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AP CALCULUS AB

DIFFERENTIATION RULES

DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS

Derivative of a Constant Function
Suppose we have a function 
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The slope of a tangent line to any point on the graph would be _______.

So:


[image: image2.wmf]=

)

(

c

dx

d





Power Functions

Now, let’s look at functions that take the form 
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, where n is a positive integer.

If n = 1, then 
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Proof:
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Now, lets explore when n = 2, n = 3, and n = 4
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So    
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Do we see a pattern, or can we generalize our findings?

The Power Rule

If n is a positive integer, then  

[image: image13.wmf]=

)

(

n

x

dx

d







Examples – Find the derivative

1.  
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2.  
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Let’s explore negative integer exponents…

If 
[image: image16.wmf])

(

,

1

)

(

x

f

find

x

x

f

¢

=


We can rewrite 
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, so use the power rule to find the derivative:

How about fractional exponents?

Find 
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We could also write 
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Now we can generalize the power rule for any value of n..

The Power Rule (General Version)

If n is any real number, then

[image: image24.wmf]=

)

(

n

x

dx

d





Examples – Differentiate

1.  
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2.  
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The Constant Multiple Rule

If c is a constant and f is a differentiable function, then
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Examples -- Differentiate

1.  
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2.
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The Sum Rule
If f and g are both differentiable functions, then
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Proof:

Let 
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  Then

The Difference Rule

If f and g are both differentiable, then
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Applying all of the rules into some examples:

Example 1  -- Find the derivative of:  
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Example 2 – Find the points on the curve 
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 where the tangent line is horizontal.

Exponential Functions

Definition of the Number e 
e is the number such that 


Derivative of the Natural Exponential Function
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Example 1 – If 
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Example 2 – At what point on the curve 
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is the tangent line parallel to the line 
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Example 3 

Let 
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Give a formula for 
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AP CALCULUS AB

DIFFERENTIATION RULES

THE PRODUCT AND QUOTIENT RULES

The Product Rule

If f and g are both differentiable functions, then
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Proof:

Additionally, we could write The Product Rule as:

If 
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Either way, the Product Rule is basically saying the following:

The derivative of the product of two functions is the derivative of the first function times the second function plus the derivative of the second function times the first function.

Shall we try an example?  ____  _________

Example 1 

If 
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Is this a candidate for the Product Rule?  Yes.  

We will let 
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and
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Since the Product Rule says 
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Example 2

If 
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Example 3A

Differentiate the function 
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Example 3B

Differentiate the function 
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 without using the Product Rule.

Example 4 
CAUTION – YOU MAY HAVE TO THINK!!

If 
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The Quotient Rule

If f and g are differentiable, then
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Proof:

Additionally, we could write The Quotient Rule as:

If 
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Something easy to remember:

Derivative of the top times the bottom minus the derivative of the bottom times the top all over the bottom squared.  

Also “Lo D-Hi minus Hi D-Lo” over Lo squared.

Example 1:     Let 
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Example 2

Find the equation of the tangent line to the curve 
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( 1, 
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Note – Just because you see a problem expressed as a quotient, it doesn’t mean you have to use the quotient rule.  
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could be simplified to  

AP CALCULUS AB

DIFFERENTIATION RULES

RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 

Suppose a particle is moving along a straight line (STRAIGHT LINE MOTION)

Position  s(t) =

Velocity –-  v(t) =

Acceleration --  a(t) =

If you start with position, take the derivative to get velocity.  Take the derivative to that to get acceleration.

Example 1

The position of a particle at any given time as it travels according to straight line motion is given by the equation     
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A)  Find the velocity at time t (or find the instantaneous velocity at time t)

B)  What is the velocity after 2 sec?   4 sec?

C)  When is the particle at rest?

D)  When is the particle moving forward?

E)  Find the total distance traveled by the particle during the first 5 seconds.

Example 2

If a ball is thrown vertically upward with a velocity of 
[image: image69.wmf]sec

/

80

ft
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.  Answer the questions that follow.

A)  At what time will the ball be 15ft off the ground?

