

Copyright © Cengage Learning. All rights reserved.



- Evaluate limits of functions at infinity.
- Find limits of sequences.

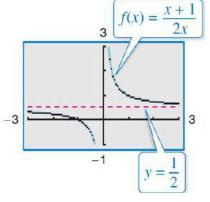


There are two basic problems in calculus: finding **tangent lines** and finding the **area** of a region.

We have seen earlier how limits can be used to solve the tangent line problem. In this section, you will see how a different type of limit, a *limit at infinity*, can be used to solve the area problem. To get an idea of what is meant by a limit at infinity, consider the function

f(x) = (x + 1)/(2x).

The graph of *f* is shown in Figure 11.29. From earlier work, you know that  $y = \frac{1}{2}$  is a horizontal asymptote of the graph of this function.





Using limit notation, this can be written as follows.  $\lim_{x \to -\infty} f(x) = \frac{1}{2}$ Horizontal asymptote to the left  $\lim_{x \to \infty} f(x) = \frac{1}{2}$ Horizontal asymptote to the right These limits mean that the value of f(x) gets arbitrarily close to  $\frac{1}{2}$  as x decreases or increases without bound.

**Definition of Limits at Infinity** If *f* is a function and  $L_1$  and  $L_2$  are real numbers, then the statements  $\lim_{x \to -\infty} f(x) = L_1 \quad \text{Limit as } x \text{ approaches } -\infty$ and  $\lim_{x \to \infty} f(x) = L_2 \quad \text{Limit as } x \text{ approaches } \infty$ denote the **limits at infinity.** The first statement is read "the limit of f(x) as x approaches  $-\infty$  is  $L_1$ ," and the second is read "the limit of f(x) as x approaches  $\infty$  is  $L_2$ ."

## Limits at Infinity and Horizontal Asymptotes

#### Limits at Infinity

#### If r is a positive real number, then

 $\lim_{x\to\infty}\frac{1}{x^r}=0.$ 

Limit toward the right

#### Furthermore, if $x^r$ is defined when x < 0, then

 $\lim_{x\to -\infty}\frac{1}{x^r}=0.$ 

Limit toward the left

# Example 1 – Evaluating a Limit at Infinity

## Find the limit.

$$\lim_{x\to\infty}\left(4-\frac{3}{x^2}\right)$$

## Solution:

Use the properties of limits.

$$\lim_{x \to \infty} \left( 4 - \frac{3}{x^2} \right) = \lim_{x \to \infty} 4 - \lim_{x \to \infty} \frac{3}{x^2}$$
$$= \lim_{x \to \infty} 4 - 3 \left( \lim_{x \to \infty} \frac{1}{x^2} \right)$$
$$= 4 - 3(0)$$

# Example 1 – Solution

So, the limit of

$$f(x) = 4 - \frac{3}{x^2}$$

as x approaches  $\infty$  is 4.

cont'd

## Limits at Infinity and Horizontal Asymptotes

Limits at Infinity for Rational Functions

Consider the rational function

 $f(x) = \frac{N(x)}{D(x)}$ 

where

 $N(x) = a_n x^n + \dots + a_0$  and  $D(x) = b_m x^m + \dots + b_0$ .

The limit of f(x) as x approaches positive or negative infinity is as follows.

$$\lim_{x \to \pm \infty} f(x) = \begin{cases} 0, & n < m \\ \frac{a_n}{b_m}, & n = m \end{cases}$$

If n > m, then the limit does not exist.



Limits of sequences have many of the same properties as limits of functions. For instance, consider the sequence whose *n*th term is  $a_n = 1/2^n$ 

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots$$

As *n* increases without bound, the terms of this sequence get closer and closer to 0, and the sequence is said to **converge** to 0. Using limit notation, you can write

$$\lim_{n\to\infty}\frac{1}{2^n}=0.$$

The following relationship shows how limits of functions of x can be used to evaluate the limit of a sequence.

Limit of a Sequence Let *L* be a real number. Let *f* be a function of a real variable such that  $\lim_{x\to\infty} f(x) = L$ . If  $\{a_n\}$  is a sequence such that  $f(n) = a_n$ for every positive integer *n*, then  $\lim_{n\to\infty} a_n = L$ .



A sequence that does not converge is said to **diverge**. For instance, the sequence

1, -1, 1, -1, 1, . . .

diverges because it does not approach a unique number.

## Example 4 – Finding the Limit of a Sequence

Find the limit of each sequence. (Assume *n* begins with 1.)

**a.** 
$$a_n = \frac{2n+1}{n+4}$$
  
**b.**  $b_n = \frac{2n+1}{n^2+4}$   
**c.**  $c_n = \frac{2n^2+1}{4n^2}$ 

## Solution:

**a.** 
$$\lim_{n \to \infty} \frac{2n+1}{n+4} = 2$$
  $\frac{3}{5}, \frac{5}{6}, \frac{7}{7}, \frac{9}{8}, \frac{11}{9}, \frac{13}{10}, \dots \to 2$ 

# Example 4 – Solution

**b.** 
$$\lim_{n \to \infty} \frac{2n+1}{n^2+4} = 0$$

**c.** 
$$\lim_{n \to \infty} \frac{2n^2 + 1}{4n^2} = \frac{1}{2}$$

 $\frac{3}{5}, \frac{5}{8}, \frac{7}{13}, \frac{9}{20}, \frac{11}{29}, \frac{13}{40}, \ldots \to 0$ 

$$\frac{3}{4}, \frac{9}{16}, \frac{19}{36}, \frac{33}{64}, \frac{51}{100}, \frac{73}{144}, \ldots \rightarrow \frac{1}{2}$$

cont'd