John E. McMurry • Robert C. Fay

Fifth Edition

Chapter 12 Chemical Kinetics

Lecture Notes

Alan D. Earhart Southeast Community College • Lincoln, NE

Chemical Kinetics: The area of chemistry concerned with reaction rates and the sequence of steps by which reactions occur.

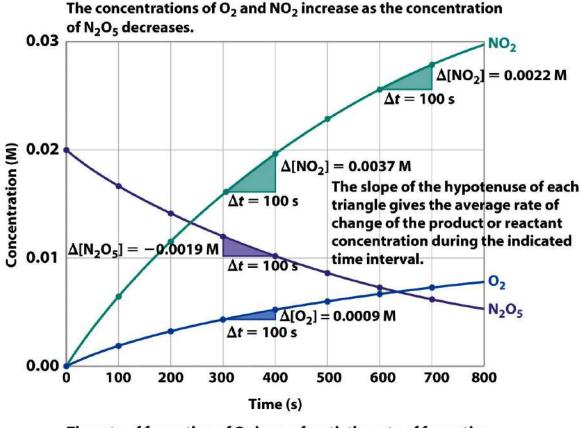
Reaction Rate: Either the *increase* in the concentration of a product per unit time or the *decrease* in the concentration of a reactant per unit time.

$2N_2O_5(g) \longrightarrow$	$4NO_2(g) +$	$O_2(g)$
------------------------------	--------------	----------

TABLE 12.1 Concentrations as a Function of Time at 55 °C for the Reaction 2 $N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$

	Concentration (M)		
Time (s)	N ₂ O ₅	NO ₂	02
0	0.0200	0	0
100	0.0169	0.0063	0.0016
200	0.0142	0.0115	0.0029
300	0.0120	0.0160	0.0040
400	0.0101	0.0197	0.0049
500	0.0086	0.0229	0.0057
600	0.0072	0.0256	0.0064
700	0.0061	0.0278	0.0070

Note that the concentrations of $\rm NO_2$ and $\rm O_2$ increase as the concentration of $\rm N_2O_5$ decreases.


Table 12-1 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

decrease

increase

The rate of formation of O_2 is one-fourth the rate of formation of NO_2 and one half the rate of decomposition of N_2O_5 .

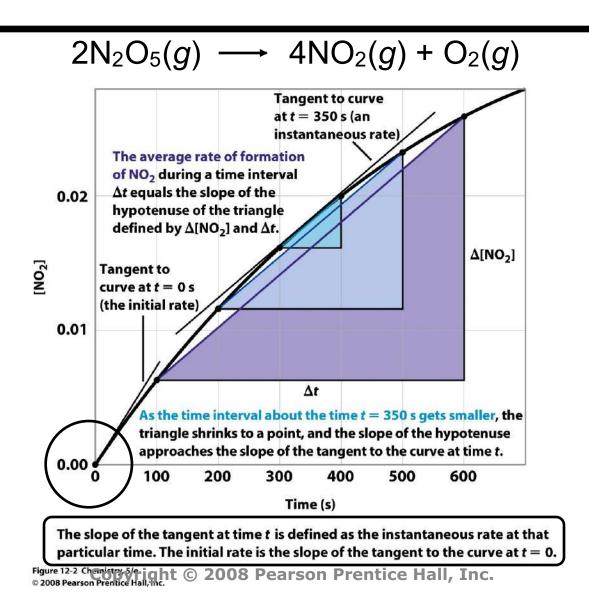
Figure 12-1 Chemistry, Opyright © 2008 Pearson Prentice Hall, Inc. © 2008 Pearson Prentice Hall, Inc. 4 Chapter 12/

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

Rate of decomposition of N₂O₅:

$$\frac{\Delta [N_2 O_5]}{\Delta t} = \frac{-(0.0101 \text{ M} - 0.0120 \text{ M})}{(400 \text{ s} - 300 \text{ s})}$$
$$= 1.9 \times 10^{-5} \frac{\text{M}}{\text{s}}$$

Copyright © 2008 Pearson Prentice Hall, Inc.


5 Chapter 12/

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

General rate of reaction:

rate =
$$-\frac{1}{2} \frac{\Delta [N_2 O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta [NO_2]}{\Delta t} = \frac{\Delta [O_2]}{\Delta t}$$

$$a A + b B \longrightarrow d D + e E$$

rate = $-\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t} = \frac{1}{e} \frac{\Delta[E]}{\Delta t}$

7 Chapter 12/

Rate Laws and Reaction Order

Rate Law: An equation that shows the dependence of the reaction rate on the concentration of each reactant.

 $aA + bB \longrightarrow products$ rate $\alpha [A]^m [B]^n$ rate = $k[A]^m [B]^n$

k is the rate constant

Rate Laws and Reaction Order

The values of the exponents in the rate law **must be determined by experiment**; they cannot be deduced from the stoichiometry of the reaction.

TABLE 12.2 Balanced Chemical Equations and Experimentally Determined Rate Laws for Some Reactions

Reaction	Rate Law
(CH ₃) ₃ CBr(<i>aq</i>) + H ₂ O(<i>aq</i>) → (CH ₃) ₃ COH(<i>aq</i>) + H⁺(<i>aq</i>) + Br⁻(<i>aq</i>)	Rate = <i>k</i> [(CH ₃) ₃ CBr]
$HCO_2H(aq) + Br_2(aq) \rightarrow 2 H^+(aq) + 2 Br^-(aq) + CO_2(g)$	Rate = $k[Br_2]$
$BrO_3^{-}(aq) + 5 Br^{-}(aq) + 6 H^{+}(aq) \rightarrow 3 Br_2(aq) + 3 H_2^{-}O(I)$	Rate = k[(BrO ₃ ⁻][Br ⁻][H ⁺] ²
$H_2(g) + I_2(g) \rightarrow 2 HI(g)$	Rate = $k[(H_2][I_2]]$

In general, the exponents in the rate law are not the same as the stoichiometric coefficients in the balanced chemical equation for the reaction.

