CH 5 Nomenclature

5.1-5.6 Naming Compounds

Chemical Names & Formulas

- Objectives:
 - Explain the significance of a chemical formula
 - Determine the formula of an ionic compound formed between two given ions
 - Name an ionic compound given its formula
 - Using prefixes, name a binary molecular compound from its formula
 - Write the formula of a binary molecular compound given its name.

Chemical Formula

- Molecular compound C₈H₁₈
 - 1. Reveals types of atoms in single molecule
 - 2. Subscript tells the number of atoms
- Ionic Compound Al₂(SO₄)₃
 - 1. Formula unit tells the ratio of cations to anions
 - 2. Subscript tells the number of that atom in the unit
 - 3. Charges of ions represented at superscripts with the charge symbol
- Monoatomic lons
 - 1. Ions formed from a single atom
 - 1. Groups help identify gaining or losing e-
 - 2. D block can form multiple cations
- Nomenclature: naming system

Naming Ionic Binary Compounds

- Ionic- metal + nonmetal
- Positive ion (cation) always comes first!
- Name the ions!
- If the metal forms only one cation...
- 1. Name cation (elements name)
- 2. Name anion
 - Start w. beginning of element's name (root) and add ide suffix
 - 2. Ex. Chlorine \rightarrow chloride

Practice

- Name the following compounds:
 - CaO
 - Nal
 - $A|C|_3$

If the cation forms more than one cation ...

- usually transition metal (some group 3 elements)
- 1. Name cation
- 2. Specify which ion formed w/ Roman Numeral in parentheses after name of cation
 - FeCl₂
 - ? + 2 (1-) =0 must balance w/ 2 Cl 1- charges OR REVERSE CROSS OVER METHOD
- 3. Write name of anion w/ "ide" ending

Practice

- Write the name for the following compounds:
 PbO₂ *
 Fe₂O₃
- MgO_2

Naming Covalent Binary Compounds

- Contains only nonmetals
- 1. Name first element (full name)
- 2. Name 2nd element
- 3. Add prefixes to show # of atoms present for each element
 - -mono- never used on first element
 - CO carbon monoxide

Mono-1 di-2 tri-3 tetra-4 penta-5 hexa-6 hepta-7 Octa-8

Practice

- Write the name for the following compounds:
- 1. BF₃
- 2. NO (* often drop o or a on prefix if element following is oxygen)
- 3. N_2O_5

Water (H₂O) & Ammonia (NH₃) always referred to as common name

Fig 5.1

Naming Compounds w/ Polyatomic Ions

- Charged entities w/ several atoms bonded together assigned special names
- Some anions contain element bonded w/ differing # oxygen atoms = oxyganions
 - When 2 in a series, one w/ less oxygen atoms ends
 w/ -ite; w/ more oxygen ends w/ -ate
 - Ex. SO₃²⁻ sulfite SO₄²⁻ sulfate

Naming Compounds w/ Polyatomic Ions

- When more 2 oxyanions make up series: Hypo (less than) and per- (more than) used as prefixes to name members w/ fewest + most oxygen atoms
 - ClO⁻ hypochlorite
 - ClO_2^- chlorite
 - CIO_3^- chlorate
 - ClO₄⁻ perchlorate

Rules for naming compounds apply the same to these

Naming Acids

- Acids: substances that when dissolved in H₂O, produce H⁺ ions (protons)
 - First recognized by sour taste
 - Ex. citric acid (tartness of lemons + limes)
 - Rules depend on whether anion has oxygen involved

Naming Acids w/o Oxygen involved

- Acid named w/ prefix hydro- and suffix –ic attached to root name of element
- Ex. gaseous HCl dissolved in water forms hydrochloric acid
- Ex. H₂S dissolved in water hydrosulfuric acid

Naming Acids w/ Oxygen involved

- Root name the central atom of the anion or anions name w/ suffix –ic or –ous
 - When anion name ends in –ate \rightarrow -ic is used
 - Ex. H_2SO_4 SO_4^{2-} (anion) sulfate sulfuric acid
 - When anion name ends in –ite suffix \rightarrow -ous is used
 - Ex. H_2SO_3 SO_3^{2-} sulfite sulfurous acid

Fig 5.3