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The Epistemology of   Probability

• It is  generally supposed that the probability calculus 
completely characterizes the logical and mathematical 
structure of probabilities.

• It is supposed that familiar sorts of statistical inference
provide us with our basic knowledge of probabilities.

• Then appeal to the probability calculus enables us to 
compute other previously unknown probabilities.
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Sparse Probability Knowledge

• The probability calculus and our knowledge of 
probabilities.

– Suppose we know that PROB(P) = .7 and PROB(Q) = .6. 

– All the probability calculus enables us to infer is that 
.3 ≤ PROB(P & Q) ≤ .6. 

– Similarly, all we can conclude about PROB(P  Q) is that
.7 ≤ PROB(P  Q) ≤ 1.0. 
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Sparse Probability Knowledge

• Complete probability distributions
– Suppose a problem is described by logical compounds of a set of 

simple propositions P1,…,Pn. 
– In theoretical accounts of the use of probabilities in any discipline, it 

is generally assumed that we come to a problem equipped with a 
complete probability distribution — an assignment of unique 
probabilities to every logical compound of the simple propositions. 

– However, in real life this assumption is totally unrealistic. 
– Given n simple propositions, we would have to know and store 2n 

logically independent probabilities.
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Sparse Probability Knowledge

– As Gilbert Harman (1973) observed years ago, for a rather small 
number of simple propositions, there is a completely intractable 
number of logically independent probabilities. 

» Given just 300 simple propositions, there will be 2300 logically 
independent probabilities. 

» 2300 is approximately equal to 1090. 
» Recent estimates of the number of elementary particles in the 

universe put it at 1080 – 1085. 
» Thus to have a complete probability distribution, we would have 

to know 5 to 10 orders of magnitude more logically independent 
probabilities than the number of elementary particles in the 
universe.
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The Problem of
Sparse Probability Knowledge

• At any given time, our knowledge of probabilities is 
worse than just incomplete. 

• The set of probabilities we know is many orders of 
magnitude smaller than the set of all true probabilities. 

• How then can we be as successful as we are in 
applying probability to real-world problems?
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Statistical Independence
• It is noteworthy that in applying probabilities to 

concrete problems, probability practitioners commonly
adopt undefended assumptions of statistical 
independence.

• PROB(P) and PROB(Q) are statistically independent iff 
PROB(P&Q) = PROB(P)PROB(Q). 

• An equivalent definition is that PROB(P/Q) = PROB(P). 

• In the practical use of probabilities it is almost 
universally assumed, often apologetically, that 
probabilities are independent unless we have some 
reason for thinking otherwise.
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Statistical Independence

• The independence assumption is a defeasible 
assumption, because obviously we can discover that 
conditions we thought were independent are 
unexpectedly correlated. 

• The probability calculus can give us only necessary 
truths about probabilities, so the justification of such a 
defeasible assumption must have some other source.
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Probable Probabilities

• I will argue that a defeasible assumption of statistical 
independence is just the tip of  the iceberg. 

• There are multitudes of defeasible inferences that we 
can make about probabilities, and a very rich 
mathematical theory grounding them. 

• It is these defeasible inferences that enable us to make 
practical use of probabilities without being able to 
deduce everything we need via the probability calculus.

• I will argue that, on a certain conception of probability, 
there are mathematically derivable second-order 
probabilities to the effect that various inferences about 
first-order probabilities, although not deductively valid,
will nonetheless produce correct conclusions with 
probability 1, and this makes it reasonable to accept 
these inferences defeasibly. 
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Two Kinds of Probability

• Definite (single case) probabilities - PROB(P)
versus 

• Indefinite (general, statistical) probabilities
– about properties

» formulated using free variables - prob(Fx/Gx)
– need a theory of “direct inference”

» The basic idea is that if we want to know the definite probability 
PROB(Fa), we look for the narrowest reference class (or strongest
reference property) G such that we know the indefinite probability
prob(Fx/Gx) and we know Ga, and then we identify PROB(Fa) with 
prob(Fx/Gx).
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Nomic Probability
• Finite frequency theories.
• Hypothetical frequency theories.
• Nomic probability

– prob(Fx/Gx) is the proportion of physically possible G’s that are F’s.
– A physically possible G is an ordered pair w,x such that w is a 

physically possible world (one compatible with all of the physical 
laws) and x has the property G at w. Let G be the set of all physically 
possible G’s

– prob(Fx/Gx) = (F,G).
– subproperty:  F 7 G iff it is physically necessary that (x)(Fx Gx).