B)  At what time will the ball reach its maximum height?  What will that height be?

C)  What is the velocity of the ball when it is 96 ft off the ground on its way up?  On the way down?

SOMETHING THAT YOU NEED TO LEARN/MEMORIZE:

Avg. Rate of change from [a, b] =  

Instantaneous Rate of Change = 

AP CALCULUS AB

DIFFERENTIATION RULES

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

A little review before we get started:

A.  
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D.  
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We know from graphical analysis that the derivative of 
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Prove it.
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That was fun.  Your turn.  Find 
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What about 
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Not so much.  Let’s try a different plan of attack.

Not too bad.  Try the same methodology for the others:

A.  
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B.  
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Here is a summary of what we’ve learned:
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Examples:

1.  If 
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2.  If 
[image: image93.wmf]x

x

x

x

f

sec

tan

)

(

=

, find  
[image: image94.wmf]).

(

x

f

¢


Since we are dealing with trigonometric functions, I thought we would explore some limits.  We could have done this earlier, but a little extra practice won’t hurt.
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AP CALCULUS AB

DIFFERENTIATION RULES

THE CHAIN RULE

Suppose we have the function 
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.  Before today, the only way that you would know how to differentiate the function is to perform algebra and then take the derivative.  

However, we could think of 
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 as a composition of functions. 

Another way to look at this is Leibniz notation…

This brings us to our main event..

THE CHAIN RULE

If f and g are both differentiable functions and 
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In Leibniz notations, if 
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Example 1 – Find 
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Example 2 – Find 
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Example 3 and 4 – Differentiate each function

3.  
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4.  
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Examples 5 and 6 – Differentiate each function

5.  
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6.  
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A little generalization..

The Power Rule combined with the Chain Rule

If n is any real number and 
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Example 7 – Find 
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Example 8 – Differentiate   
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Examples 9 and 10 – Differentiate each function

9.  
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10.  
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Example 11 – Differentiate 
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 and simplify using algebra.

Example 12 – Use the chart to answer the following questions below.
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A)  If 
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B)  If 
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Loose ends…
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Technically….

So, what would 
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How about..  
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Example 14:

A)  
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AP CALCULUS AB

DIFFERENTIATION RULES

IMPLICIT DIFFERENTIATION

What if you were faced with items that were not functions or where it was virtually impossible for solve for y?

Examples:

For these types of problems, we employ a process known as implicit differentiation.

Implicit Differentiation Process

1.  Differentiate both sides of the equation with respect to x (or y).  Don’t forget to apply the chain rule for all variables 
2.  Collect the terms with dy/dx (or dx/dy) on one side of the equation.

3.  Factor out dy/dx (or dx/dy).

4.  Solve for dy/dx (or dx/dy).

This is the type of section where I could lecture on and on, but it is better if we just do examples until we get the hang of it.

Example 1:   Differentiate 
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Example 2:   Differentiate  
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Example 3:    Differentiate  
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A)  with respect to x    

B)  with respect to y

Example 4:  Differentiate     
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Example 5:  Find the equation of the tangent line at the given point.
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Derivatives of Inverse Trigonometric Functions

We learned the inverse trigonometric functions last year, and now we need to learn their derivatives.  

Derivatives of Inverse Trigonometric Functions
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Note:  In some texts and disciplines, 
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Example 1:  Find the derivative of 
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Example 2:  Find the derivative of 
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AP CALCULUS AB

DIFFERENTIATION RULES

HIGHER DERIVATIVES

If 
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 is a differentiable function, then its derivative 
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.  This function is called the second derivative of f .  Other notations for the second derivative:
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Example 1 – If 
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Step 1:  Find 
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Step 2:  Find 
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Rehashing particle motion..

The position of a particle is given by the equation
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where t is measured in seconds and s in meters

A)  Find the acceleration at time t.  What is the acceleration after 2 seconds?

B)  When is the particle speeding up?  When is it slowing down?

The third derivative of a function (
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) would be the derivative of the second derivative.  It would give us the rate of change of the second derivative.  It is sometimes called the “jerk”, or as some of my students like to joke, The Mr. Lego.  Let’s stick with jerk.

