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Reaction Rates

Reaction Rate: Either the increase in the concentration
of a product per unit time or the decrease in the 
concentration of a reactant per unit time.

Chemical Kinetics: The area of chemistry concerned 
with reaction rates and the sequence of steps by 
which reactions occur.
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Reaction Rates

2N2O5(g) 4NO2(g) + O2(g)
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Reaction Rates

2N2O5(g) 4NO2(g) + O2(g)

4
Chapter 12/Copyright © 2008 Pearson Prentice Hall, Inc.



Reaction Rates

2N2O5(g) 4NO2(g) + O2(g)

s
M

= 1.9 x 10-5

-(0.0101 M - 0.0120 M) 
(400 s - 300 s)

=
t

[N2O5]

Rate of decomposition of N2O5:
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Reaction Rates

a A + b B d D + e E

rate = =

=1
4-

[O2]
t

rate = 1
2
[N2O5]
t

=
[NO2]
t

- 1
b
[B]
t

=- 1
e
[E]
t

=1
a
[A]
t

1
d
[D]
t

General rate of reaction:

2N2O5(g) 4NO2(g) + O2(g)
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Reaction Rates

2N2O5(g) 4NO2(g) + O2(g)
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Rate Laws and Reaction Order

Rate Law: An equation that shows the dependence of
the reaction rate on the concentration of each 
reactant.

aA + bB products

rate [A]m[B]n

rate = k[A]m[B]n

k is the rate constant
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Rate Laws and Reaction Order

The values of the exponents in the rate law must be 
determined by experiment; they cannot be deduced 
from the stoichiometry of the reaction.
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Experimental Determination of 
a Rate Law

2NO(g) + O2(g) 2NO2(g)

[O2]nrate = k[NO]m

Compare the initial rates to the changes in initial concentrations.

10
Chapter 12/Copyright © 2008 Pearson Prentice Hall, Inc.



[O2]nrate = k[NO]2

Experimental Determination of 
a Rate Law

m = 2

The concentration of NO doubles, the concentration of O2 
remains constant, and the rate quadruples.

2m = 4

2NO(g) + O2(g) 2NO2(g)
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[O2]rate = k[NO]2

Experimental Determination of 
a Rate Law

n = 1

The concentration of O2 doubles, the concentration of NO 
remains constant, and the rate doubles.

2n = 2

2NO(g) + O2(g) 2NO2(g)
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[O2]rate = k[NO]2

Experimental Determination of 
a Rate Law

Reaction Order With Respect to a Reactant
• NO:second-order
• O2:first-order

Overall Reaction Order
• 2 + 1 = 3 (third-order)

2NO(g) + O2(g) 2NO2(g)
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Experimental Determination of 
a Rate Law

=k =

M
s

(M2) (M)
1

M2 s=
rate

[NO]2 [O2]

[O2]rate = k[NO]2

Units for this third-order reaction:

2NO(g) + O2(g) 2NO2(g)
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Experimental Determination of 
a Rate Law

[O2]rate = k[NO]2
2NO(g) + O2(g) 2NO2(g)
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Integrated Rate Law for a First-
Order Reaction

A product(s)

rate = k[A]

Calculus can be used to derive an integrated rate law.

[A]
t

- = k[A]

x
y

ln = ln(x) - ln(y)Using:

[A]t
[A]0

ln = -kt

ln[A]t = -kt + ln[A]0

y    = mx + b

[A]tconcentration of A at time t

[A]0initial concentration of A
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Integrated Rate Law for a First-
Order Reaction

y    = mx + b

A plot of ln[A] versus time gives a straight-line fit and 
the slope will be -k.

ln[A]t = -kt + ln[A]0
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Integrated Rate Law for a First-
Order Reaction

This is a plot of [A] versus time.

The best-fit is a curve and not a 
line.

ln[A]t = -kt + ln[A]0
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Integrated Rate Law for a First-
Order Reaction

ln[A]t = -kt + ln[A]0
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Integrated Rate Law for a First-
Order Reaction

2N2O5(g) 4NO2(g) + O2(g)

Slope = -k

rate = k[N2O5]
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Integrated Rate Law for a First-
Order Reaction

2N2O5(g) 4NO2(g) + O2(g)

Slope = -k

rate = k[N2O5]

k = 0.00170

(700 - 0) s
-5.099 - (-3.912)

= -0.0017

s
1

Calculate the slope:

s
1
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Half-Life for a First-Order 
Reaction

Half-Life: The time required for the reactant 
concentration to drop to one-half of its initial value.