Table 12-2 Chemistry, 5/e© 2008 Pearson Prentice Hall, Inc.

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$

rate = $k[NO]^m[O_2]^n$

Compare the initial rates to the changes in initial concentrations.

TABLE 12.3	Initial Concentration and Rate Data for the Reaction
	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

Experiment	Initial [NO]	Initial [0 ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

 Table 12-3 Chemistry, 5/e
 Copyright © 2008 Pearson Prentice Hall, Inc.

 © 2008 Pearson Prentice Hall, Inc.
 Copyright © 2008 Pearson Prentice Hall, Inc.

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$

rate = $k[NO]^2 [O_2]^n$

The concentration of NO **doubles**, the concentration of O_2 remains constant, and the rate **quadruples**.

$$2^m = 4$$
 $m = 2$

TABLE 12.3Initial Concentration and Rate Data for the Reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

Experiment	Initial [NO]	Initial [0 ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

 Table 12-3 Chemistry, 5/e
 Copyright © 2008 Pearson Prentice Hall, Inc.

 © 2008 Pearson Prentice Hall, Inc.
 Copyright © 2008 Pearson Prentice Hall, Inc.

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$

rate = $k[NO]^2 [O_2]$

The concentration of O_2 **doubles**, the concentration of NO remains constant, and the rate **doubles**.

 $2^n = 2$ n = 1

TABLE 12.3Initial Concentration and Rate Data for the Reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$

Experiment	Initial [NO]	Initial [0 ₂]	Initial Rate of Formation of NO ₂ (M/s)
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

 Table 12-3 Chemistry, 5/e
 Copyright © 2008 Pearson Prentice Hall, Inc.

 © 2008 Pearson Prentice Hall, Inc.
 Copyright © 2008 Pearson Prentice Hall, Inc.

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$

rate = $k[NO]^2 [O_2]$

Reaction Order With Respect to a Reactant

- NO:second-order
- O₂:first-order

Overall Reaction Order

• 2 + 1 = 3 (third-order)

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$ rate = $k[NO]^2[O_2]$

Units for this third-order reaction:

$$k = \frac{rate}{[NO]^2 [O_2]} = \frac{\frac{M}{s}}{(M^2) (M)} = \frac{1}{M^2 s}$$

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$

rate = $k[NO]^2 [O_2]$

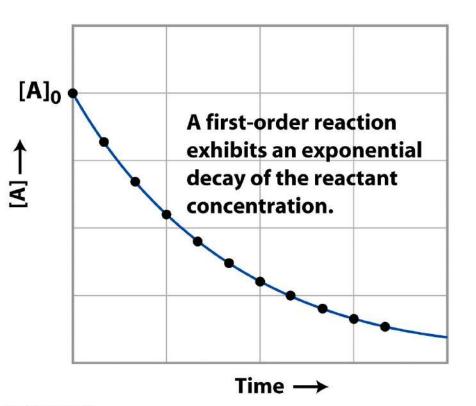
Rate Law	Overall Reaction Order	Units for k
Rate $= k$	Zeroth order	M/s or $M s^{-1}$
Rate = k [A]	First order	$1/s \text{ or } s^{-1}$
Rate = k [A][B]	Second order	$1/(M \cdot s)$ or $M^{-1} s^{-1}$
Rate = $k[A][B]^2$	Third order	$1/(M^2 \cdot s)$ or $M^{-2} s^{-1}$

$$A \longrightarrow \text{product(s)}$$

rate = k[A]
$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

Calculus can be used to derive an integrated rate law.

$$\ln\left(\frac{[A]_{t}}{[A]_{0}}\right) = -kt - \begin{bmatrix} [A]_{t} \text{ concentration of A at time } t \\ [A]_{0} \text{ initial concentration of A} \end{bmatrix}$$
Using:
$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y) \qquad \boxed{\ln[A]_{t} = -kt + \ln[A]_{0}}$$


$$y = mx + b$$

 $\ln[\mathbf{A}]_t = -kt + \ln[\mathbf{A}]_0$

y = mx + b

A plot of **In[A]** versus **time** gives a straight-line fit and the **slope** will be **-***k*.

$\ln[\mathbf{A}]_t = -kt + \ln[\mathbf{A}]_0$

This is a plot of **[A]** versus **time**.

The best-fit is a *curve* and not a *line*.

