Measurement

Chemistry Chapter 2
Scientific Notations, Measurement,
Metric System

Scientific Notation

 Scientific notation: a method for making very large or small numbers more compact and easier to write.

 Express # as a product of a # between 1-10 and an appropriate power of 10

Practice

- 1. Ex 93000000 becomes 9.3 x 10⁷
 - (moved to the left, number got "smaller" so exponent is positive)
- 2. 0.010 become 1.0×10^{-2}
 - (moved to the right, number got "bigger" so exponent is negative)

Measurement

 Units: part of measurement that tells us what scale or standard to represent the result.

- 2 systems of measurement:
 - English System Empirical Units (used in United States) includes: feet, inches, ounces pounds)
 - System International- Metric System (used around the world, and in science) meters, grams etc.
 - Includes derived units (density, volume)

Metric System

- We use the metric system in science!!
- All SI standards
 (metric system) are
 <u>universally</u> accepted and understood by scientists throughout the world.
- Each type of SI measurement has a base unit
- The SI system is easy to use because it is based on multiples of <u>10</u>

Quantity Measured	Unit	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	А	
Temperature	kelvin	K	
Amount of substance	mole	mol	
Intensity of light	candela	cd	

Standards of Measurement

- A Standard is an exact quantity that people agree to use to compare measurements
 - All scientists around the world can compare results
- For a measurement to make sense, it must include both a <u>number</u> and a <u>unit</u>

Measuring Matter

- Mass is a measurement of the <u>quantity</u> of matter in an object
- It is how much <u>stuff</u> makes up the object
- The SI unit for mass is the <u>kilogram (kg)</u>
- Mass is measured by either a <u>triple beam</u> <u>balance</u> or an <u>electric balance</u>

Measuring Length

- Length: the distance between two points
- Measured in meters (m)
- We use a meter stick or metric ruler to measure length.

Measuring Time

- Time is the *interval* between two events
- The SI unit for time is the <u>second (s)</u>
- Time is measured by using a clock or <u>stopwatch</u>

Measuring Temperature

- Temperature (for now) is a measure of how <u>hot</u> or <u>cold</u> an object is
- The SI unit for temperature is the <u>Kelvin (K)</u>
- For most scientific work, temperature is measured using <u>Celsius (°C)</u>
- Temperature can also be measured in
 Fahrenheit (°F) [will not use this in science!] or
 Kelvin
 Note that Celsius and Fahrenheit both use the degree (°) symbol, but that Kelvin does not!
- Zero on the Kelvin scale (0 K) is the coldest possible temperature, also known as <u>absolute</u> <u>zero</u>

Measuring Temperature

Measuring Temperature

These three
 thermometers illustrate
 the scales of
 temperature between
 the freezing and boiling
 points of water.

Converting Temperatures

- OC to Kelvin:
 - since zero Celsius corresponds to 273 K— add 273 to the Celsius temp. (subtract 273 to other way)

$$-45$$
 ° C = ____K

OC to OF:

```
-180 \, {}^{\circ}F = 100 \, {}^{\circ}C \, (1.8 \, {}^{\circ}F = 1 \, {}^{\circ}C)
- T \, ({}^{\circ}F) = 1.80 \, (T^{\circ}C) + 32
```

- °F to °C:
 - Rearrange the equation above

Practice

• 100 °C → °F

• 33 °C → ____ K

Derived Units

- A unit obtained by <u>combining</u> or <u>manipulating</u> different SI units is called a derived unit
- Examples of derived units include <u>volume</u> and <u>density</u>

Measuring Volume

- Volume is the amount of <u>space</u> occupied by an object
- To measure the volume of a solid rectangle, you measure its <u>length</u>, <u>width</u>, <u>and height</u> and multiply the three numbers together (<u>V = \(x \ w \ x \ h \)</u>).
- If measured in centimeters (<u>cm</u>), the volume would then be expressed in cubic centimeters (<u>cm</u>³)

Measuring Volume

- Another way to measure solid objects is by using the <u>water displacement method</u>
- This is the preferred way when the object does not have a <u>mathematical</u> equation for its volume or is an irregular shape.
- Volume = Final volume Initial volume
- $V = V_f V_i$