Why the jerk?

A graphical example my minions..

The following graph shows the graphs of 
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Draw graph here.

Example 2:  If 
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Example 3:  Find the 35th derivative of 
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Example 4:  Combining higher derivatives with implicit differentiation.

If 
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Example 5:  The function g is a twice-differentiable function.  Find 
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AP CALCULUS AB

DIFFERENTIATION RULES

DERIVATIVES OF LOGARITHMIC FUNCTIONS

Derivatives of Logarithms that we need to add to our toolbox:
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Example 1 – Differentiate  
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Example 2 – Differentiate 
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Example 3 – Differentiate  
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Example 4 --  Find 
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Example 5 – Differentiate 
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Logarithmic Differentiation 

Example 1 -- 

Example 2  -- Differentiate 
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AP CALCULUS AB

DIFFERENTION RULES

RELATED RATES 

If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other.  However, they are changing at different rates at different times:

In a related rates problem the idea is to compute the rate of change of one quantity in terms of the rate of change of another quantity (which may be more easily measured).  The procedure is to find an equation that relates the two quantities and then use the Chain Rule to differentiate both sides with respect to time.

Here’s a little appetizer..

If 
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C)  t

Let’s start with a few problems and then we will come up with a semi-strategy to use for these “Related Rates” problems.

Example #1 – Pop goes the Balloon

Air is being pumped into a spherical balloon so that its volume increases at a rate of 75 
[image: image187.wmf].
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  How fast is the radius of the balloon increasing when the diameter of the balloon is 40 cm?

Example #2 – The Falling Ladder

A ladder 25 feet long is leaning against the wall of a house.  The bottom of the ladder is being pulled away from the house at a rate of 2 feet per second.  How fast is the ladder moving down the wall when the top of the ladder is 

(A)  24 feet from the ground?

(B)  7 feet from the ground?

So after seeing a few examples, let’s talk about a strategy…

1.  Read the problem carefully.

2.  DRAW A DIAGRAM!!!!

3.  Identify given information with appropriate symbology.

4.  Determine what we are searching for (including symbology).

5.  Find an equation that relates what we know to what we want to find out.  If necessary, use geometry to eliminate an extraneous variable by substitution.

6.  Identify the SNAPSHOT!!

7.  Use the Chain Rule to differentiate both sides of the equation with respect to t.

8.  Substitute the given information into the resulting equation and solve for the unknown rate.

Example #3 – Attack of the Cones

A conical tank (with vertex down) is 10 feet across the top and 12 feet deep.  If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep.

Example #4 – Liftoff!

A television camera 2000 feet from the launch pad at ground level is filming the liftoff of a space shuttle as seen in the picture below.  How fast is the angle of elevation of the camera changing when the shuttle is 50,000 feet high?

Example #5 – Only the shadow knows

A man 6 feet tall walks at a rate of 5 feet per second away from a light that is 15 feet above the ground.  When he is 10 feet from the base of the light,

(A)  at what rate is the tip of his shadow moving?

(B)  at what rate is the length of his shadow changing?

AP CALCULUS AB

DIFFERENTIATION RULES

LINEAR APPROXIMATION

Graphical Analysis

Linear Approximation or Tangent Line Approximation

Example #1:  Concrete

Consider the polynomial 
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Example #2: Abstract

The function f is twice differentiable with 
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AP CALCULUS AB

DIFFERENTIATION RULES

DERIVATIVE OF THE INVERSE FUNCTION 

Functions f and g are inverse to each other if and only if
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For all x such that both sides are defined.  For example, 
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 are mutually inverse.  If a point (a, b) is on the graph of f , then the point (b, a) is on the graph of g.  

If functions f and g are inverse to each other and the point (a, b) is on the graph of f, then

Proof:   

Example #1:  

If 
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Example #2 (2008 AB MC):

Let f be a differentiable function such that 
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  The function g is differentiable and 
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Example #3 (2003 AB MC):

Let f be the function defined by 
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