Figure 12-6a Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

 $ln[A]_{t} = -kt + ln[A]_{0}$

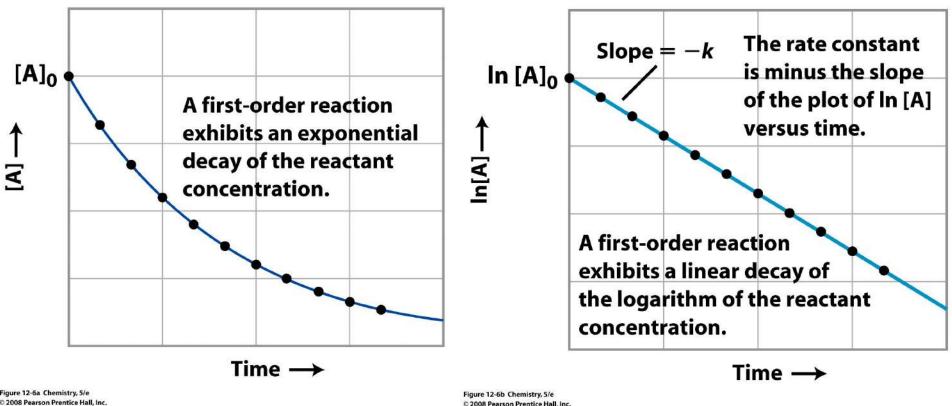
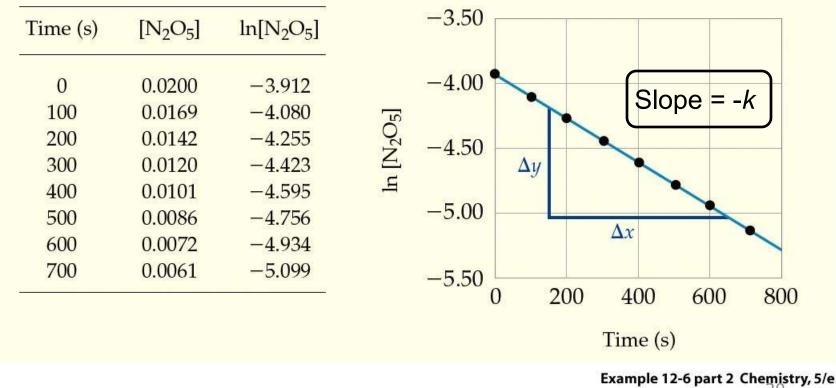
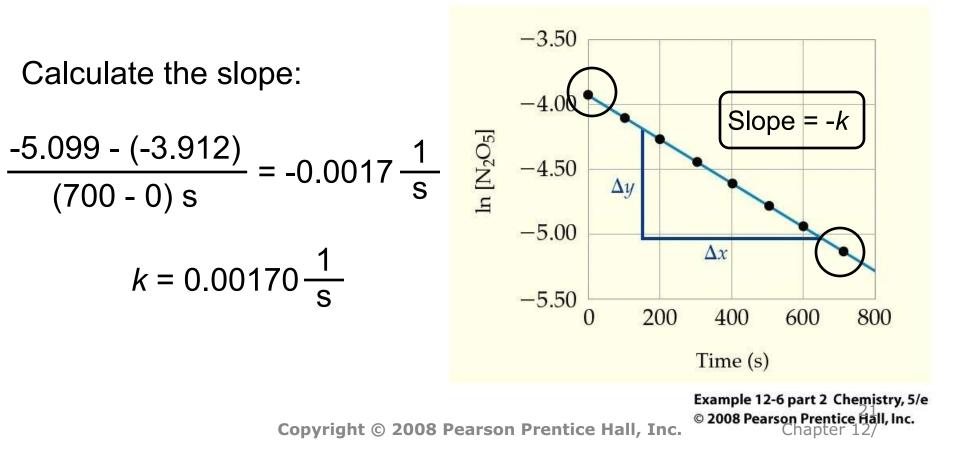



Figure 12-6a Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

19 Chapter 12/

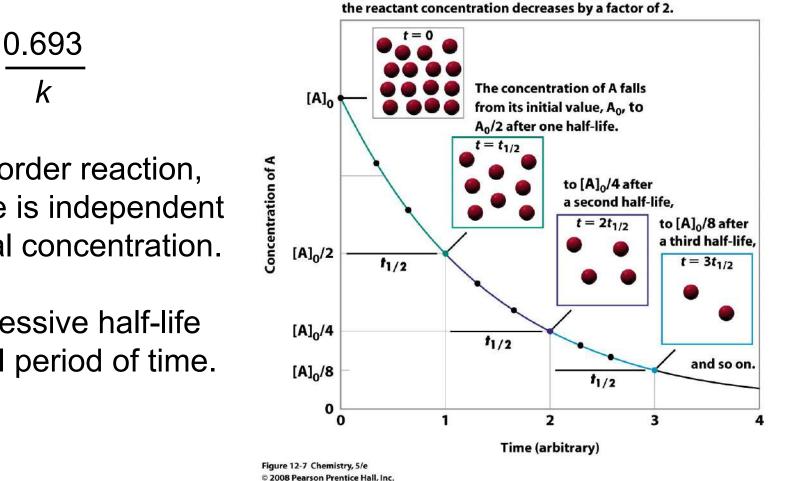

 $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$ rate = $k[N_2O_5]$

Copyright © 2008 Pearson Prentice Hall, Inc.

© 2008 Pearson Prentice Hall, Inc. Chapter 12/

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

rate = $k[N_2O_5]$


Half-Life for a First-Order Reaction

Half-Life: The time required for the reactant concentration to drop to one-half of its initial value.

rate = k[A] $\ln \left[\frac{1}{2} \right] = -kt_{1/2} \quad \text{or} \quad t_{1/2} = \frac{0.693}{k}$

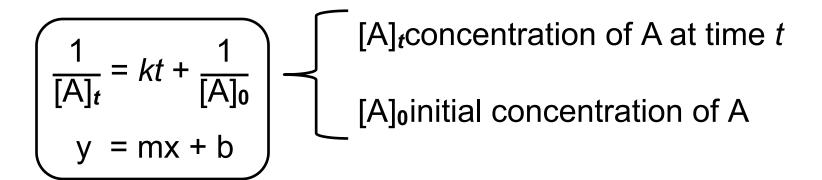
 $A \longrightarrow \text{product(s)}$

Half-Life for a First-Order Reaction

Each successive half-life is an equal period of time in which

 $t_{1/2} =$

For a first-order reaction, the half-life is independent of the initial concentration.


Each successive half-life is an equal period of time.

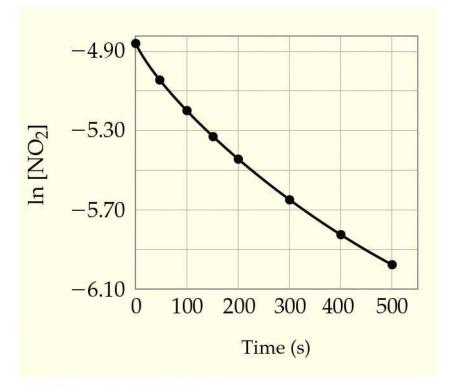
Copyright © 2008 Pearson Prentice Hall, Inc.

23 Chapter 12/

$$A \longrightarrow \text{product(s)}$$

rate = $k[A]^2 - \frac{\Delta[A]}{\Delta t} = k[A]^2$

Calculus can be used to derive an integrated rate law.



