
IKL

Common Logic on steroids

IKL is a logic

• A logic is a knowledge building kit
• Like LEGO, it only provides the building

blocks. You do the actual building.

You can build something simple…

… or something more complicated

… or something completely insane

IKL is a logic

• Compared to traditional logic, Common
Logic bricks fit together very easily.

• Compared to CL, IKL has some new kinds
of brick.

IKL is a network logic
• IKL meanings do not change when IKL text is stored,

transmitted, combined with other IKL text, or re-used
• IKL names refer and identify uniformly across a network
• IKL text from multiple sources can be combined freely

without requiring negotiation.
• IKL entailment commutes with transfer protocols

entails entails

HTTP

FTP

IKL is a panoptic logic

• IKL describes a single ‘world’

• The IKL universe contains everything that can be
described, referred to or hypothesized to exist

 including imaginary things, events that never happened but
might have done, the times when they didn’t happen, etc..

So ‘forall’ says a lot in IKL, and is often restricted:
 (forall ((x person)(y event)…
To say that something is 'real', say that explicitly.

IKL is a transparent logic

• Every occurrence of an IKL name has the same meaning.
• Equality substitution applies everywhere in IKL
 IKL is not indexical or referentially opaque (contextual, modal,

tensed, belief, hybrid)
 Multiple referents for IKL names are handled by explicit functions

on quoted names
 Descriptions which are relative to times, places, contexts, states of

belief, points of view, etc., are made in IKL by relating propositions to
the time, place, context, etc., explicitly.

 IKL both supports and requires ontologies of context.

IKL features from CL
• Names can be any Unicode character sequence

John_Doe “John Doe” 08-21-1944 "John\(Doe\)"

 ÇZÜKJÖV "\00C7Z\00DCKJ\00D6V"

• IKL can refer to and quantify over classes, properties, relations,
functions, integers, character strings and ontologies.

• IKL texts can be named and imported into other texts; modules
provide for a local universe of discourse

• Comments can be in any format and attached anywhere.

propositions
• can refer to, and quantify, over propositions expressed by sentences.

 (exists (x)(and (Person x)(taller x Bill)))
 (that (exists (x)(and (Person x)(taller x Bill))))

• propositions are real things that can be related to others
 (Believes Mary (that (forall (x)(if (Person x)(smarter Bill x)))))
 (LessLikelyThan (that (forall (x)(if (Person x)(smarter Bill x))))

 (that ((AND Cheese Green)(materialOf Moon))))
and can be quantified, be the value of functions, etc.
(Believes Fred (Not (that (exists (p)(Believes Mary p)))))

• names inside proposition names work as usual, so you can quantify
into them and reason about them

• (forall ((x Person))(Believes Mary (that (smarter Bill x))))

Proposition name

function on propositions, not a connective.

 (forall ((x Person))(Believes Mary (that (smarter x Bill))))

Sentence about proposition proposition name
Sentence expressing
proposition

The inner sentence can be any IKL text.

Any name can refer to a proposition, but proposition names
make the truth-conditions of the proposition explicit.

A proposition is about the things named by the free names
in its proposition name.

propositions

propositions
• Propositions are identified with zero-ary relations, and handled

similarly.

• Applying a proposition name to no arguments
 ((that (Married Bill Sue)))
 gives an atomic sentence which says the same thing as the sentence

expressing the proposition.

 ((that (exists (x)(and (Person x)(taller x Bill)))))
 (exists (x)(and (Person x)(taller x Bill)))

• This works for any term, not just proposition names.

• Propositions are identified with zero-ary relations, and handled
similarly.

• Applying a proposition name to no arguments
 ((that (Married Bill Sue)))
 gives an atomic sentence which says the same thing as the sentence

expressing the proposition.

 ((that (exists (x)(and (Person x)(taller x Bill))))

 (exists (x)(and (Person x)(taller x Bill))

Sentence

Proposition
name

Sentence

propositions

• Propositions are identified with zero-ary relations, and handled
similarly.

• Applying a proposition name to no arguments
 ((that (Married Bill Sue)))
 gives an atomic sentence which says the same thing as the sentence

expressing the proposition.

