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11.4 Limits at Infinity and Limits of 
Sequences
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What You Should Learn

• Evaluate limits of functions at infinity.

• Find limits of sequences.
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Limits at Infinity and 
Horizontal Asymptotes
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Limits at Infinity and Horizontal Asymptotes

There are two basic problems in calculus: finding tangent 
lines and finding the area of a region. 

We have seen earlier how limits can be used to solve the 
tangent line problem. In this section, you will see how a 
different type of limit, a limit at infinity, can be used to solve 
the area problem. To get an idea of what is meant by a limit
at infinity, consider the function

f (x) = (x + 1)(2x).
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Limits at Infinity and Horizontal Asymptotes

The graph of f is shown in Figure 11.29. From earlier work, 
you know that          is a horizontal asymptote of the graph 
of this function. 

Using limit notation, this can be written as follows.

Figure 11.29

Horizontal asymptote to the left

Horizontal asymptote to the right
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Limits at Infinity and Horizontal Asymptotes

These limits mean that the value of f (x) gets arbitrarily 
close to     as x decreases or increases without bound.
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Limits at Infinity and Horizontal Asymptotes
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Example 1 – Evaluating a Limit at Infinity

Find the limit.

Solution:
Use the properties of limits.

                       = 4 – 3(0)
                        = 4
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Example 1 – Solution

So, the limit of

as x approaches      is 4.

cont’d
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Limits at Infinity and Horizontal Asymptotes
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Limits of Sequences
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Limits of Sequences

Limits of sequences have many of the same properties as 
limits of functions. For instance, consider the sequence
whose nth term is an = 12n

As n increases without bound, the terms of this sequence 
get closer and closer to 0, and the sequence is said to 
converge to 0. Using limit notation, you can write
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Limits of Sequences

The following relationship shows how limits of functions of x
can be used to evaluate the limit of a sequence.
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Limits of Sequences

A sequence that does not converge is said to diverge. For 
instance, the sequence

1, –1, 1, –1, 1, . . .

diverges because it does not approach a unique number.
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Example 4 – Finding the Limit of a Sequence

Find the limit of each sequence. (Assume n begins with 1.)

a. 

b. 

c.

Solution:

a. 



16

Example 4 – Solution

b.

c.

cont’d