 $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$

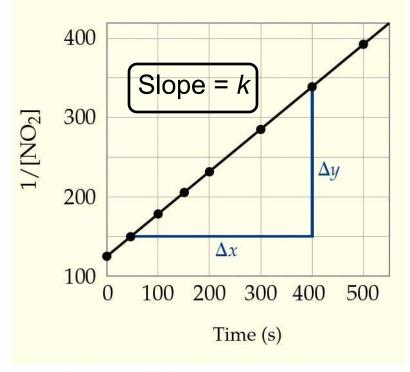
Time (s)	[NO ₂]	ln [NO ₂]	1/[NO ₂]
0	8.00×10^{-3}	-4.828	125
50	6.58×10^{-3}	-5.024	152
100	5.59×10^{-3}	-5.187	179
150	4.85×10^{-3}	-5.329	206
200	4.29×10^{-3}	-5.451	233
300	3.48×10^{-3}	-5.661	287
400	2.93×10^{-3}	-5.833	341
500	2.53×10^{-3}	-5.980	395

Example 12-8 part 2 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

 $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$

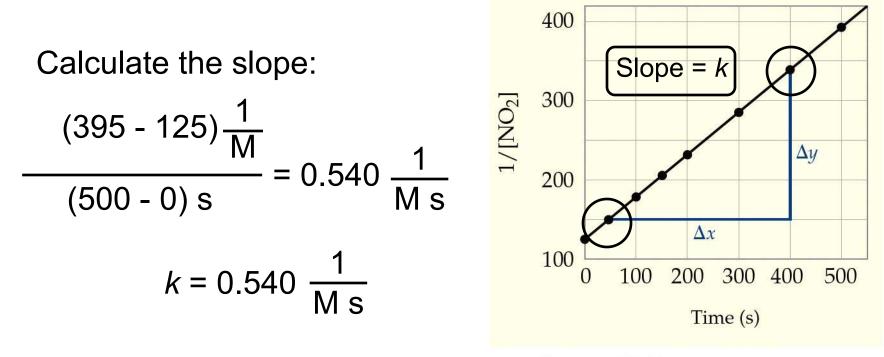
Plotting **In[NO₂]** versus **time** gives a curve and not a straight-line fit.

Therefore, this is **not** a firstorder reaction.

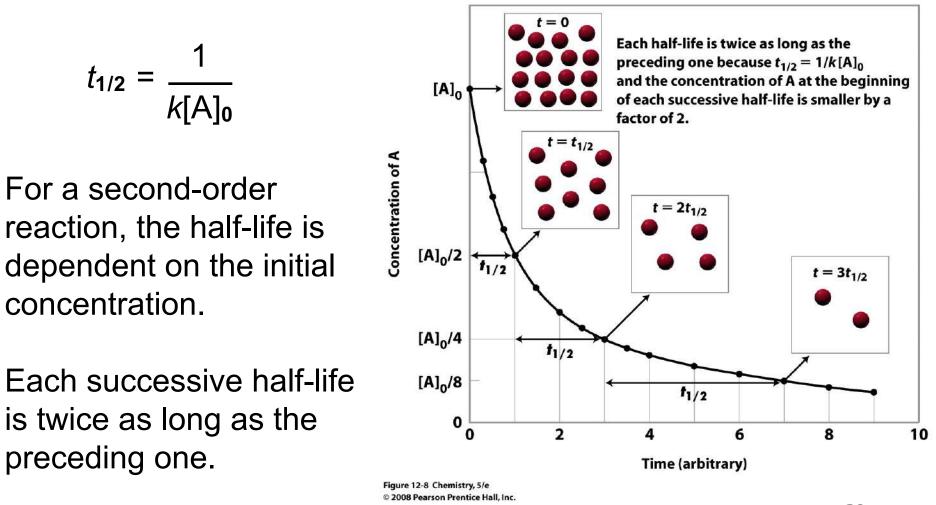

Example 12-8 part 3 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

$$2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$$

Plotting $\frac{1}{[NO_2]}$ versus


time gives a straight-line fit.

Therefore, this is a secondorder reaction.


Example 12-8 part 3 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

$$2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$$

Example 12-8 part 3 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Half-life for a second-order reaction $A \longrightarrow \text{product(s)}$ rate = $k[A]^2$ $\frac{2}{[A]_0} = kt_{1/2} + \frac{1}{[A]_0}$ $t_{1/2} = \frac{1}{k[A]_0}$

³⁰ Chapter 12/

	First-Order	Second-Order
Rate law	$-\frac{\Delta[A]}{\Delta t} = k[A]$	$-\frac{\Delta[A]}{\Delta t} = k[A]^2$ $\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$
Concetration– time equation	$\ln [\mathbf{A}]_t = -kt + \ln [\mathbf{A}]_0$	
Linear graph	ln [A] versus <i>t</i>	$\frac{1}{[A]}$ versus t
	$\boxed{\underbrace{\mathbf{V}}_{\mathbf{H}}} = \frac{\ln [\mathbf{A}]_0}{\operatorname{Slope}} = -k$ Time	$\frac{1}{[A]}$ $\frac{1}{[A]_0}$ $\frac{1}{[A]_0}$ Time
Graphical determination of <i>k</i>	k = -(Slope)	k = Slope
Half-life	$t_{1/2} = \frac{0.693}{k}$ (constant)	$t_{1/2} = \frac{1}{k[A]_0}$ (not constant)
able 12-4 Chemistry, 5/e	Convright © 2008 Pearson Prentice H	31 Chapter 12/

TABLE 12.4Characteristics of First- and Second-Order Reactions of
the Type $A \rightarrow Products$

Table 12-4 Chemistry, 5/e© 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.

Chapter 12/

Zeroth-Order Reactions

For a zeroth-order reaction, the rate is independent of the concentration of the reactant.

$$A \longrightarrow \text{product(s)}$$

rate = $k[A]^0 = k - \frac{\Delta[A]}{\Delta t} = k$

Calculus can be used to derive an **integrated** rate law.