 ((that (exists (x)(and (Person x)(taller x Bill)))
 (exists (x)(and (Person x)(taller x Bill))

• The outer calling brackets can be read as 'it is true …'
– It is true that a person exists who is taller than Bill

propositions

• Or, could say that the calling brackets cancel that.

propositions are very handy
Talk about beliefs (for example)

 (forall (x)(if (Believes Mary x)(Believes Joe x)))
 (forall (x)(if (Believes Mary x)(not (x))))

Assert properties of propositions
(forall (p (x agent))(if (less (secLevel x)(secLevel x))(prohibitedEvent (awareOf x

p))))
Define functions on propositions

 (forall (x)(= (Not x)(that (not (x)))))
Give names to complex propositions

 (= hypothesis17 (that (member Joe Al_Quaeda)))
 but beware of inherent contradictions
 ?? (= p (that (not (p)))) ??

Describe relations between propositions and contexts
 (ist context39 (that (member Joe Al_Quaeda)))

Define classes of propositions.

identity of propositions

• When do two sentences express the same proposition?

• If two propositions are equal then their expressing
sentences are equivalent:

 (if (= p q) (iff (p)(q)))
 … but maybe not the reverse.

• Identical propositions should be 'about the same things'
 A proposition expressed by a sentence is about the things

referred to by the free names in the sentence.

identity of propositions
 Logical equivalence of sentences is too inclusive
 Syntactically same sentence is too fine-grained

• The special relation =P provides an intuitive notion of 'same
proposition' for use in writing axioms [John Sowa]

(=P (that (and A B)) (that (and B A)))
(=P (that (or A B C ...))(that (not (and (not A)(not B)(not C)...))))
(=P (that (and A (and B C)))(that (and (and (A B) C))))
(=P (that (if A B)(that (or (not A) B)))
(=P (that (iff A B))(that (and (if A B)(if B A))))
(=P (that (and A A) (that A))
(=P (that (forall (n) A)) (not (exists (n) (not A))))
IF (= n m) THEN (=P (that A) (that A[n/m]))

• =P is decidable between sentences in n.log-n time

• If (=P x y) then x and y are 'about the same things'.

captured names
• Character sequences are used as names, and denoted by quoted

strings. The string captures the name.
'PatHayes' captures PatHayes
 'Chris Menzel' captures "Chris Menzel"
 'Sowa \(John\)' captures "Sowa \(John\)"
 '\00C7Z\00DCKJ\00D6V' captures ÇZÜKJÖV

• Any IKL name may be written as a quoted string which captures the
same sequence, written inside brackets.
 PatHayes ==== ('PatHayes')

 (forall ((s string)(t string))(if (= s t)(= (s)(t))))

captured names

• Allow quantification over things referred to by names with
various syntactic properties:

 (forall ((s charseq) x y)(if
 (and (nationalSpelling s y)(culture x y))
 (nationality (s) x)
))

e.g. (nationalSpelling 'Llewelyn' (culture Wales))
entails
 (nationality Llewelyn Wales)

captured names

• Captured names are zero-ary functions. IKL semantics
requires that character sequences have corresponding
zero-ary function extensions.
 PatHayes <====> ('PatHayes')

• this applies only to character sequences, so quantifiers
must be restricted using charseq.

IKL name quoted string captured name = term

captured names can be captured

• This usage can be extended to describe alternative referents for
names used in different contexts, by using the context as an argument
to the captured-name function
 ('Fred') = Fred
 ('Fred' context13) = what 'Fred' refers to in context13
 ('Fred' interval17) = what 'Fred' refers to during interval17
 ('Fred' (beliefOf John)) = what John believes that 'Fred' refers to
etc…

• Can think of this as an IKL version of subscripting a name:
Fredcontext13 Fredinterval17

• This device can represent subtle relationships between referents of
names used in different contexts, beliefs, times, etc., without violating
the transparency of IKL: every occurrence of an IKL name has the
same meaning.

What's in a name?

 Bill and Sue are married. Bill plays lacrosse. Robert knows them both
but thinks they are not married. Mary does not know anything at all
about Bill. She understands the name "Bill" to refer to Robert, and she
knows that Robert and Sue are not married. Mary's sister Joan knows
Bill personally, but also, for reasons that need not detain us here,
believes that his name is "Robert". Finally, Joan's friend Wilma, a
lacrosse fan, knows Bill as a lacrosse player and knows that Robert is a
friend of Joan but, unlike Joan, she does not know that these are in fact
the same person.

 Bill and Sue are married. Bill plays lacrosse. Robert knows them both but thinks they
are not married. Mary does not know anything at all about Bill. She understands the
name "Bill" to refer to Robert, and she knows that Robert and Sue are not married.
Mary's sister Joan knows Bill personally, but also, for reasons that need not detain us
here, believes that his name is "Robert". Finally, Joan's friend Wilma, a lacrosse fan,
knows Bill as a lacrosse player and knows that Robert is a friend of Joan but, unlike
Joan, she does not know that these are in fact the same person.

