

A Planned Course of Study for Honors Calculus A

Abington School District

Abington, Pennsylvania

September, 2016

Honors Calculus-A

I. Objectives

Students will demonstrate the appropriate level of proficiency in each of the following areas of mathematics:

- A. Numbers and Operations
 - 1. Numbers and Quantity
- B. Algebraic Concepts
 - 1. Functions
 - 2. Algebra
- C. Geometry
 - 1. Geometry
- D. Measurement, Data and Probability
 - 1. Statistics and Probability
- E. Calculus
 - 1. Calculus
- F. Mathematical Practice
 - 1. Make sense of problems and persevere in solving them
 - 2. Reason abstractly and quantitatively
 - 3. Construct viable arguments and critique the reasoning of others
 - 4. Model with mathematics
 - 5. Use appropriate tools strategically
 - 6. Attend to precision
 - 7. Look for and make use of structure
 - 8. Look for and make sense of regularity in repeated reasoning

II. Major Concepts

Students will demonstrate the appropriate level of proficiency in each of the following areas of mathematics:

- A. Number and Operations
 - 1. Numbers and Quantity
 - a. Apply and extend the properties of exponents to solve problems with rational exponents.
 - b. Apply quantitative reasoning to choose and interpret units and scales in formulas and graphs.
 - c. Use units as a way to understand problems and to guide the solution of multi-step problems.
 - d. Extend the knowledge of arithmetic operations and apply to complex numbers.
 - e. Apply concepts of complex numbers in polynomial identities and quadratic equations to solve problems.

B. Algebraic Concepts

- 1. Functions
 - a. Write expressions in equivalent forms to solve problems.
 - b. Extend the knowledge of arithmetic operations and apply to polynomials.
 - c. Understand the relationship between zeros and factors of polynomials to make generalizations about functions and their graphs.
 - d. Extend the knowledge of rational functions to rewrite in equivalent forms.
 - e. Create and graph equations or inequalities to describe numbers or relationships.
 - f. Apply inverse operations to solve equations or formulas for a given variable.
 - g. Use reasoning to solve equations and justify the solution method.
 - h. Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.
- 2. Algebra
 - a. Use the concept and notation of functions to interpret and apply them in terms of their context.
 - b. Graph and analyze functions and use their properties to make connections between the different representations.
 - c. Write functions or sequences that model relationships between two quantities.
 - d. Interpret the effects transformations have on functions and find the inverses of functions.
 - e. Construct and compare linear, quadratic, and exponential models to solve problems.

Honors Calculus-A

- f. Interpret functions in terms of the situations they model.
- g. Apply radian measure of an angle and the unit circle to analyze the trigonometric functions.
- h. Choose trigonometric functions to model periodic phenomena and describe the properties of the graphs.
- i. Prove the Pythagorean identity and use it to calculate trigonometric ratios.
- j. Use matrices to organize and manipulate data.
- k. Formulate systems of equations using matrices to model routine and non-routine problem situations.
- C. Geometry
 - 1. Geometry
 - a. Apply trigonometric ratios to solve problems involving right triangles.
 - b. Translate between the geometric description and the equation for a conic section.
- D. Measurement, Data and Probability
 - 1. Statistics and Probability
 - a. Analyze linear models to make interpretations based on the data.
 - b. Determine the regression equation of best fit (e.g., quadratic, exponential).
- E. Calculus
 - 1. Calculus
 - a. Evaluate limits algebraically and graphically.
 - b. Find the derivative using differentiation rules.
 - c. Apply the concepts of differential Calculus.

- F. Mathematical Practice
 - 1. Make sense of problems and persevere in solving them.
 - 2. Reason abstractly and quantitatively.
 - 3. Construct viable arguments and critique the reasoning of others.
 - 4. Model with mathematics and use appropriate tools strategically.
 - 5. Attend to precision and make use of structure.
 - 6. Look for and make sense of regularity in repeated reasoning.

Instruction

- A. Course Schedule
 - 1. 5 days a week
 - 2. 48 minute classes
- B. Pacing
 - 1. Marking Period 1
 - a. Linear Equations, Inequalities, and Applications
 - b. Graphs, Linear Equations, and Functions
 - c. Polynomial and Rational Functions
 - d. Quadratic Regression
 - 2. Marking Period 2
 - a. Limits and Their Properties
 - b. Differentiation
 - c. Applications of Differentiation
 - 3. Marking Period 3
 - a. Systems of Equations and Matrices
 - b. Exponential and Logarithmic Functions
 - c. Exponential and Logarithmic Functions and Calculus
 - d. Trigonometric Functions
 - e. Exponential Regression
 - 4. Marking Period 4
 - a. Analytic Trigonometry
 - b. Trigonometric Functions and Calculus
 - c. Topics in Analytic Geometry

C. Methods

- 1. Lecture.
- 2. Scientific and Graphing Calculators will be used when appropriate.
- 3. Computers and mathematics software such as TI-Smartview, internet resources such as applets, Advanced Placement Questions from APCentral.com, and the textbook website will be incorporated into the course.
- 4. Cooperative learning activities will be employed.
- 5. Data analysis of student results.
- 6. Writing experiences will be used throughout the course to justify calculus conclusions.
- 7. Students should read the text for further understanding.
- 8. Supplementary Advanced Placement materials will be used.
- 9. Formative assessments and differentiation.
- 10. Summative assessments.
- D. Resources
 - 1. Larson, R., Hostetler, R., Edwards, B.H. Calculus I with Precalculus: Boston, MA. New York, NY. 2006.
 - 2. Teacher made presentations, handouts, activities, practice, quizzes.
 - 3. Other reference books available in the mathematics office or the school library will be used if necessary.
 - 4. Ancillary materials such as worksheets, quizzes, computer activities, and enrichment activities will be used.
 - 5. Supplemental Advanced Placement style Multiple Choice practice tests from: Larson, R., Hostetler, R., Edwards, B.H. *Fast Track to a 5*: Boston, MA. New York, NY. 2006.
 - 6. Websites such as Study Island, Khan Academy, Wolfram Alpha, Desmos, etc.
 - 7. Google Classroom and Skyward.
 - 8. Apperson scan sheets and software for test analysis
 - 9. The *Mathematics Teacher* and other journals of the National Council of Teachers of Mathematics may be used.

Honors Calculus-A

IV. Assessment

A. Procedures for Evaluation

- 1. Summative Assessments
 - i. A departmental common assessment will be administered at the end of each unit.
 - ii. A departmental common assessment will be administered at the end of the course.
- 2. Formative assessments will be administered in a variety of formats.
- 3. Accommodations aligned with those permitted for the PSSA/Keystone Exams and included in IEP's will be provided for Special Education students who are enrolled in this course.
- B. Expected Levels of Achievement

Students are expected to achieve at least a minimum level of proficiency. Proficiency and related grades are defined as follows:

Α	
В	80 - 89%
С	70 - 79%
D	60 - 69%

The final grade will be calculated as follows:

Marking Period I	
Marking Period II	
Midterm Exam	
Marking Period III	
Marking Period IV	
Final Exam	