Essentials of Human Anatomy & Physiology

Seventh Edition

Elaine N. Marieb

Adapted by H. Goon, North HS, Phoenix, AZ

The Cardiovascular System (Chapter 15)

Overview of the Cardiovascular System

- The cardiovascular system is a <u>closed</u> system of the heart and blood vessels
 - the heart pumps blood into blood vessels
 - blood vessels circulate the blood to all parts of the body, to ALL cells
- Functions: to deliver oxygen and nutrients to all body cells, transport enzymes and hormones, and to remove carbon dioxide and other waste products from the cells

External Heart Anatomy

A) Anatomy of the Heart 1. Location

- thoracic cavity
- in the mediastinum, between the lungs

Can you describe the location of the heart?

The heart is ______to the lungs, ______to the sternum, ______to the vertebral column, and ______to

the diaphragm.

 Its ______ end, the apex, points to the left, terminating at the level of the 5th intercostal space.

- The heart is <u>medial</u> to the lungs, <u>posterior</u> to the sternum, <u>anterior</u> to the vertebral column, and <u>superior</u> to the diaphragm.
- Its <u>distal</u> end, the apex, points to the left, terminating at the level of the 5th intercostal space.

2. Size

- approximately the size of a person's fist & less than 1 pound
- ~ 14 cm long; 9 cm wide

- 3. Coverings of the heart a) pericardium (or pericardial sac)
 - 1) fibrous pericardium—sac made of tough connective tissue
 - 2) double layered serous membrane:
 - a. parietal pericardium
 - b. visceral pericardium (a.k.a. epicardium)--covers the heart
 - b) serous fluid fills the pericardial cavity between parietal & visceral layers

4. Heart wall

- a) epicardium (aka visceral pericardium) outside layer of connective tissue on surface of the heart
- b) myocardium = thick wall of cardiac muscle
- c) endocardium—inner epithelial & connective tissue lining of heart and valves

5. Chambers of the heart (4)

- atrium (R & L)—receive blood
 - each atria extends into a smaller, external chamber called an auricle
- ventricle (R & L)—inferior to the atria; expel blood out of the heart
- The chambers on the left are separated from the chambers on the right by a septum (wall of cardiac muscle)
 interatrial septum
 - interventricular septum

External Heart Anatomy

Can you name each numbered part of the heart?

6. Heart Valves

a) are flaps that allow blood to flow in only one direction

b) <u>atrioventricular (AV) valves</u> – between each atrium and ventricle; allow blood flow from each atrium down into the ventricle

bicuspid/mitral valve (left side)

• tricuspid valve (right side)

c) <u>semilunar valves</u> - between ventricle and major heart artery; allow blood flow out of each ventricle through one of the major heart arteries; 3 cusps

- pulmonary valve (R ventricle & pulmonary trunk)
- aortic valve (L ventricle & aorta)

 d) The valve cusps are held in place by chordae tendineae ("heart strings") which originate from papillary muscles protruding from the inside of the ventricle wall

e) valve function

- when a chamber wall contracts blood is pumped through a valve
- any backflow increases pressure on the cusps and closes the valves

 AV valves close during ventricular contraction; papillary muscles also contract pulling the chordae tendineae which keep the valve cusps from prolapsing back into the atrium f) heartbeat sound

"dup" = when semilunar valves close

g) valve pathology

- an incompetent valve can lead to backflow, heard as a "heart murmur" and repumping (regurgitation) of the same blood
- stenosis = narrowing of valve increases workload on heart to pump out blood
- Treatment: valve repair or replacement

Video clip Overview of Circulation

http://www.bing.com/videos/search?q=blood+circulation&FORM=HDRSC3#v iew=detail&mid=D7FC584D7C3259E0686DD7FC584D7C3259E0686D

B) Paths of Blood Circulation

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

1. Major Blood Vessels of the Heart

- aorta carries blood from the left ventricle to upper & lower body
- pulmonary arteries (L & R): carries blood from right

ventricle to lungs

- vena cava (superior & inferior): carries blood from upper & lower body into right atria
- pulmonary veins (2 pairs, L & R): carry blood from lungs into

left atria

 aorta carries oxygenated blood from the left ventricle <u>to upper & lower body</u>

 pulmonary arteries : carries deoxygenated blood from right ventricle <u>to lungs</u>

 vena cava: carries deoxygenated blood <u>from upper & lower body</u> into right atria

 pulmonary veins: carry oxygenated blood <u>from lungs</u> into left atria

2. Systemic circuit

Slide 11.7

Slide 11.7

3. Coronary circuit

 The heart has its own network of blood vessels to supply the cardiac muscle cells

coronary arteries & veins, capillaries

 NOTE: The blood flowing through the heart chambers does NOT nourish the myocardium

