CH 11 Introduction to GENETICS

11-1 The work of Gregor Mendel
11-2 Probability and Punnett squares
11-3 Exploring Mendelian Genetics
11-4 Meiosis
11-5 Linkage and Gene Maps

11-1 The work of Gregor Mendel

- At age 21 Gregor Mendel's knowledge of statistics helped him discover Heredity- The transmission of characteristics from parents to offspring
- While in his garden Mendel noticed the two contrasting **Traits** in his pea plants
 - Plant height (long or short stems)
 - Seed color (green or yellow)
 - Flower color (Purple or white)
 - 14 total Traits

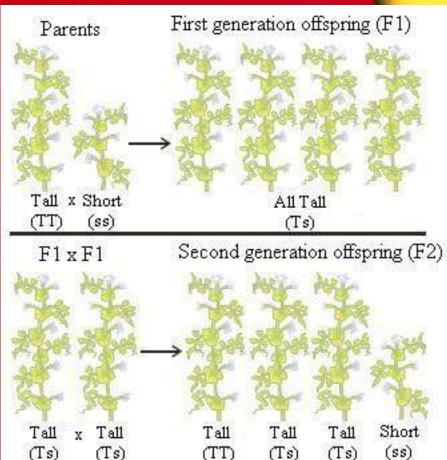
11-1 The work of Gregor Mendel Pollination-Pollen grains (Male) go into the flowers stigma (Female)

- Fertilization produces a new cell which develops into a tiny embryo encased in a seed
- Began by <u>True-Breeding</u> a plant pure for each of the 14 traits
 - Pure=Always producing the same trait
- Each parent generation is called the P₁ Generation, First generation is F₁ generation, and second generation F₂ generation, and so on

11-1 The work of Gregor Mendel

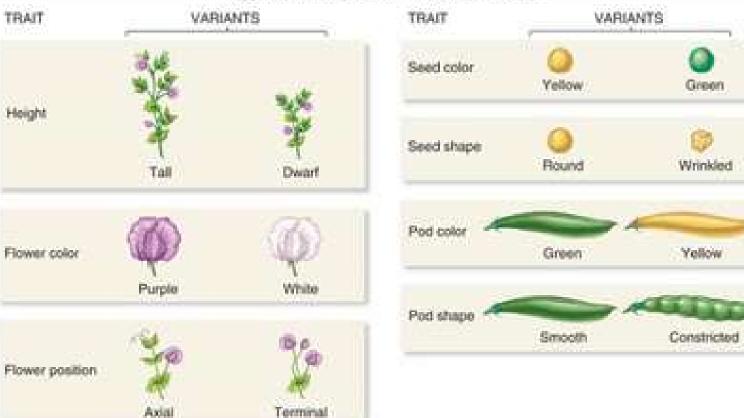
 Mendel would cross the P₁ traits and one of the traits never appeared in F₁

- When he crossed the F_1 plants the traits would appear in a 3:1 Ratio in F_2
- He concluded that one trait was Dominant because it masked the other trait



11-1 The work of Gregor Mendel The trait that didn't

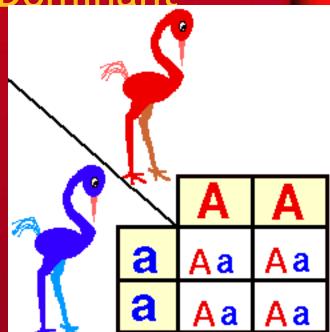
appear in F₁ but appeared in F₂ was said to be R**ecessive**


- Each trait is controlled on a piece of your DNA on a Chromosome which is called an Allele
 - Since chromosomes exist in pairs, your alleles occur in pairs

