AP Calculus AB Chapter 3.1-3.6 Review Mrs. Schempp

Name		
Period	Date	

For #1-13: Differentiate. No need to simplify. :)

1. $f(x) = 5\sqrt[3]{x^2} - 6x^5 + \frac{1}{x^2}$	2. $y = (5x^2 - 2x - 3)(3x^2 - x)$
3. $h(x) = 2x^{-4} - 3x^{-3} + \frac{5}{2}x^{-2} - x^{-1}$	4. $g(x) = (3x^4 + x)(x^5 - 1)^2$
5. $H(x) = \frac{x^2 + x - 2}{x^3 + 6}$	$6. y = \frac{3x^2 - 7x}{\sqrt{x}}$
7. $f(x) = \frac{\tan x}{1 + \cos x}$	8. $y = \csc(x^{-2})$
9. $H(x) = \sqrt[3]{(6x^2 - x)} + 2x^2$	10. $g(x) = \sin^2(3x)$
11. $y = \sin x + \frac{1}{2} \cot x$	$12. f(x) = x^3 \cot x$

13. $y = \sqrt{\frac{x-1}{x+1}}$

$$f(x) = \frac{1}{2}x^5 - 2x^{-3} + 9x$$

15. Use the **definition** of the derivative to differentiate $f(x) = x^2 - 12x$

16. Write the equations of the tangent and normal lines to the graph of $f(x) = 3x^2 - 17x + 30$ at x = -3.

17. Write the equations of the tangent and normal lines to the graph of $f(x) = \frac{2}{3x+1}$ at x = 1.

18. Find all horizontal tangents of the curve $f(x) = 3x^3 - 12x^2$.

19. Graphical, Numerical, Algebraic, Verbal!

Let *f* and *g* be differentiable functions with the values for *f*, *g*, *f'*, and *g'* at x = 2 and x = 3 be given in the table below:

Х	$f(\mathbf{x})$	$g(\mathbf{x})$	$f'(\mathbf{x})$	<i>g</i> '(x)
2	7	3	π	5
3	2	-4	-1	8

a. if
$$h(x) = f(x) + g(x)$$
 find $h'(3)$

c. if
$$h(x) = f(x) \cdot g(x)$$
 find $h'(3)$

e. if h(x) = f(g(x)) find h'(2)

g. if $h(x) = [f(x)]^3$ find h'(2)

b. if
$$h(x) = f(x) - g(x)$$
 find $h'(2)$

d. if
$$h(x) = \frac{f(x)}{g(x)}$$
 find $h'(2)$

f. if
$$h(x) = g(f(x))$$
 find $h'(3)$

h. if
$$h(x) = 2[g(x)]^5$$
 find $h'(3)$

$\left[\begin{array}{c} x^3 & 1 \\ x^3 & 2 \end{array} \right]$	$(2u^2 + 5 - u = 0)$				
20. Consider the function $f(x) = \begin{cases} x & -1 & x \ge 3 \\ 27x + 1 & x < 3 \end{cases}$	21. Consider the function $f(x) = \begin{cases} 2x + 5 & x \ge 0 \\ 6x + 5 & x < 0 \end{cases}$				
a. is f(x) continuous at x=3? why or why not?	a. is f(x) continuous at x=0? why or why not?				
b. is f(x) differentiable at x=3? why or why not?	b. is f(x) differentiable at x=0? why or why not?				
22. A particle moves along a line so that its position at	any time $t \ge 0$ is given by the function $s(t) = t^2 - 2t - 3$,				
where s is measured in feet and t is measured in seconds. a. What is the velocity function of the particle?					
b. What is the acceleration function of the particle?					
c. Find the average velocity of the particle during the first 5 seconds.					
d. Find the position of the particle when $t=5$	d. Find the position of the particle when $t=5$.				
e. Find the instantaneous velocity when $t =$	e. Find the instantaneous velocity when $t = 5$.				
f. Find the acceleration of the particle when $t = 5$.					
g. Is the particle slowing down or speeding up at $t=5$? Explain.					
h. Where does the particle change direction	h. Where does the particle change direction?				
i. What is the furthest left that the particle ever gets?					
j. What is the furthest right that the particle ever gets?					
23. The graph of a function f is shown. Sketch the graph of the derivative of f.					