• I doubt that we can pick out the right proportion 
function without appealing to prob itself, so the 
postulate is simply that there is some proportion 
function related to prob as above. 

• Rather than axiomatizing prob directly, we adopt 
axioms for the proportion function.
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Nomic Probability and Proportions

• I assume that  satisfies the standard “Boolean” 
axioms for the probability calculus.

• Indefinite probabilities satisfy further axioms deriving 
from the fact that they relate relations rather than 
closed formulas. E.g.,

prob(Rxy/Sxy & y = a) = prob(Rxa/Sxa)

• A third set of assumptions is the main focus of this 
paper. These are “limit assumptions”. 

– There are various principles that hold approximately for proportions 
among finite sets, with the degree of approximation approaching 
perfection as the size of the sets goes to infinity. 

– The limit assumptions tell us that these principles hold exactly for 
proportions among infinite sets. 

– I will discuss these limit assumptions in detail below. 
– They provide the basis for the theory of probable probabilities.
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The Statistical Syllogism

• Statistical Syllogism
If r > 0.5, then “Gc & prob(F/G) ≥ r” is a defeasible reason for “Fc”, the 

strength of the reason being a monotonic increasing function of r.

• Subproperty Defeat
“Hc & prob(F/G&H) < prob(F/G)” is an undercutting defeater for the 

inference by the statistical syllogism from “Gc & prob(F/G) ≥ r” to 
“Fc”.
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Indifference

• Set X contains 10,000,000 members.
• I am going to select a subset of X randomly.
• How many members will it have?
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Indifference

• Set X contains 10,000,000 members.
• I am going to select a subset of X randomly.
• How many members will it have?

• 99% of the subsets have cardinalities differing from 
5,000,000 by less than .08%.
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Finite Indifference Principle

• If #U = n, then if r ≤ n, the number of r-membered subsets of 
U is

• Bin(n,r) for n = 100, n = 1000, and n = 10000. 
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Infinitary Indifference Principle

• Finite Indifference Principle:
For every  > 0, there is an N such that if U is finite and #U > N then

• Infinitary Indifference Principle
If U is infinite then for every  > 0,

• Probabilistic Indifference Principle
For any property G and for every  > 0, 

• Indifference Principle
For any properties F and G, it is defeasibly reasonable to assume that prob(F/G) = 

0.5.

• Expectable Indifference Principle 
For any properties F and G, the expectable value of prob(F/G) = 0.5.
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Probability = 1

• The fact that a nomic probability is 1 does not mean 
that there are no counter-instances. 

• In fact, there may be infinitely many counter-instances. 
• Consider the probability of a real number being 

irrational. 
• It follows from the calculus of nomic probabilities that 

this probability is 1, because the cardinality of the set of
irrationals is infinitely greater than the cardinality of the
set of rationals. 

• But there are still infinitely many rationals. 
• The set of rationals is infinite, but it has measure 0 

relative to the set of real numbers.
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Probability = 1

• In classical probability theory (which is about definite 
probabilities), conditional probabilities are defined as 
ratios of unconditional probabilities:

PROB(P/Q) = 

If conditional probabilities are defined in this way, PROB(P/Q) is 
undefined when PROB(Q) = 0.

• However, for indefinite probabilities, there are no 
unconditional probabilities, so conditional probabilities 
must be taken as primitive. (“Popper functions”)

prob(F/G&H) can be perfectly well defined even when prob(G/H) = 0. 