Dominant vs recessive

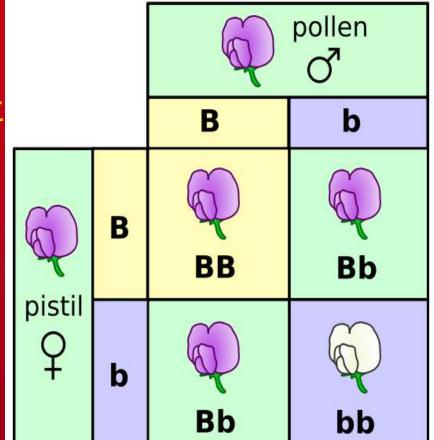
Questions

Probability and Punr Squares

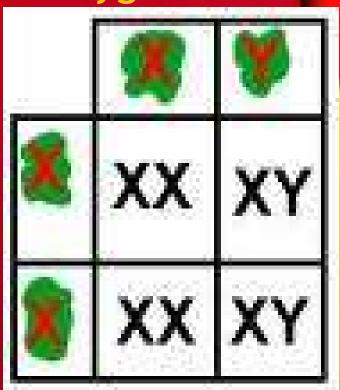

- The likelihood that a particular event will occur is called <u>Probability</u>
- The principles of probabilities can be used to predict the outcomes of genetic crosses
 - Mendel recorded all of the outcomes he got in every genetic cross to understand

11-2 Probability and Punne Squares

- Genotype- The genetic make-up of an organism
- Phenotype- The appearance of an organism as a result of its genotype
- Homozygous- When both alleles are alike
 - Example- PP (Dominant) or pp (Recessive)
- Heterozygous- When both alleles in the pair are different- Example- Pp


Punnett square- Diagram to aid biologists in predicting probability that traits will be inherited by an offspring

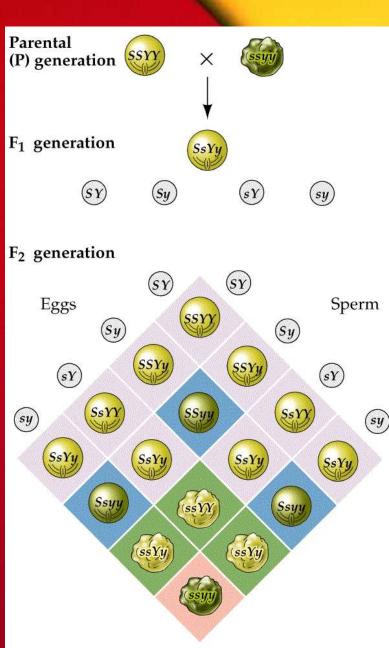
Example 1 Homozygous Dominant Homozygous Recessive All Offspring will be Heterozygous All Offspring will be Red-Dominant. Gene



Example 2 Heterozygous X Heterozygous

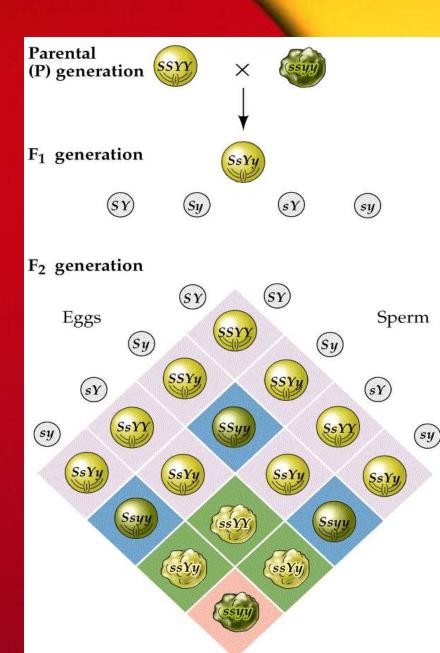
- Purple flower is dominant
- Offspring will be 3:1
- 1 homozygous dominant
- 2 heterozygous
- 1 homozygous recessive
- 3 Purple-1 White
 - Just like Mendel observed in F₂ generation

Example 3 Heterozgous x Homozygous • Half offspring will be Homozygous • Half offspring will be Heterozygous