(married Bill Sue)
(believes Robert (that (not (married Bill Sue))))
(= Robert ('Bill' (BeliefsOf Mary)))
(believes Mary (that (not (married ???? Sue))))

What goes here? This in fact refers to Robert,
but Mary thinks he is called 'Bill'.

Traditional opaque logics would use Mary's
names when stating Mary's beliefs.

Based on the 'aggreement heuristic'.

All these names refer
as usual. Nobody is
confused about what
the names mean, only
about the facts.

What's in a name?

 Bill and Sue are married. Bill plays lacrosse. Robert knows them both but thinks they
are not married. Mary does not know anything at all about Bill. She understands the
name "Bill" to refer to Robert, and she knows that Robert and Sue are not married.
Mary's sister Joan knows Bill personally, but also, for reasons that need not detain us
here, believes that his name is "Robert". Finally, Joan's friend Wilma, a lacrosse fan,
knows Bill as a lacrosse player and knows that Robert is a friend of Joan but, unlike
Joan, she does not know that these are in fact the same person.

(married Bill Sue)
(believes Robert (that (not (married Bill Sue))))
(= Robert ('Bill' (BeliefsOf Mary)))
(believes Mary (that (not (married ('Bill' (BeliefsOf Mary)) Sue))))

(forall ((s charseq) (p person))(= (s (Beliefs p))(s p)))
(believes Mary (that (not (married ('Bill' Mary) Sue))))

Structural axiom

What's in a name?

 Bill and Sue are married. Bill plays lacrosse. Robert knows them both but thinks they
are not married. Mary does not know anything at all about Bill. She understands the
name "Bill" to refer to Robert, and she knows that Robert and Sue are not married.
Mary's sister Joan knows Bill personally, but also, for reasons that need not detain us
here, believes that his name is "Robert". Finally, Joan's friend Wilma, a lacrosse fan,
knows Bill as a lacrosse player and knows that Robert is a friend of Joan but, unlike
Joan, she does not know that these are in fact the same person.

(married Bill Sue)
(believes Robert (that (not (married Bill Sue))))
(= Robert ('Bill' (BeliefsOf Mary)))
(forall ((s charseq) (p person))(= (s (Beliefs p))(s p)))
(believes Mary (that (not (married ('Bill' Mary) Sue))))
(= Bill ('Robert' Joan))
(= Bill ('Bill' Wilma))
(not (= Bill ('Robert' Wilma)))

Who can this be? Nobody. Wilma is in a
state of confusion. But that isn't our
problem. IKL can have imaginary things
in its universe.

What's in a name?

 Bill and Sue are married. Bill plays lacrosse. Robert knows them both but thinks they
are not married. Mary does not know anything at all about Bill. She understands the
name "Bill" to refer to Robert, and she knows that Robert and Sue are not married.
Mary's sister Joan knows Bill personally, but also, for reasons that need not detain us
here, believes that his name is "Robert". Finally, Joan's friend Wilma, a lacrosse fan,
knows Bill as a lacrosse player and knows that Robert is a friend of Joan but, unlike
Joan, she does not know that these are in fact the same person.

(married Bill Sue)
(believes Robert (that (not (married Bill Sue))))
(= Robert ('Bill' (BeliefsOf Mary)))
(forall ((s charseq) (p person))(= (s (Beliefs p))(s p)))
(believes Mary (that (not (married ('Bill' Mary) Sue))))
(= Bill ('Robert' Joan))
(= Bill ('Bill' Wilma))
(not (= Bill ('Robert' Wilma)))

Jacob knows Bill and Sue, but does not consider them be married as their ceremony was not
conducted by a minister of the true church.

(believes Jacob (not (('married' Jacob) Bill Sue)))

• IKL follows CL in using quantified sequence names to express facts involving
any number of arguments, using recursion.

• Many reasoners cannot handle this (yet), and other languages (RDF, OWL) use
explicit argument lists.

• The RDF/OWL list technique can be axiomatized in IKL and then used
consistently to replace sequence variables.