If prob(F/G) = 1, it does not follow that prob(F/G&H) = 1. Specifically, this 
can fail when prob(H/G) = 0. Thus, for example,

prob(2x is irrational/x is a real number) = 1

but

prob(2x is irrational/x is a real number & x is rational) = 0.
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Independence

• Finite Product Principle
For 0 ≤ r,s ≤ 1 and for every  > 0  there is an N such that if U is finite 

and #U > N, then

• Infinitary Product Principle
For 0 ≤ r,s ≤ 1, if U is infinite then for every  > 0:

• Probabilistic Product Principle
For 0 ≤ r,s ≤ 1 and for any property U, for every  > 0:
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Independence

• Principle of Statistical Independence
“prob(A/C) = r & prob(B/C) = s” is a defeasible reason for “prob(A&B/C) =

rs”.

• Principle of Expectable Statistical Independence
If prob(A/C) = r and prob(B/C) = s, the expectable value of prob(A&B/C) =

rs.
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Probable Probabilities Theorem

• Linear constraints either state the values of certain 
proportions, e.g., stipulating that (X,Y) = r, or they relate 
proportions using linear equations. For example, if we know 
that X = YZ, that generates the linear constraint

 (X,U) = (Y,U) + (Z,U) – (XZ,U).

• Probable Probabilities Theorem: 
Let U,X1,…,Xn be a set of variables , and consider a set LC of linear 

constraints on proportions between truth-functional compounds of 
those variables. If LC is consistent with the probability calculus, then
for any pair of truth-functional compounds P,Q of U,X1,…,Xn there is 
a real number r between 0 and 1 such that for every  > 0, there is 
an N such that if U is finite and #U > N, then
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Probable Probabilities Theorem
Expectable Probabilities Principle: 
Let U,X1,…,Xn be a set of variables , and consider a set LC of linear 

constraints on probabilities between truth-functional compounds of 
those variables. If LC is consistent with the probability calculus, then for 
any pair of truth-functional compounds P,Q of U,X1,…,Xn there is a 
real number r between 0 and 1 such that for every > 0,

In other words, given the constraints LC, the expectable value of 
prob(P/Q) = r.
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Nonclassical Direct Inference

• Principle of Agreement
For 0 ≤ r ≤ 1 and for every  > 0, there is an N such that if U is finite 

and #U > N, then:

• Nonclassical Direct Inference
If prob(A/B) = r, the expectable value of prob(A/B&C) = r.

• Independence and Agreement Theorem
prob(A/B&C) = prob(A/B) iff A and C are independent relative to B.

• Subproperty Defeat for Nonclassical Direct Inference
If C 7 D, prob(A/B&D) = s, and prob(A/B) = r, then the expectable value 

of prob(A/B&C) = s (rather than r).
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Classical Direct Inference
• Direct inference is normally understood as being a 

form of inference from indefinite probabilities to 
definite probabilities rather than from indefinite 
probabilities to other indefinite probabilities.

• Let K be the conjunction of all the propositions the 
agent knows to be true, and let K be the set of all 
physically possible worlds at which K is true (“K-
worlds”). I propose that we define the definite 
probability PROB(P) to be the proportion of K-worlds at
which P is true. Where P is the set of all P-worlds: 

• PROB(P) = (P,K).
• More generally, where Q is the set of all Q-worlds, we 

can define:
• PROB(P/Q) = (P, Q K).
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Classical Direct Inference
• Representation Theorem for Definite Probabilities

(1) PROB(Fa) = prob(Fx/x = a & K);
(2) If it is physically necessary that [K  (Q  Sa1…an)] and that [(Q&K) 
 (P  Ra1…an)], and Q is consistent with K, then PROB(P/Q) = 
prob(Rx1…xn/Sx1…xn & x1 = a1 & … & xn = an & K).

(3) PROB(P) = prob(P & x=x/x = x & K).

• Classical Direct Inference
“Ga is known and prob(Fx/ Gx) = r” is a defeasible reason for “PROB(Fa) 

= r”.