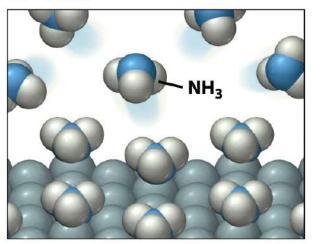
$$[A]_{t} = -kt + [A]_{0}$$

Zeroth-Order Reactions

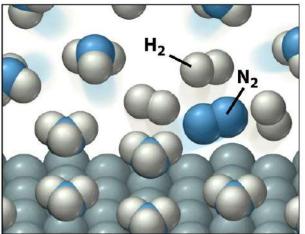
[A]₀ Slope = A plot of [A] versus time E gives a straight-line fit and the **slope** will be **-***k*.

Time \rightarrow

Figure 12-9 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.


Copyright © 2008 Pearson Prentice Hall, Inc.

33 Chapter 12/


Zeroth-Order Reactions

rate =
$$k[NH_3]^0 = k$$

Most of the NH₃ molecules are in the gas phase above the surface and are unable to react.

As NH₃ molecules on the surface decompose, they are replaced by molecules from the gas phase, so the number of NH₃ molecules on the surface remains constant.

Because only the NH₃ molecules on the surface react under these conditions, the reaction rate is independent of the total concentration of NH₃.

Figure 12-10 Chemistry, 5/e Copyright © 2008 Pearson Prentice Hall, Inc.

34 Chapter 12/

Reaction Mechanisms

Reaction Mechanism: A sequence of reaction steps that describes the pathway from reactants to products.

Elementary Reaction (step): A single step in a reaction mechanism.

Reaction Mechanisms

Experimental evidence suggests that the reaction between NO₂ and CO takes place by a two-step mechanism:

 $NO_2(q) + NO_2(q) \longrightarrow NO(q) + NO_3(q)$ elementary reaction

 $NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)$ elementary reaction

 $NO_2(q) + CO(q) \longrightarrow NO(q) + CO_2(q)$ overall reaction

An elementary reaction describes an individual molecular event.

The overall reaction describes the reaction stoichiometry and is a summation of the elementary reactions. 36

Copyright © 2008 Pearson Prentice Hall, Inc.

Chapter 12/

Reaction Mechanisms

$$NO_2(g) + NO_2(g) \longrightarrow NO(g) + NO_3(g)$$

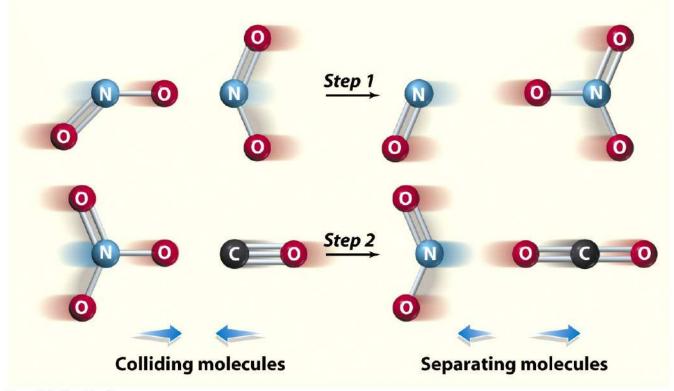


Figure 12-11 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

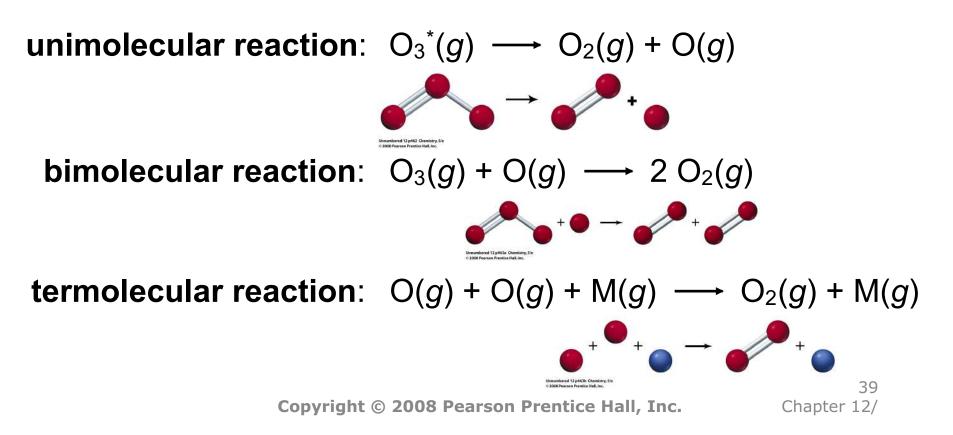
 $NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)$ Copyright © 2008 Pearson Prentice Hall, Inc.

37 Chapter 12/

Reaction Mechanisms

Experimental evidence suggests that the reaction between NO₂ and CO takes place by a two-step mechanism:

$$NO_2(g) + NO_2(g) \longrightarrow NO(g) + NO_3(g)$$
 elementary reaction
 $NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)$ elementary reaction


 $NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$ overall reaction

A reactive intermediate is formed in one step and consumed in a subsequent step.

38

Reaction Mechanisms-Molecularity

Molecularity: A classification of an elementary reaction based on the number of molecules (or atoms) on the reactant side of the chemical equation.

Rate Laws for Elementary Reactions

The rate law for an elementary reaction follows directly from its molecularity because an **elementary reaction is an individual molecular event.**

- unimolecular reaction: $O_3^*(g) \longrightarrow O_2(g) + O(g)$ rate = $k[O_3]$
 - **bimolecular reaction**: $O_3(g) + O(g) \longrightarrow 2 O_2(g)$ rate = $k[O_3][O_2]$
- **termolecular reaction**: $O(g) + O(g) + M(g) \longrightarrow O_2(g) + M(g)$ rate = $k[O]^2[M]$

Rate Laws for Elementary Reactions

TABLE 12.5 Rate Laws for Elementary Reactions

Elementary Reaction	Molecularity	Rate Law
$A \rightarrow Products$	Unimolecular	Rate = <i>k</i> [A]
$A + A \rightarrow Products$	Bimolecular	Rate = $k[A]^2$
$A + B \rightarrow Products$	Bimolecular	Rate = <i>k</i> [A][B]
$A + A + B \rightarrow Products$	Termolecular	Rate = <i>k</i> [A] ² [B]
$A + B + C \rightarrow Products$	Termolecular	Rate = <i>k</i> [A][B][C]

Table 12-5 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Rate-Determining Step: The slow step in a reaction mechanism since it acts as a bottleneck and limits the rate at which reactants can be converted to products.