• This provides for interoperation between different techniques for handling
multiple-arity relations.

 sequence… names vs.
argument (lists)

 sequence… names vs.
argument (lists)

• (= nil (list))
• (forall (x …)(= (list x …)(cons x (list …)))
• (= (first (cons x y)) x)
• (= (rest (cons x y)) y)
• (forall (f)(if (listable f)
 (forall (…)(and (iff (f …)(f (list …))
 (= (f …)(f (list …))))
))
Now, if we say (listable R) we can freely go back and forth between
 (R a b c …) <====> (R (list a b c …))
and can express recursions on lists by using first and rest, as in RDF
To change the vocabulary just write equations, e.g.
(= first hd)(= last tl)

structural axioms like this are easy to state in IKL and can be used to relate
different vocabularies, styles, etc.

Now we have all the bricks

we can build some ontologies

• (forall (p) (= (Not p)(that (not (p)))))
(= (And) (that (and)))
(forall (p …)(= (And p …)(that (and (p)((And …)))))
(forall (p q)(= (If p q)(that (if (p)(q)))))
(forall (…)(= (Nand …)(Not (And …))))

• (forall (c x) (iff ((NOT c) x)(not (c x))))(= NOT owl:complementOf)
(forall (x)((AND) x))
(forall (x c …)(iff ((AND c …) x)(and (c x)((AND …) x))))
(= AND owl:intersectionOf)
(forall (c d)(
(forall (c)(if (predicative c)(forall (x …)(iff (c x …)(and (c x)(c …))))))
(forall (r x)((chain r) x))
(forall (r x y …)(iff ((chain r) x y …)(and (r x y)((chain r) y …))))

• (forall (x)(allDiff x))
(forall (x y …)(iff (allDiff x y …)(and (not (= x y)(allDiff x …)(allDiff y …))))

• (= charseq xsd:string)
(predicative datatype)
(datatype xsd:string charseq xsd;number xsd:date)
(forall ((x datatype) (s string))(iff (legalStringOf x s)(x (x s))))

IKL can represent content expressed in many

other kinds of logic
1. Modal and hybrid logics

knows, believes
future, past; true when
should be, is prohibited

2. Temporal logic
holds

3. Context logic
ist

Other logics and IKL
• IKL can represent content expressed in many other kinds

of logic
But…translating these into IKL often requires more than

a simple syntactic transformation in order to fully
capture the intended meaning.

Some logics are designed with particular ontological
presumptions in mind, which must be made explicit in
IKL ontologies.

For example, a tensed language assumes an underlying time
structure of points or intervals, and modal languages assume a
structure of 'alternative worlds'.

Temporal Logic in IKL
(holds T P)
(holds 1998 (PresidentOfUSA "William Clinton"))

Time-indexed sentence

 But what does PresidentOfUSA mean in a transparent logic? Its not a simple property any
more. Need to re-think it in some way to make its temporal nature explicit. Several
possibilities have been tried.
 It can be a relation involving time, a fluent:
(PresidentOfUSA "William Clinton" 1998)
 or a function from times to properties:
((PresidentOfUSA 1998) "William Clinton")
 or to things:
(= (PresidentOfUSA 1998) "William Clinton")
 or even as a property of time-slices of things (histories):
(PresidentOfUSA (in "William Clinton" 1998))
 or something that looks more like the original, but treats PresidentOfUSA as a function
to a fluent, as in PSL:
((PresidentOfUSA "William Clinton") 1998)

Or these can be combined in various ways. But the time parameter has to be in there
somewhere.

This is not a sentence

Temporal Logic in IKL
(PresidentOfUSA "William Clinton" 1998)
((PresidentOfUSA 1998) "William Clinton")
(= (PresidentOfUSA 1998) "William Clinton")
(PresidentOfUSA (in "William Clinton" 1998))
((PresidentOfUSA "William Clinton") 1998)

IKL can describe relations between the various translation styles, using
appropriate structural axioms:

(timeUnique PresidentOfUSA)
(forall ((r timeUnique) (t timeinterval) x)(iff (r x t)(= (r t) x)))
(forall (r (t timeinterval) …)(iff (r … t)((r t) …)))
(forall (r (t timeinterval) x)(iff (r x t)(r (x t))))
 … histories are a bit more complicated…

Continuants vs. Roles
(holds 1998 (= PresidentOfUSA "William Clinton"))

 This is trickier, since for example
(= PresidentOfUSA "William Clinton" 1998) ???
does not make sense (isn't even syntactically legal IKL)

Need to distinguish names used in a temporal logic to refer to continuants from
other names. Only the former should be translated into IKL names without being
temporally qualified.