• Subproperty Defeat for Classical Direct Inference
“G 7 H, Ha is known, and prob(Fx/ Gx & Hx) ≠ r” is an undercutting defeater 

for the inference by classical direct inference from “Ga is known and 
prob(Fx/ Gx) = r” to “PROB(Fa) = r”.
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Classical Direct Inference
• Because definite probabilities are indefinite probabilities in 

disguise, we can also use direct inference to infer definite 
probabilities from definite probabilities. 

• Thus £PROB(P/Q) = r· gives us a defeasible reason for 
expecting that PROB(P/Q&R) = r. 

• We can employ principles of statistical independence 
similarly. £PROB(P/R) = r & PROB(Q/R) = s· gives us a 
defeasible reason for expecting that PROB(P&Q/R) = rs.
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Computational Inheritance
• Suppose we have two diagnostic tests for a disease.

prob(D/T1) = r and prob(D/T2) = s.

• Bernard tests positive on both tests.
– What is the probability that Bernard has the disease?
– What is prob(D/T1&T2)?

• Neither the probability calculus nor direct inference is 
any help.

• Intuitively, it seems that knowing that Bernard tests 
positive on both tests should raise the probability of 
his having the disease, but how much, and how do we 
justify this?
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Computational Inheritance
• Knowledge of indefinite probabilities would be vastly more 

useful in real application if there were a function Y(r,s) such 
that, in a case like the above, when prob(F/G) = r and 
prob(F/H) = s, we could defeasibly expect that prob(F/G&H) 
= Y(r,s), and hence (by classical direct inference) that 
PROB(Fa) = Y(r,s).

prob(F/G) = r           prob(F/H) = s

prob(F/G&H) = Y(r,s)
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Computational Inheritance
• It has generally been assumed that there is no such function 

as the Y-function.
• One can certainly not make such an inference deductively, 

but could there be a function such that we can defeasibly 
expect prob(F/G&H) to be Y(r,s)? It follows from the 
probable probabilities theorem that there is. However, it is 
more useful to look at a simpler case, in which we also take 
account of the base-rate of F:

• Define:

                  Y(r,s:a) =

• Y-Principle:
If B,C 7 U, prob(A/B) = r, prob(A/C) = s, and prob(A/U) = a, then the 

expectable value of prob(A/B & C) = Y(r,s:a).
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The Y-function

                 Y(z,x:.5)                                            Y(z,x:.7)                                        Y(z,x:.3)

              Y(z,x:.1) Y(z,x:.01)
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Computational Inheritance
• Applying this to Bernard, 

– suppose the base-rate with which people having Bernard’s symptoms 
have the disease is .6.

– Suppose the probability of having the disease given that one tests 
positive on the first test is .7, 

– and the probability of having the disease given that one tests positive 
on the second test is .75.

• Then we can defeasibly estimate that the probability of 
Bernard having the disease given that he tests positive 
on both tests is Y(.7,.75|.6) = .875.
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Inverse Probabilities
• Where A,B 7 U, suppose we know the value of 

prob(A/B). If we know the base rates prob(A/U) and 
prob(B/U), the probability calculus enables us to 
compute the value of the inverse probability 
prob(~B/~A&U):

Theorem: If A,B 7 U then
 prob(~B/~A&U) = 
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Inverse Probabilities
• However, if we do not know the base rates, the 

probability calculus imposes no constraints on the 
value of the inverse probability.

– In my (1990), I took that to indicate the need for a second form the 
statistical syllogism that is related to the above form as modus 
tollens is related to modus ponens:

• Inverse Statistical Syllogism:
– If r > .5, then “~Ac & prob(A/B) = r” is a defeasible reason for “~Bc”, the 

strength of the reason being a monotonic increasing function of r.

• However, this is unnecessary:
– It can be shown that there are expectable values for the inverse 

probability, and generally, if prob(A/B) is high, so is prob(~B/~A&U). 

