Polar Area	Practice	(sketch	each	graph)
I Didi I II Cu	, , , , , , ,	10.10.00.		0 1

Name____

1. Find the area inside $r=8sin\theta$ and outside r=4.

2. Find the area inside both $r = 9sin\theta$ and $r = 9cos\theta$.

3. Find the area enclosed by $r = 3 + sin\theta$.

4. Find the area inside $r=1+sin\theta$ and outside r=1

CALCULUS BC SECTION II, Part B

Time—45 minutes
Number of problems—3

No calculator is allowed for these problems.

- 4. The graph of the polar curve $r = 1 2\cos\theta$ for $0 \le \theta \le \pi$ is shown above. Let S be the shaded region in the third quadrant bounded by the curve and the x-axis.
 - (a) Write an integral expression for the area of S.
 - (b) Write expressions for $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ in terms of θ .
 - (c) Write an equation in terms of x and y for the line tangent to the graph of the polar curve at the point where $\theta = \frac{\pi}{2}$. Show the computations that lead to your answer.

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS

Calc OK

- 3. The figure above shows the graphs of the line $x = \frac{5}{3}y$ and the curve C given by $x = \sqrt{1 + y^2}$. Let S be the shaded region bounded by the two graphs and the x-axis. The line and the curve intersect at point P.
 - (a) Find the coordinates of point P and the value of $\frac{dx}{dy}$ for curve C at point P.
 - (b) Set up and evaluate an integral expression with respect to y that gives the area of S.
 - (c) Curve C is a part of the curve $x^2 y^2 = 1$. Show that $x^2 y^2 = 1$ can be written as the polar equation $r^2 = \frac{1}{\cos^2 \theta \sin^2 \theta}$.
 - (d) Use the polar equation given in part (c) to set up an integral expression with respect to the polar angle θ that represents the area of S.

2003 AP® CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

Calc ok

- 2. The figure above shows the graphs of the circles $x^2 + y^2 = 2$ and $(x 1)^2 + y^2 = 1$. The graphs intersect at the points (1, 1) and (1, -1). Let R be the shaded region in the first quadrant bounded by the two circles and the x-axis.
 - (a) Set up an expression involving one or more integrals with respect to x that represents the area of R.
 - (b) Set up an expression involving one or more integrals with respect to y that represents the area of R.
 - (c) The polar equations of the circles are $r = \sqrt{2}$ and $r = 2 \cos \theta$, respectively. Set up an expression involving one or more integrals with respect to the polar angle θ that represents the area of R.

- 2. The curve above is drawn in the xy-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.
 - (a) Find the area bounded by the curve and the x-axis.
 - (b) Find the angle θ that corresponds to the point on the curve with x-coordinate -2.
 - (c) For $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?
 - (d) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

- 3. The graphs of the polar curves r=2 and $r=3+2\cos\theta$ are shown in the figure above. The curves intersect when $\theta=\frac{2\pi}{3}$ and $\theta=\frac{4\pi}{3}$.
 - (a) Let R be the region that is inside the graph of r=2 and also inside the graph of $r=3+2\cos\theta$, as shaded in the figure above. Find the area of R.
 - (b) A particle moving with nonzero velocity along the polar curve given by $r = 3 + 2\cos\theta$ has position (x(t), y(t)) at time t, with $\theta = 0$ when t = 0. This particle moves along the curve so that $\frac{dr}{dt} = \frac{dr}{d\theta}$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
 - (c) For the particle described in part (b), $\frac{dy}{dt} = \frac{dy}{d\theta}$. Find the value of $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.