eye colorEx: Pea-Pod color

- A dihybrid cross involves 2 traits
- Both parents are hybrids for both traits
- Both parents have 1 dominant and 1 recessive gene for each trait

Ex: <u>Pea Shape & Color</u> Shape: **R** = round, **r** = wrinkled Color: **Y** = yellow, **y** = green

Ex: Pea Shape(**Rr**) & Pea Color(**Yy**)

- Phenotypic Ratio- 9:3:3:1
- A dihybrid cross will ALWAYS result in the following ratio:
- 9 : both dominant traits
- 3:1 dominant & 1 recessive trait
- 3: 1 dominant & 1 recessive trait
- **1** : both recessive traits

Incomplete Dominance

 Incomplete Dominance occurs when both genes blend together when forming a trait

- Ex: Flower Color
- $\mathbf{R} = red$
- **R'** = white
- **RR'** = pink

Blood Types

 Human blood types are an example of codominant genes

- Human Blood Types:A
- Β
- AB
- Ο

Genetics of Blood Types

Blood Type Genes:
 Dominant Genes = I^A
 I^B

Recessive Gene = \mathbf{i}

Possible Combinations:
 I^AI^A = type AI^BI^B = type B
 I^Ai = type AI^Bi = type B
 I^BI^A = type ABii = type O

Blood Types

Giving & Receiving Blood

Blood Type Punnetts

Ex: Mother Type AB(I^AI^B)
 Father Type O(ii)

Ex: Mother Type A (I^Ai)
 Father Type B (I^Bi)

Sex-Linked Traits

- Sex-linked traits are traits that are inherited only on the X-chromosome
- The Y-chromosome does not carry sex-linked traits
- Ex: Hemophilia(h) a recessive sex-linked trait
- X normal X
- \mathbf{X}^{h} X carrying hemophilia gene
- Y normal Y

Hemophilia Punnett Square

Carrier Mother(X^hX) & Normal Father(XY)

END OF CHAPTER 8 NOTES!!!