SECTION 1.6

"Limits and Continuity": Continuity of Trigonometric, Exponential, and Inverse Functions

ALL GRAPHICS ARE ATTRIBUTED TO:

 Calculus, 10/E by Howard Anton, Irl Bivens, and Stephen Davis
 Copyright © 2009 by John Wiley & Sons, Inc.
 All rights reserved.

CONTINUITY OF TRIGONOMETRIC FUNCTIONS

sin x and cos x are continuous everywhere.
tan x, cot x, csc x, and sec x are continuous everywhere except at their asymptotes.

1.6.2 THEOREM If f is a one-to-one function that is continuous at each point of its domain, then f^{-1} is continuous at each point of its domain; that is, f^{-1} is continuous at each point in the range of f.

• Therefore, sin ⁻¹ x, cos ⁻¹ x, and tan ⁻¹ x are only continuous on their own domains which are $(-\pi/2, \pi/2)$ for sin ⁻¹ x and tan ⁻¹ x and $(0,\pi)$ for cos ⁻¹ x.

THE SQUEEZING THEOREM

This theorem is confusing to many people. We just want the general idea this year and Theorem 1.6.5 on a later slide will give you the two most common uses for us this year.

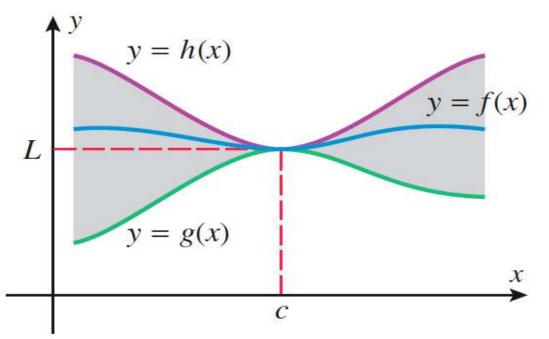
1.6.4 THEOREM (The Squeezing Theorem) Let f, g, and h be functions satisfying $g(x) \le f(x) \le h(x)$

for all x in some open interval containing the number c, with the possible exception that the inequalities need not hold at c. If g and h have the same limit as x approaches c, say $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$

$$\lim_{x \to c} f(x) = L$$

SQUEEZING THEOREM GRAPHICALLY

There is no easy way to calculate some indeterminate type 0/0 limits algebraically so, for now, we will squeeze the function between two known functions to find its limit like in the graph below.

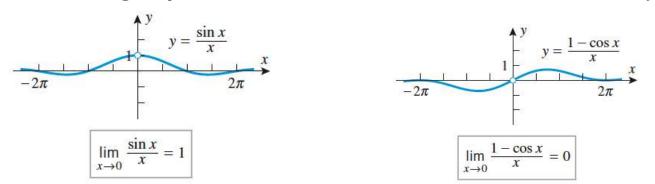


COMMON USES THIS YEAR

These are the most common applications of the squeezing theorem that we will use this year.

1.6.5 THEOREM (a) $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (b) $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

They may make more sense if you look at their graphs and find the limits that way.



PROOFS AND EXAMPLES

Theorem 1.6.5 is proven on page 123 if you are interested in how it works. Example 1 of how it is used:

Find $\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\frac{\sin x}{\cos x}}{x}$ $= \lim_{x \to 0} \frac{\sin x}{\cos x} * \frac{1}{x} = \lim_{x \to 0} \frac{\sin x}{x} * \frac{1}{\cos x}$ $= \lim_{x \to 0} \frac{\sin x}{x} * \lim_{x \to 0} \frac{1}{\cos x}$ $= (1) * \frac{1}{\cos 0}$

 $=1*\frac{1}{1}=1$

Use tan x quotient identity to rewrite

Multiply by the reciprocal and rearrange

Apply the limit of the product=product of the limits rule

By the squeezing theorem and substitution

ANOTHER EXAMPLE

• Example 2:

Find
$$\lim_{\theta \to 0} \frac{\sin 2\theta}{\theta} = \lim_{\theta \to 0} \frac{\sin 2\theta}{\theta} * \frac{2}{2}$$

= $\lim_{\theta \to 0} \frac{2 * \sin 2\theta}{2\theta} = 2 * \lim_{x \to 0} \frac{\sin 2\theta}{2\theta}$
= 2 *(1) = 2

Multiply top and bottom by 2 so that we can apply theorem

Multiply, rearrange, and apply limit property

By the squeezing theorem

SNOWMOBILING IN MAMMOTH

