

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Evaluate trigonometric functions of any angle
- Find reference angles
- Evaluate trigonometric functions of real numbers

Following is the definition of trigonometric functions of Any Angle. This applies when the radius is not one (not a unit circle).

Definition of Trigonometric Functions of Any Angle

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

Note: when x = 0, the tangent and secant of θ are undefined.

For example, the tangent of 90° is undefined since the sine of 90° is 1 and the cosine of 90° is 0. 1/0 is undefined.

Similarly, when y = 0, the cotangent and cosecant of θ are undefined.

Example 1 – Evaluating Trigonometric Functions

Let (-3, 4) be a point on the terminal side of θ (see Figure 4.34).

Find the sine, cosine, and tangent of θ .

Example 1 – Solution

Referring to Figure 4.34, you can see by using the Pythagorean Theorem and the given point that x = -3, y = 4, and

$$r = \sqrt{x^2 + y^2}$$

$$= \sqrt{(-3)^2 + 4^2}$$
$$= \sqrt{25}$$

= 5.

Example 1 – Solution

So, you have
$$\sin \theta = \frac{y}{r}$$

= $\frac{4}{5}$,
 $\cos \theta = \frac{x}{r}$
= $-\frac{3}{5}$,
and
 $\tan \theta = \frac{y}{x}$
= $-\frac{4}{3}$.

The *signs* of the trigonometric functions in the four quadrants can be determined easily from the definitions of the functions. For instance, because

$$\cos \theta = \frac{x}{r}$$

it follows that $\cos \theta$ is positive wherever x > 0, which is in Quadrants I and IV.

We will discuss "All Students Take Calculus" in class as a way to help us remember this.

The values of the trigonometric functions of angles greater than 90° (or less than 0°) can be determined from their values at corresponding acute angles called **reference angles**.

Definition of Reference Angle

Let θ be an angle in standard position. Its **reference angle** is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

Figure 4.37 shows the reference angles for θ in Quadrants II, III, and IV.

Figure 4.37

Example 4 – Finding Reference Angles

Find the reference angle θ' .

a.
$$\theta$$
 = 300° **b.** θ = 2.3 **c.** θ = -135°

Solution:

a. Because 300° lies in Quadrant IV, the angle it makes with the *x*-axis is

$$\theta' = 360^\circ - 300^\circ$$

= 60°.

b. Because 2.3 lies between $\pi/2 \approx 1.5708$ and $\pi \approx 3.1416$, it follows that it is in Quadrant II and its reference angle is

 $\theta' = \pi - 2.3$

Radians

- **≈** 0.8416.
- c. First, determine that –135° is coterminal with 225°,
 which lies in Quadrant III. So, the reference angle is
- $\theta' = 225^{\circ} 180^{\circ}$
 - = 45°.

Example 4 – Solution

Figure 4.38 shows each angle θ and its reference angle θ' .

Figure 4.38

Trigonometric Functions of Real Numbers

To see how a reference angle is used to evaluate a trigonometric function, consider the point (x, y) on the terminal side of θ , as shown in Figure 4.39.

Figure 4.39

Trigonometric Functions of Real Numbers

By definition, you know that

$$\sin \theta = \frac{y}{r}$$

and

$$\tan \theta = \frac{y}{x}.$$

For the right triangle with acute angle θ' and sides of lengths |x| and |y|, you have

and
$$\sin \theta' = \frac{\operatorname{opp}}{\operatorname{hyp}} = \frac{|y|}{r}$$
 $\tan \theta' = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{|y|}{|x|}.$

Trigonometric Functions of Real Numbers

So, it follows that $\sin \theta$ and $\sin \theta'$ are equal, except possibly *in sign*. The same is true for tan θ and tan θ' and for the other four trigonometric functions. In all cases, the sign of the function value can be determined by the quadrant in which θ lies.

Evaluating Trigonometric Functions of Any Angle

To find the value of a trigonometric function of any angle θ :

- 1. Determine the function value of the associated reference angle θ' .
- 2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

Example 5 – Trigonometric Functions of Nonacute Angles

Evaluate each trigonometric function.

a.
$$\cos \frac{4\pi}{3}$$
 b. $\tan = (-210^{\circ})$ **c.** $\csc \frac{11\pi}{4}$

Solution:

a. Because $\theta = 4\pi/3$ lies in Quadrant III, the reference angle is $\theta' = (4\pi/3) - \pi = \pi/3$, as shown in Figure 4.40.

Moreover, the cosine is negative in Quadrant III, so

$$\cos\frac{4\pi}{3} = (-)\cos\frac{\pi}{3}$$
$$= -\frac{1}{2}.$$

Example 5 – Solution

b. Because $-210^{\circ} + 360^{\circ} = 150^{\circ}$, it follows that -210° is coterminal with the second-quadrant angle 150°. Therefore, the reference angle is $\theta' = 180^{\circ} - 150^{\circ} = 30^{\circ}$, as shown in Figure 4.41.

Finally, because the tangent is negative in Quadrant II, you have.

$$\tan(-210^\circ) = (-)\tan 30^\circ$$

$$=-\frac{\sqrt{3}}{3}.$$

Figure 4.41

Example 5 – Solution

c. Because $(11 \pi/4) - 2\pi = 3\pi/4$, it follows that $11\pi/4$ is coterminal with the second-quadrant angle $3\pi/4$. Therefore, the reference angle is $\theta' = \pi - (3\pi/4) = \pi/4$, as shown in Figure 4.42.

Because the cosecant is positive in Quadrant II, you have

$$\csc \frac{11\pi}{4} = (+)\csc \frac{\pi}{4}$$
$$= \frac{1}{\sin(\pi/4)}$$
$$= \sqrt{2}.$$