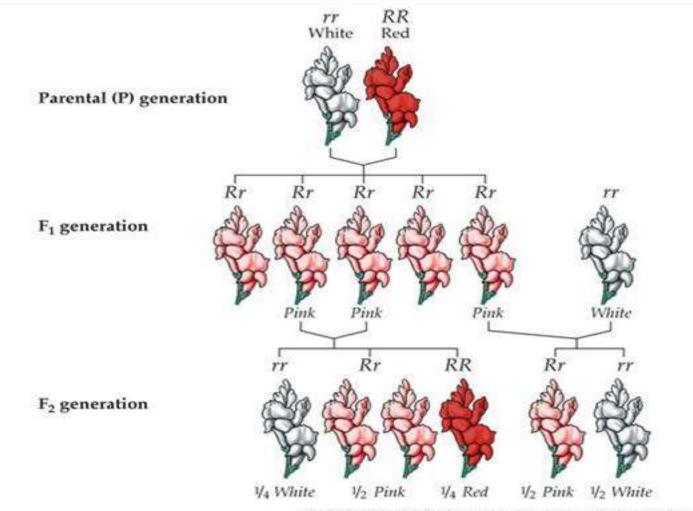
Questions

• Pg 269 (1-5)

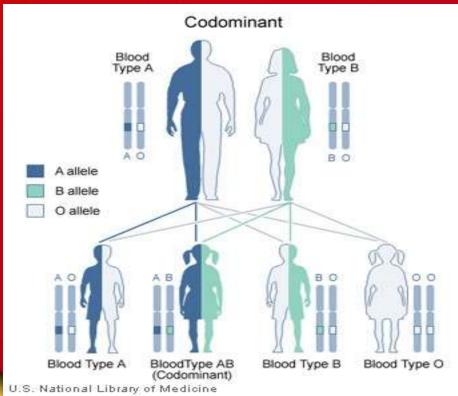

11-3 Exploring Mendelian Genetics
Does the gene for round/wrinkly affect Yellow/Green

- Two factor cross-F1 does not show that genes are independent
 - Yellow and round stay together

Exploring Mendelian Genetics • The factor cross:F2 shows that alleles for seed shape segregate independently of those for seed color alled Independent ortment


1-3

 The principle of independent assortment states that genes for different traits can segregate independantly during the formation of gametes-leading to genetic variation in plants and animals


- Some alleles are neither dominant nor recessive, and may traits are controlled by multiple alleles or genes
- In <u>incomplete dominance</u> the heterozygous phenotype is somewhere between the two homozygous phenotypes

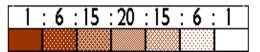
Incomplete dominance

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 10.13 Incomplete Dominance Follows Mendel's Laws © 2004 Service Associates, Vic. and W. H. Preeman & Co.

<u>Codominance</u> is when both alleles contribute to the phenotype

 Many genes have more than 2 varieties of alleles and are said to have Multiple Alleles

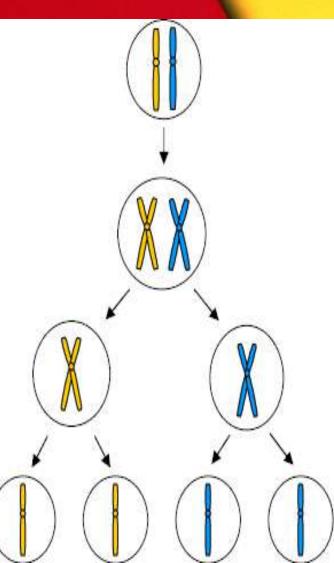
Possible genotypes	CC, Cc ^{ch} , Cc ^h , Cc	cchcch	cehch, cehc	chch, chc	cc	
Phenotype	Dark gray	Chinchilla	Light gray	Himalayan	Albino	



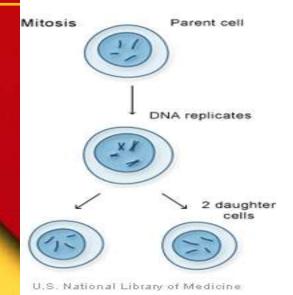
 Traits controlled by two or more genes are said to be Polygenic traits

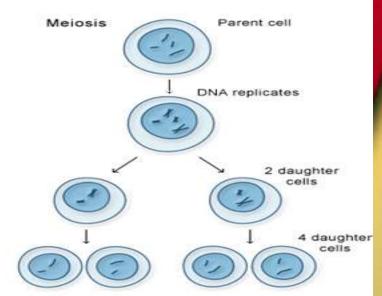
> Skin color in humans is controlled by 4 different genes giving up a large variety