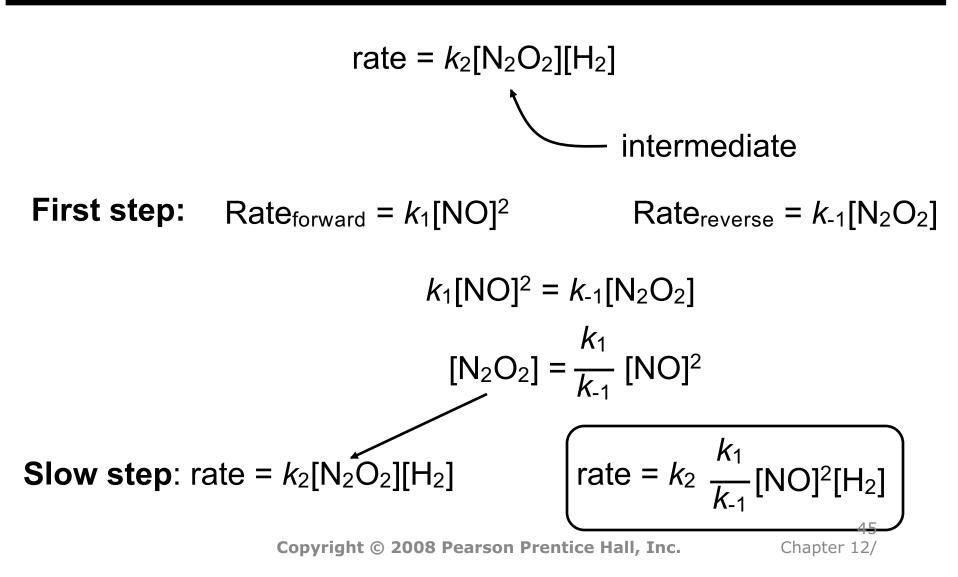
Initial Slow Step

 $NO_{2}(g) + NO_{2}(g) \xrightarrow{k_{1}} NO(g) + NO_{3}(g) \qquad \text{slow step}$ $NO_{3}(g) + CO(g) \xrightarrow{k_{2}} NO_{2}(g) + CO_{2}(g) \qquad \text{fast step}$ $NO_{2}(g) + CO(g) \longrightarrow NO(g) + CO_{2}(g) \qquad \text{overall reaction}$

Based on the slow step: rate = $k_1[NO_2]^2$

43 Copyright © 2008 Pearson Prentice Hall, Inc. Chapter 12/

Initial Fast Step


$$2NO(g) \xrightarrow{k_1}_{\overline{k_1}} N_2O_2(g) \qquad \text{fast step, reversible}$$

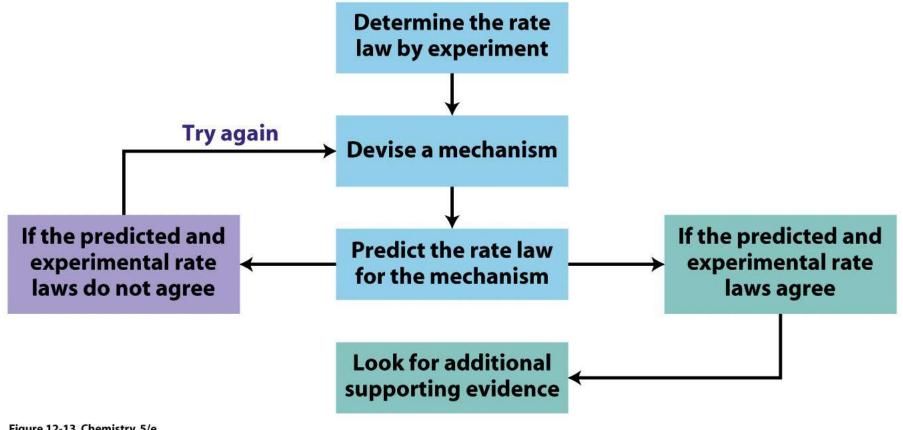
$$N_2O_2(g) + H_2(g) \xrightarrow{k_2} N_2O(g) + H_2O(g) \qquad \text{slow step}$$

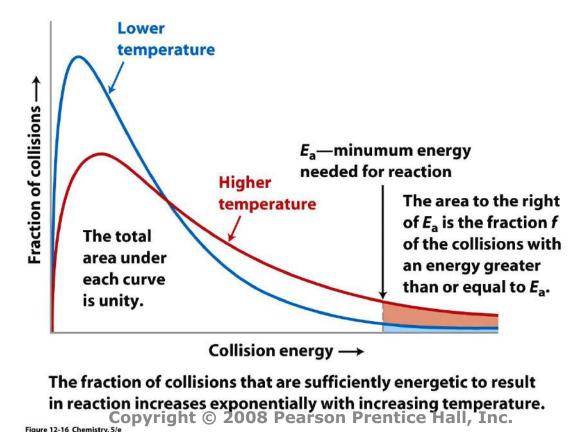
$$N_2O(g) + H_2(g) \xrightarrow{k_3} N_2(g) + H_2O(g) \qquad \text{fast step}$$

 $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$ overall reaction

Based on the slow step: $rate = k_2[N_2O_2][H_2]$

Procedure for Studying Reaction Mechanisms



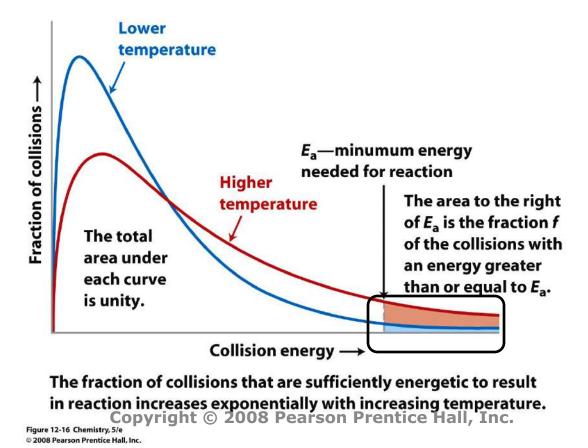

Figure 12-13 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Typically, as the temperature increases, the rate of reaction increases.

