Section 0.1 "Before Calculus" Functions

All graphics are attributed to:

Calculus, 10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Definition of a Function

- You may remember from earlier courses that a function exists when each x value has one y value.
- You can also recognize a function from the graph by using the vertical line test.
- Remember, x is always the independent variable (values make up the domain) and y is the dependent variable (values make up the range).

0.1.1 DEFINITION If a variable y depends on a variable x in such a way that each value of x determines exactly one value of y, then we say that y is a function of x.

Definition 0.1.1 (p. 1)

0.1.2 DEFINITION A *function* f is a rule that associates a unique output with each input. If the input is denoted by x, then the output is denoted by f(x) (read "f of x").

Definition 0.1.2 (p. 2)

The following are all functions

This is not a function because it fails the vertical line test at x=a and other x values.

<u>The Absolute Value Function</u> – measures distance from the origin

You may remember graphing y = IxI.

Each x has only one y and it passes the vertical line test, so it is a function.

We will use the following properties of absolute value throughout the year, especially a & b.

0.1.4 PROPERTIES OF ABSOLUTE VALUE If a and b are real numbers, then

- (a) |-a| = |a| A number and its negative have the same absolute value.
- (b) |ab| = |a| |b| The absolute value of a product is the product of the absolute values.
 - The absolute value of a ratio is the ratio of the absolute values.
- (d) $|a+b| \le |a|+|b|$ The triangle inequality

(c) $|a/b| = |a|/|b|, b \neq 0$

Piecewise–Defined Functions

The absolute value function f(x) = |x| or y =IxI is an example of a piecewise function because the formula changes depending upon the value of x. On the left side, the equation is y = -x where x < 0. On the right side, the equation is y = x where x > 0. They are pieces of two functions combined together in your graph with a breakpoint at x=0.

See page 6 in your book for more examples.

Domain and Range in Applied Problems

- Physical considerations often impose restrictions on the domain and range of a function.
- Read ex. 9 & 10 on pgs 9 & 10 in your book and we will discuss them more next class.