A product(s)
rate = k[A]

[A]t
[A]0

ln = -kt
t = t1/2

=t1/2
[A]

2
[A]0

= -kt1/2
1
2

ln t1/2 = k
0.693

or
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Half-Life for a First-Order 
Reaction

t1/2 = k
0.693

For a first-order reaction, 
the half-life is independent
of the initial concentration.

Each successive half-life 
is an equal period of time.
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Second-Order Reactions

A product(s)

rate = k[A]2

Calculus can be used to derive an integrated rate law.

[A]
t

- = k[A]2

[A]tconcentration of A at time t

[A]0initial concentration of A
= kt + [A]0

1
[A]t
1

y  = mx + b
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Second-Order Reactions

2NO2(g) 2NO(g) + O2(g)
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Second-Order Reactions

Plotting ln[NO2] versus time
gives a curve and not a 
straight-line fit.

Therefore, this is not a first-
order reaction.

2NO2(g) 2NO(g) + O2(g)
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Second-Order Reactions

Slope = kPlotting                versus 

time gives a straight-line fit.

Therefore, this is a second-
order reaction.

[NO2]
1

2NO2(g) 2NO(g) + O2(g)
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Second-Order Reactions

Slope = k

2NO2(g) 2NO(g) + O2(g)

k = 0.540

(500 - 0) s

(395 - 125)
= 0.540

M s
1

Calculate the slope:

M
1

M s
1
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= kt + [A]0
1

[A]t
1

Second-Order Reactions

A product(s)

rate = k[A]2

t = t1/2

=t1/2
[A]

2
[A]0

Half-life for a second-order reaction

[A]0
1= kt1/2 +[A]0

2 =t1/2
k[A]0

1
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Second-Order Reactions

=t1/2
k[A]0

1

For a second-order 
reaction, the half-life is 
dependent on the initial 
concentration.

Each successive half-life
is twice as long as the 
preceding one.
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Zeroth-Order Reactions

A product(s)

rate = k[A]0 = k
[A]
t

- = k

For a zeroth-order reaction, the rate is independent of the
concentration of the reactant.

Calculus can be used to derive an integrated rate law.

[A]tconcentration of A at time t

[A]0initial concentration of A
y = mx + b

[A]t = -kt + [A]0
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Zeroth-Order Reactions

A plot of [A] versus time 
gives a straight-line fit and 
the slope will be -k.
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Zeroth-Order Reactions

rate = k[NH3]0 = k
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Reaction Mechanisms

Elementary Reaction (step): A single step in a reaction 
mechanism.

Reaction Mechanism: A sequence of reaction steps that 
describes the pathway from reactants to products.
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Reaction Mechanisms

Experimental evidence suggests that the reaction between
NO2 and CO takes place by a two-step mechanism:

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)

NO2(g) + CO(g) NO(g) + CO2(g)

elementary reaction

overall reaction

elementary reaction

An elementary reaction describes an individual 
molecular event.

The overall reaction describes the reaction stoichiometry
and is a summation of the elementary reactions. 36
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Reaction Mechanisms

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)
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NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)

NO2(g) + CO(g) NO(g) + CO2(g)

Reaction Mechanisms

Experimental evidence suggests that the reaction between
NO2 and CO takes place by a two-step mechanism:

elementary reaction

overall reaction

elementary reaction

A reactive intermediate is formed in one step and 
consumed in a subsequent step.
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Reaction Mechanisms-
Molecularity

Molecularity: A classification of an elementary reaction 
based on the number of molecules (or atoms) on the 
reactant side of the chemical equation.

termolecular reaction:

unimolecular reaction:

bimolecular reaction:

O(g) + O(g) + M(g) O2(g) + M(g)

O3*(g) O2(g) + O(g)

O3(g) + O(g) 2 O2(g)
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Rate Laws for Elementary 
Reactions

The rate law for an elementary reaction follows directly 
from its molecularity because an elementary reaction is 
an individual molecular event.