Video clip Coronary Heart Bypass surgery

http://www.bing.com/videos/search?q=video+of+coronary+circulation&view=detail&mid=8B 64DE6E57407A5A5E1B8B64DE6E57407A5A5E1B&first=0&FORM=LKVR&adlt=strict#vi ew=detail&mid=7B67DD929983076406EC7B67DD929983076406EC

* Video clip of mitral valve disease

http://www.medmovie.com/mmdatabase/MediaPlayer.aspx? ClientID=65&TopicID=773

Heart Physiology How does the heart function?

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

A) The Cardiac Cycle

1. A cardiac cycle refers to the series of contractions & relaxations of the heart to produce a complete heartbeat

systole = contraction
diastole = relaxation

2. Events of the cardiac cycle Diastole

- I. Atria and ventricles fill with blood
- II. Atria contract (simultaneously) to complete the filling of ventricles; ventricles are relaxed

Left atrium Right atrium

Left ventricle Right ventricle

Systole

III. Ventricles contract forcing blood <u>up and out</u> of the heart arteries; AV valves shut ("lup")

IV. Backflow in the aorta & pulmonary arteries cause semilunar valves to shut ("dup")

Video: systole & diastole

<u>http://highered.mcgraw-</u> <u>hill.com/sites/0072495855/student_view0/chapter22</u> /animation_the_cardiac_cycle_quiz_2_.html

B) Conduction System

- is an intrinsic, nodal conduction system that regulates heart wall contractions via electrical impulses
- Specialized muscle tissue regulates contractions by carrying nerve impulses

i. sinoatrial (SA) node = "pacemaker" (located in the wall of the right atrium)

ii. atrioventricular (AV) node (in septum at the junction of the R & L atria)

iii. atrioventricular bundle or Bundle of His (in the interventricular septum)

iv. bundle branches (right and left)

v. Purkinje fibers (in the myocardium wall)

Video: Conduction

http://highered.mcgrawhill.com/sites/0072495855/student_view0/chapter22 /animation_conducting_system_of_the_heart.html

C) electrocardiogram (ECG or EKG) is a recording of the electrical changes in the

myocardium during a cardiac cycle

Time, msec

P wave: atria depolarize
QRS complex: ventricles depolarize
T wave: end of electrical activity in ventricles;
repolarization of ventricular muscles

(b) A normal ECG recording

(c) Ventricular fibrillation

D) Pathology of the Conduction System

- fibrillation = an irregular & often rapid heart rate; decreases blood flow
- tachycardia = more than 100 beats/min
- **bradycardia** = less than 60 beats/min

Possible causes of atrial fibrillation

Abnormalities /damage to the heart's structure due to:

- High blood pressure or Heart attacks
- Abnormal heart valves
- Congenital heart defects (you're born with)
- An overactive thyroid gland
- Stimulants (medications, caffeine, tobacco, alcohol)
- improper functioning of SA node
- Emphysema or other lung diseases
- Viral infections
- Stress due to pneumonia, surgery
- Sleep apnea

E) Cardiac Output

1. is the amount of blood pumped by the ventricle in one minute

2. Formula for cardiac output

= (heart rate) x (stroke volume*)

* volume of blood pumped by a ventricle in one contraction

3. Normal cardiac output

- = (75 beats/min) x (70 mL/beat)
 - = 5000 mL/min
- = 5 L/min

Cardiac output varies with demands of the body e.g.

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Cardiac Output Regulation

Q. How long does it take for a RBC to make a roundtrip through the body (via systemic circuit)?

5. The entire blood supply passes through body once every **minute**.

F) Regulation of Heart Rate

- 1. Stroke volume usually remains relatively constant
- 2. The most common way the body changes cardiac output is by changing the heart rate.

Decreases heart rate

- Parasympathetic nervous system
- High blood pressure or blood volume
- Decreased venous return
- In congestive heart failure the heart is worn out and pumps weakly. Digitalis works to provide a slow, steady, but stronger beat.

Cardiac Pathology

- Rapid heart beat
- = Inadequate blood
- = Angina Pectoris

Congestive Heart Failure (CHF)

- Decline in pumping efficiency of heart
- Inadequate circulation
- Progressive, also coronary atherosclerosis, high blood pressure and history of multiple Myocardial Infarctions
- Left side fails = pulmonary congestion and suffocation
- Right side fails = peripheral congestion and edema