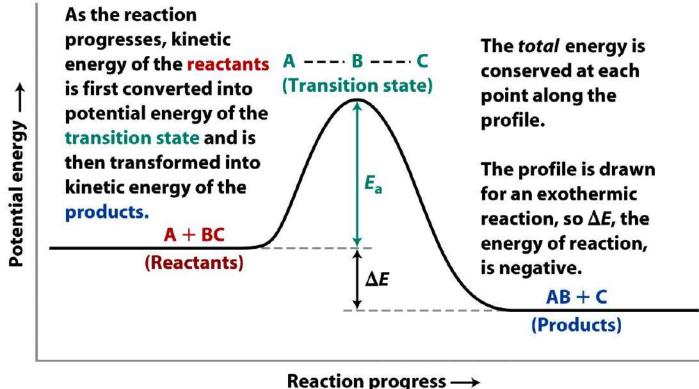
$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

rate = $k[N_2O_5]$

The rate constant is dependent on temperature.


Collision Theory: As the average kinetic energy increases, the average molecular speed increases, and thus the collision rate increases.

© 2008 Pearson Prentice Hall, Inc.


48 Chapter 12/

Activation Energy (E_a): The minimum energy needed for reaction. As the temperature increases, the fraction of collisions with sufficient energy to react increases.

49 Chapter 12/

Transition State: The configuration of atoms at the maximum in the potential energy profile. This is also called the activated complex.

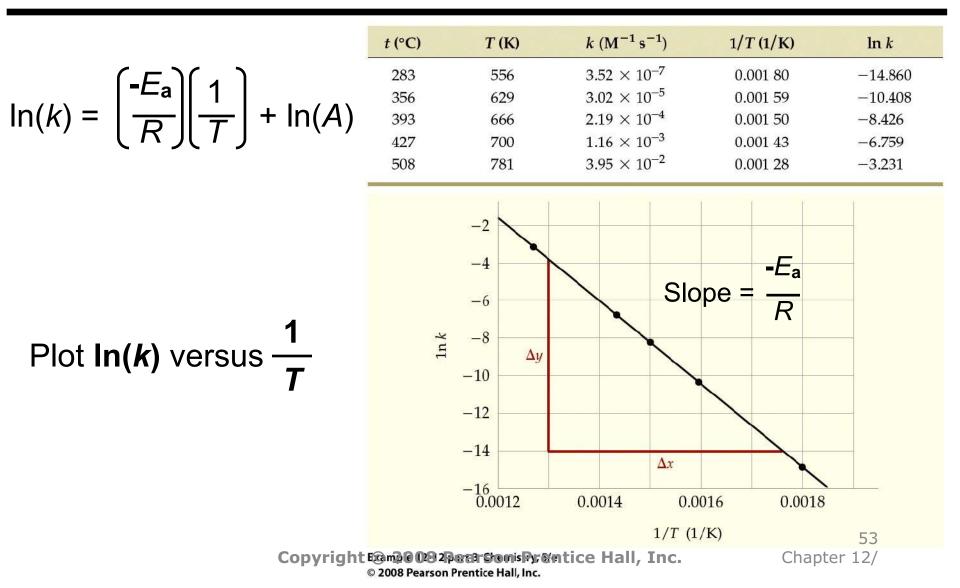
 $k = Ae^{-Ea/RT}$

*k*rate constant

Acollision frequency factor

*E*_aactivation energy

Rgas constant


Ttemperature (K)

Using the Arrhenius Equation

$$\ln(k) = \ln(A) + \ln(e^{-Ea/RT})$$

$$\ln(k) = \ln(A) - \frac{E_a}{RT} \xrightarrow{\text{rearrange the equation}} \left(\frac{\ln(k) = \left(-\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln(A)}{y = mx + b} \right)$$

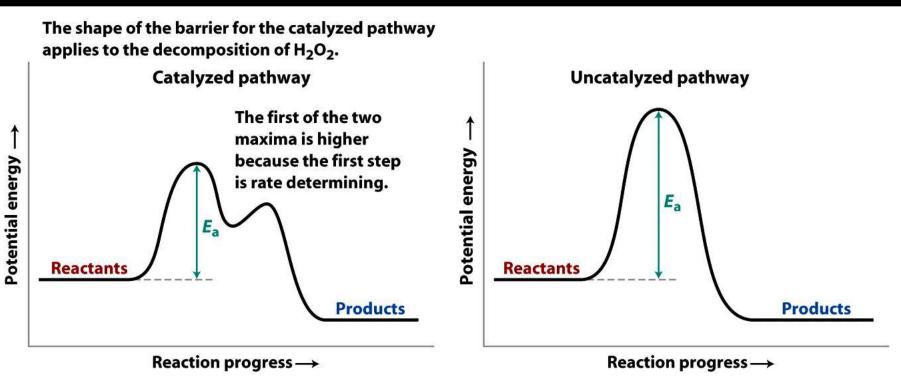
Using the Arrhenius Equation

Catalysis

Catalyst: A substance that increases the rate of a reaction without itself being consumed in the reaction. A catalyst is used in one step and regenerated in a later step.