Continuants are things which are referred to in the same way at all times.
(people, countries, … most things with proper names.) Other identifiers in a
temporal logic are considered to define roles. When translating into IKL (or CL
or FOL) it is important to not map both continuants and roles to simple individual
names.
(= (PresidentOfUSA 1998) "William Clinton")
(PresidentOfUSA "William Clinton" 1998)

This relation is a continuant
because it applies to all times

Temporal quantifiers

• (holds 1974 (exists (x)(and (PresidentOfUSA x)(Crook x))))(holds 1974 (exists (x)(and (PresidentOfUSA x)(Crook x))))
 what exactly does the 'inner' quantifier range over?
 (holds 1974 (exists (x)(and (PresidentOfUSA x)(Crook x))))

 what exactly does the 'inner' quantifier range over?
A. Things that exist 'at that time'
B. Things that exist at all times (panoptic temporal logic, e.g. Cyc)

Case A requires a way to say 'exists at a time'. This requires some kind of
temporal ontology. E.g.

(exists (x)(and
 (During x 1974)(PresidentOfUSA x 1974)(Crook x)))

(forall (x t)(iff (During x t)(overlaps t (lifetime x)))) temporal ontology axiom
e.g. the conveyor belt between the coal crusher and the furnace
(holds I (exists (x)(and (coalPiece x)(on x conveyor))))
(forall ((J timeinterval))(if (subinterval J I)

 (exists (x (K timeinterval))(and (subinterval K J)(on x conveyor K)
))))

Modal languages and IKL

• Classical semantics for modal languages due to Kripke, describes
structure of alternative possible worlds. Different kinds of
'alternativeness' (transitive? reflexive?) give rise to different modal
axioms.

• This translates into IKL (in fact, into GOFOL) using the same kind of
techniques used for temporal logics, using explicit ontologies for
possible worlds (e.g. situation calculus) provided that names refer
coherently, so that they can be 'sliced'.

• If not, we have to be more subtle. Captured names with subscripts can
be used to approach the general case.

• Modalities of obligation and permission can be expressed in IKL using
ontologies of obligated and permitted events or actions.

Context logic and IKL

• (ist C SENT)in ICL maps to
(ist C (that SENT)) in IKL ??

• Well, almost. Since ICL treats contextual sentences opaquely, while IKL is
transparent, something has to be done about the names in the sentence.

The most general technique is to replace every name in ICL occurring in the
context C by the captured name ('name' c) in IKL. This provides an accurate
translation but is very unwieldy.

• (ist C SENT) maps to
• (ist C (that SENT'))
 where SENT' is SENT with every free name nnn replaced by ('nnn' C)

Context logic and IKL

• (ist C SENT) maps to
 (ist C (that SENT'))
 where SENT' is SENT with every free name nnn replaced by ('nnn' C)

eg (ist C (and (P a)(exists (x)(R x b))))
 (ist C (that (and (('P' C) ('a' C))(exists (x)(('R' C) x ('b' C))))))

Nested ists are handled by applying the mapping recursively to the name of the
context:

(ist C (ist D (P a)))
(ist C (that (ist ('D' C) (that (('P' ('D' C)) ('a' ('D' C)))))))

What 'P refers to in the context
that C interprets 'D' to refer to

This is the translate of the atomic
sentence (P a)

Context logic and IKL

eg (ist C (and (P a)(exists (x)(R x b))))
 (ist C (that (and (('P' C) ('a' C))(exists (x)(('R' C) x ('b' C))))))

This can be simplified whenever we can safely assume that a context C uses a
name nnn in the 'same way', i.e when (= nnn ('nnn' C)). (Continuants are an
example for temporal contextualizations.) For example, if

(= D ('D' C)) (= P ('P' C)) (= R ('R' C))
 then we get:
(ist C (and (P a)(exists (x)(R x b))))
(ist C (that (and (P ('a' C))(exists (x)(R x ('b' C))))))

(ist C (ist D (P a)))
(ist C (that (ist D (that (('P' D) ('a' D))))))

Context slicing in IKL

• (forall (c) (iff (AContext c)
 (forall (p ...)(iff
 (ist c (And p ...))
 (and (ist c (that (p))) (ist c (And ...)))
))
))

• (forall (c) (iff (OContext c)
 (forall (p ...)(iff
 (ist c (Or p ...))
 (or (ist c (that (p))) (ist c (Or ...)))
))
))

• (forall (c) (iff (NContext c)
 (forall (p)(iff
 (ist c (Not p))
 (not (ist c p))
))
))

It's amazing what you can build using
bricks …