	ABC							
ABC	AABBCC							
ABc	AABBCc							
AbC	AABbCC							
Abc	AABbCc	Aabboo						
aBC	AaBBCC							
aBc	AaBBCc	AaBBcc	AaBbCc	AaBbcc	aaBBCc	ааВВсс	aaBbCc	aaBbcc
abC	AaBbCC							
abc	AaBbCc	AaBbcc	AabbCc	Aabboo	aaBbCc	aaBbcc	aabbCc	aabbcc

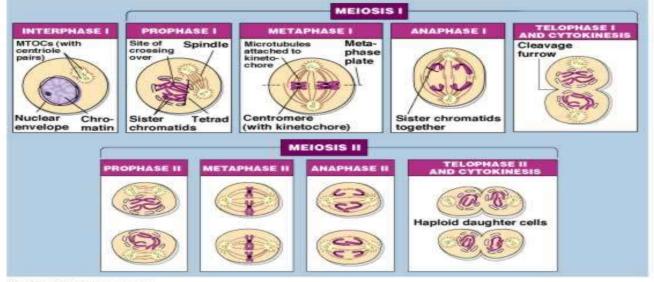

 Genes provide a plan for development, but how that plan unfolds also depends on the environment

• Pg 274 1-5

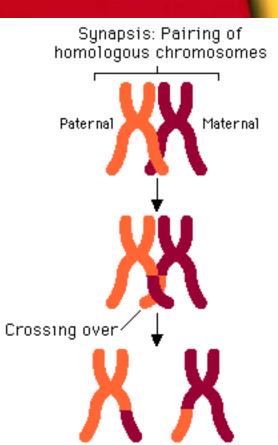

- Mendels Principles of genetics require:
- 1) Each organism must inherit a single copy of every gene from each parent
- 2) When that organism produces gametes those two genes separate from each other and each gamete receives one


 Chromosomes come in pairs (one from each parent) that are called <u>Homologous</u>

 Cells that only have one set of chromosomes are called <u>Haploid (1n)</u>


 Meiosis is a process of reduction division in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes in a diploid cell

Meiosis I-


- Similar to Mitosis-
 - Prior- DNA replicates
- During Prophase Homologous
 - Chromosomes pair up creating a Tetrad

CAddison Wesley Longman, Inc.

Meiosis I (cont)

 As homologous chromosomes pair up and form tetrads they can exchange portions of their chromatids called <u>Crossing</u> <u>over</u>

Meiosis II

- Two cell that were created in Meiosis I now enter a second Meiotic division
- The two cells created each have 2 chromatids
- Meiosis II is similar to mitosis without reproducing DNA prior to entering

- Mitosis results in the production of two genetically identical diploid cells, whereas meiosis produces four genetically different haploid cells
- Pg 278 (1-5)
 - Ch 11 Test Next Thurs!!!©
 - Notebook due friday
 - Finish your Punnett Square worksheet

11.5 Linkage and Gene Maps

- It is the chromosomes, that sort independently, not the genes
- All of Mendels traits he studied on pea plants were on different chromosomes
- Example- Domesticating Wolves
 - Aggressive genes are on the same chromosomes as Ears
 - Breed this gene out and wolves become calm with floppy ears (DOGS)

11.5 Linkage and Gene Maps

- If genes are on the same chromosome that doesn't mean they are together forever
- Remember during crossing over pieces of chromosomes can be exchanged
 This directly leads to genetic variation throughout nature

11.5 Linkage and Gene Maps

- Where each gene is located on its chromosome is called the <u>Gene Map</u>
- Genes locations are figured out according to crossover frequency
- More frequent genes are separated during crossover, farther genes are apart

Extent of

Body Eye Wing color color shape

is proportional to distance between

- Review Wed
- Ch 11 Quiz Thurs
- Pg 280 (1-4) Due in notebook with complete sentences in 6 weeks