termolecular reaction:

unimolecular reaction:

bimolecular reaction:

O(g) + O(g) + M(g) O2(g) + M(g)

O3*(g) O2(g) + O(g)

rate = k[O]2[M]

rate = k[O3]

rate = k[O3][O2]
O3(g) + O(g) 2 O2(g)
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Rate Laws for Elementary 
Reactions
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Rate Laws for Overall 
Reactions

Rate-Determining Step: The slow step in a reaction 
mechanism since it acts as a bottleneck and limits the rate
at which reactants can be converted to products.
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Rate Laws for Overall 
Reactions

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)

NO2(g) + CO(g) NO(g) + CO2(g)

fast step

overall reaction

slow step

Based on the slow step: rate = k1[NO2]2

k2

k1

Initial Slow Step
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Rate Laws for Overall 
Reactions

N2O(g) + H2(g) N2(g) + H2O(g)

2NO(g) + 2H2(g) N2(g) + 2H2O(g)

slow step

overall reaction

fast step, reversible

Based on the slow step: rate = k2[N2O2][H2]

k3

k-1

Initial Fast Step

2NO(g) N2O2(g)
k1

N2O2(g) + H2(g) N2O(g) + H2O(g)
k2

fast step
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Rate Laws for Overall 
Reactions
rate = k2[N2O2][H2]

intermediate

First step: Ratereverse = k-1[N2O2]Rateforward = k1[NO]2

k1[NO]2 = k-1[N2O2]

[NO]2[N2O2] = k-1

k1

Slow step: rate = k2[N2O2][H2] rate = k2 [NO]2[H2]k-1

k1
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Rate Laws for Overall 
Reactions

Procedure for Studying Reaction Mechanisms
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The Arrhenius Equation

The rate constant is dependent on temperature.

2N2O5(g) 4NO2(g) + O2(g)

rate = k[N2O5]

Typically, as the temperature increases, the rate of 
reaction increases.
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The Arrhenius Equation

Collision Theory: As the average kinetic energy 
increases, the average molecular speed increases, and 
thus the collision rate increases.
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The Arrhenius Equation

Activation Energy (Ea): The minimum energy needed for 
reaction. As the temperature increases, the fraction of 
collisions with sufficient energy to react increases.
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The Arrhenius Equation

Transition State: The configuration of atoms at the 
maximum in the potential energy profile. This is also called
the activated complex.
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The Arrhenius Equation

k = Ae-E   /RTa

krate constant

Acollision frequency factor

Eaactivation energy

Rgas constant

Ttemperature (K)
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Using the Arrhenius Equation

RT
Ealn(k) = ln(A) -

y    =       mx      +   b

+ ln(A)T
1

R
-Ea

ln(k) =

ln(k) = ln(A) + ln(e-E   /RT)a

rearrange the equation
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Using the Arrhenius Equation

Plot ln(k) versus        
T
1 R

-Ea
Slope =

+ ln(A)T
1

R
-Ea

ln(k) =
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Catalysis

Catalyst: A substance that increases the rate of a reaction
without itself being consumed in the reaction. A catalyst is 
used in one step and regenerated in a later step.

H2O2(aq) + I1-(aq) H2O(l) + IO1-(aq)

H2O2(aq) + IO1-(aq) H2O(l) + O2(g) + I1-(aq)

2H2O2(aq) 2H2O(l) + O2(g) overall reaction

rate-determining
step

fast step
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H2O2(aq) + I1-(aq) H2O(l) + IO1-(aq)

H2O2(aq) + IO1-(aq) H2O(l) + O2(g) + I1-(aq)

2H2O2(aq) 2H2O(l) + O2(g)

Catalysis

Since the catalyst is involved in the rate determining 
step, it often appears in the rate law.

rate = k[H2O2][I1-]

overall reaction

rate-determining
step

fast step
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Catalysis

Note that the presence of a catalyst does not affect the 
energy difference between the reactants and the products56
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Homogeneous and 
Heterogeneous Catalysts

Homogeneous Catalyst: A catalyst that exists in the 
same phase as the reactants.

Heterogeneous Catalyst: A catalyst that exists in a 
different phase from that of the reactants.
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Homogeneous and 
Heterogeneous Catalysts
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Homogeneous and 
Heterogeneous Catalysts
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