Measuring Liquid Volumes

- Liquid volumes indicate the capacity (<u>or</u> <u>amount</u>) that the container holds
- The most common units for liquid volumes are <u>L and mL</u>
- Liquid volumes are measured by <u>graduated</u> <u>cylinders</u>
- Sometimes liquid volumes such as doses of medicine are measured in <u>cubic centimeters</u>
- One cubic centimeter is exactly the same volume as one milliliter.
- $1 \text{ mL} = 1 \text{ cm}^3 = 1 \text{cc}$

Density

- Combining the mass and volume of an object can be used to find the density of the object
- Density cannot be measured <u>directly</u>. It must be <u>calculated</u> from the objects mass and volume.
- Density is the mass per unit volume of a substance

Density =
$$\frac{Mass}{Volume}$$
 or $D = \frac{M}{V}$

Practice

- What is the density of a bowling ball if it has a mass of 17.6kg and a volume of 4.18L?
- If a block of wood has a density of 0.85g/mL and is 114mL, what is the mass of the wood?

Uncertainty in Measurement

- Must rely on visual measurements often or equipment with measurement limits so some measurements could be recorded slightly different by another.
- Certain numbers: numbers the same regardless of who measures (shown on tool)
- Uncertain number: estimated, can vary
- Record certain numbers and first uncertain number!

Significant Figures

- All measurement has some degree of uncertainty.
- chemistry requires math so we must know the uncertainty of the result.

Rules for Significant Figures

- Nonzero Integers always count!
 - (ex. 1457 = 4 sig figs)
- 2. Zeros:
 - A. Leading zero: (precedes all nonzero digits) NEVER count. Ex. 0.0025 = 2 sig figs
 - B. Captive zero: (fall between nonzeros) ALWAYS count. Ex. 1.008 = 4 sig figs
 - C. Trailing zeros: (right at end of #) signi9cant if with decimal Ex. 100 =1 sig fig; 100. = 3 sig figs
- 3. Exact numbers: (arise from definitions) unlimited significant figures

Rules apply to scientific notation also $100. -> 1.0 \times 10^2 = 3 \text{ sig figs}$

Rules for Rounding

If digit to be removed is...:

- 1. less than 5 = preceding digit stays same $(1.33 \rightarrow 1.3)$
- 2. equal to increased/greater than 5 = preceding digit (ex. $1.36 \rightarrow 1.4$)

In series of calculation: carry extra digits to final, then round

Significant Figures in Calculations

1. Multiplication/Division: keep the same significant numbers as that in the measurement with the **least # of sig figs**.

 \rightarrow 6.4

8.315/298 = 0.0279027

 \rightarrow 2.79 x 10⁻²

Sig Figs in Calculations

 2. Addition/Subtraction: limiting term is one with least # of decimal places.

Ex 12.11

18.00

+ 1.013

31. 123

 \rightarrow 31.1

Ex. 0.6875

- 0.1

0.5875

→ 0.6

Conversions

Prefix	Symbol	Meaning	Scientific notation
Mega	M	1,000,000	10 ⁶
kilo	k	1000	10³
deca	da	10	10 ¹
deci	D	0.1	10 ⁻¹
centi	С	0.01	10-2
milli	M	0.001	10 ⁻³
micro		0.000001	10 ³⁶
nano	n	0.00000001	10 ⁻⁹

Conversions Steps

- 1. Start with what's given.
- 2. Multiply by conversion factor w/ wanted unit on top (repeat until final unit is what's wanted)
- 3. Cancel units (double check you get correct units)
- 4. Multiply Straight Across
- 5. Divide
- 6. Round/Sig Figs
- 7. Does answer make sense?

Conversions Practice

From Empirical to metric:

Conversion Factor:

2.54cm=1in

Ex. Covert 48 ounces to grams.

Conversion

Factor: 1 Ounce =

28.35 Grams

Metric Conversions

Metric Conversions

1. Meters \rightarrow kilometers (1000m = 1 km)

$$4.21 \times 10^4 \text{ m} = ____k \text{m}$$

THERES A
SHORTCUT! –
Look at the
staircase

Convert 180 milliliters to liters

YAY! For the Metric System--- So much easier!