$$\begin{array}{ll} H_2O_2(aq) + \overbrace{I^{1-}(aq)} \longrightarrow H_2O(l) + IO^{1-}(aq) & \mbox{rate-determining} \\ H_2O_2(aq) + IO^{1-}(aq) \longrightarrow H_2O(l) + O_2(g) + \overbrace{I^{1-}(aq)} & \mbox{fast step} \\ \\ 2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g) & \mbox{overall reaction} \end{array}$$

Catalysis


Since the catalyst is involved in the **rate determining step**, it often appears in the rate law.

rate = $k[H_2O_2][I^{1-}]$

$$H_{2}O_{2}(aq) + \overbrace{I^{1-}(aq)} \longrightarrow H_{2}O(l) + IO^{1-}(aq) \qquad \begin{array}{c} \text{rate-determining} \\ \text{step} \end{array}$$

$$H_{2}O_{2}(aq) + IO^{1-}(aq) \longrightarrow H_{2}O(l) + O_{2}(g) + \overbrace{I^{1-}(aq)} \\ 2H_{2}O_{2}(aq) \longrightarrow 2H_{2}O(l) + O_{2}(g) \qquad \begin{array}{c} \text{overall reaction} \end{array}$$

Catalysis

The activation energy E_a is lower for the catalyzed pathway.

Figure 12-18 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

> Note that the presence of a catalyst does not affect the energy difference between the reactants and the products Copyright © 2008 Pearson Prentice Hall, Inc. Chapter 12/

Homogeneous and Heterogeneous Catalysts

Homogeneous Catalyst: A catalyst that exists in the same phase as the reactants.

Heterogeneous Catalyst: A catalyst that exists in a different phase from that of the reactants.

Homogeneous and Heterogeneous Catalysts

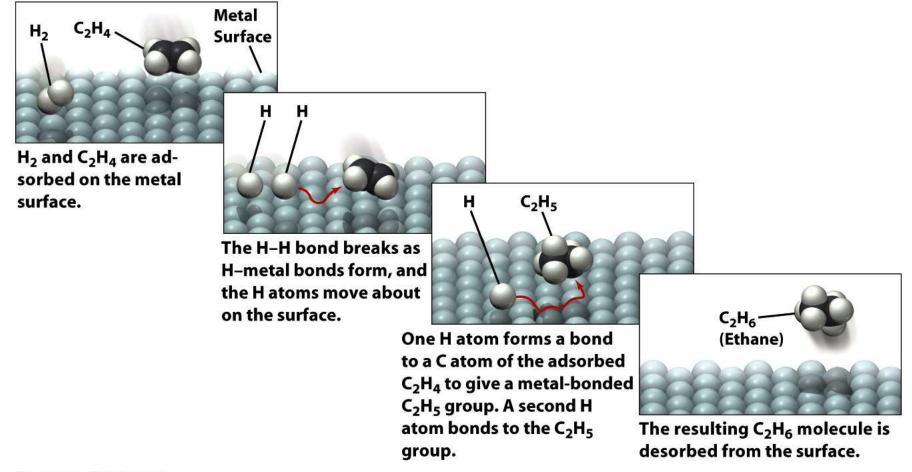


Figure 12-19 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.

Homogeneous and Heterogeneous Catalysts

Reaction	Catalyst	Commercial Process	End Product: Commercial Uses
$2 \operatorname{SO}_2 + \operatorname{O}_2 \rightarrow 2 \operatorname{SO}_3$	Pt or V_2O_5	Intermediate step in the contact process for synthesis of sulfuric acid	H ₂ SO ₄ : Manufacture of fertilizers, chemicals; oil refining
$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$	Pt and Rh	First step in the Ostwald process for synthesis of nitric acid	HNO ₃ : Manufacture of explosives, fertilizers, plastics, dyes, lacquers
$N_2 + 3 H_2 \rightarrow 2 NH_3$	Fe, K_2O , and Al_2O_3	Haber process for synthesis of ammonia	NH ₃ : Manufacture of fertilizers, nitric acid
$H_2O + CH_4 \rightarrow CO + 3 H_2$	Ni	Steam–hydrocarbon re-forming process for synthesis of hydrogen	H ₂ : Manufacture of ammonia, methanol
$CO + H_2O \rightarrow CO_2 + H_2$	ZnO and CuO	Water-gas shift reaction to improve yield in the synthesis of H ₂	H ₂ : Manufacture of ammonia, methanol
$CO + 2H_2 \rightarrow CH_3OH$	ZnO and Cr ₂ O ₃	Industrial synthesis of methanol	CH ₃ OH: Manufacture of plastics, adhesives, gasoline additives; industrial solvent
$\begin{array}{c} \begin{array}{c} \\ \end{array} \\ C = C \end{array} + H_2 \longrightarrow \begin{array}{c} H \\ C = C \end{array} + H_2 \end{array} + H_2 \longrightarrow + H_2 \longrightarrow + H_2 $ + H_2 \end{array} + H_2 \longrightarrow + H_2 + H_2 \end{array} + H_2 \longrightarrow + H_2 + H_2 \end{array} + H_2 \longrightarrow + H_2 + H_2 \end{array} + H_2 \end{array} + H_2 + H_2 \end{array} + H_2 \end{array} + H_2 \end{array} + H_2 \end{array} + H_2 + H_2 \end{array} + H_2 \end{array} + H_2 \end{array} + H_2 + H_2 \end{array} + H_2 \end{array} + H_2 \end{array} + H_2 + H_2 \end{array} + H_2 + H_2 \end{array} + H_2 \end{array} + H_2 \end{array} + H_2 \end{array} + H_2 = H_2 + H_2 \end{array} + H_2 \end{array} + H_2 = H_2 + H_2 \end{array} + H_2 = H_2	Ni, Pd, or Pt	Catalytic hydrogenation of compounds with C=C bonds, as in conversion of unsaturated vegetable oils to solid fats	Food products: margarine, shortening

TABLE 12.6 Some Heterogeneous Catalysts Used in Commercially Important Reactions

Table 12-6 Chemistry, 5/e © 2008 Pearson Prentice Hall, Inc.