– Thus rather than applying some form of inverse statistical syllogism 
to prob(A/B), we can apply the standard form of the statistical 
syllogism to the inverse probability.
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Inverse Probabilities

• Inverse Probabilities I
If A,B 7 U and we know that prob(A/B) = r, but we do not know the base 

rates prob(A/U) and prob(B/U), the following values are expectable:

prob(B/U) = 

prob(A/U) = 

prob(~A/~B&U) = .5;

prob(~B/~A&U) = 
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Inverse Probabilities
• Inverse Probabilities II
If A,B 7 U and we know that prob(A/B) = r and prob(B/U) = s, but we do not know the base rate 

prob(A/U), the following values are expectable:

prob(A/U) =  .5(1 – (1 – 2r)b);

prob(~A/~B&U) = 

prob(~B/~A&U) = 

For low values of prob(B/U), 
prob(~B/~A&U) can be expected to be
higher than prob(A/B), and for all values
of prob(B/U), prob(~B/~A&U) will be 
fairly high if prob(A/B) is high. 
Furthermore, prob(~B/~A&U) > .5 iff 

prob(B/U) < 
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Inverse Probabilities
• Inverse Probabilities III
If A,B 7 U and we know that prob(A/B) = r and prob(A/U) = s, but we do not know the base rate 

prob(B/U), then:
(a) where b is the expectable value
of prob(B/U),
 

(b) The expectable value of
prob(~B/~A&U) = 

When prob(A/B) = prob(A/U), the 
expected value for prob(~B/~A) is .5, 
and when prob(A/B) > prob(A/U),  
prob(~B/~A&U) > .5. If prob(A/U) < .5,
the expected value of prob(~B/~A&U) 
is greater than prob(A/B).
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Conclusions

• The problem of sparse probability knowledge: in
the real world we lack direct knowledge of most 
probabilities. 

• We must have ways of making defeasible 
estimates of their values even when those 
values are not computable from known 
probabilities using the probability calculus. 

• Limit theorems from combinatorial mathematics 
provide the necessary bridge for these 
inferences. 
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Conclusions
• Under very general circumstances, there will be 

expectable values for otherwise unknown 
probabilities. 

– These are described by principles telling us that although 
certain inferences from probabilities to probabilities are not
deductively valid, nevertheless the second-order 
probability of their yielding correct results is 1. 

– This makes it defeasibly reasonable to make the inferences.

• indifference
• statistical independence
• classical and nonclassical direct inference
• computational inheritance
• inverse probabilities
• There are a huge number of useful principles of 

probable probabilities, some of which I have 
investigated, but most waiting to be discovered. 
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Conclusions

• These principles of probable probability are 
reminiscent of Carnap’s logical probabilities.

• Historical theories of objective probability 
required probabilities to be assessed by 
empirical methods, and because of the weakness
of the probability calculus, they tended to leave 
us in a badly impoverished epistemic state 
regarding probabilities.

• Carnap tried to define a kind of probability for 
which the values of probabilities were determined
by logic alone.
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Conclusions
• Nomic probability and the theory of probable 

probabilities lies between these two extremes. 
– It still makes the values of probabilities 

contingent rather than logically necessary, 
but it makes our limited empirical 
investigations much more fruitful by giving 
them the power to license defeasible, non-
deductive, inferences to a wide range of 
further probabilities that we have not 
investigated empirically. 

– Unlike logical probability, these defeasible 
inferences do not depend upon ad hoc 
postulates. 

– Instead, they derive directly from provable 
theorems of combinatorial mathematics. 
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Conclusions

• So even when we do not have sufficient empirical
information to deductively determine the value of 
a probability, purely mathematical facts may be 
sufficient to make it reasonable, given what 
empirical information we do have, to expect the 
unknown probabilities to have specific and 
computable values. 

• Where this differs from logical probability is that 
the empirical values are an essential ingredient in
the computation.
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The End
(This paper is available at 

http://www.u.arizona.edu/~pollock)


