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CHAPTER CONNECTIONS

This chapter will unify much of what we've
learned so far, and lead us to some intriguing,
sophisticated, and surprising applications of
trigonometry. Defining the trig functions helped
us study a number of new relationships not
possible using algebra alone. Their graphs gave
us Insights into how the functions were related
to each other, and enabled a study of periodic
phenomena. We will now use identities to
simplify complex expressions and show how
trig functions often work together to model
natural events. One such "event” ig ariver's
seasonal discharge rate, which tends to be
greater during the annual snow melt. In this
chapter, we’ll learn how to predict the
discharge rate during specific months of the
year, information of great value to fisheries,
oceanographers, and other scientists.

> This application appears as Exercises 53
and 54 in Section 7.7

Trigonometric equations, identities, and substitutions also play a vital role in a study of calculus, helping to
E simplify complex expressions, or rewrite an expression in a form more suitable for the tools of calculus,

Connoctions
to Calculus

These connections are explored in the Connections to Calculus feature following Chapter 7.
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& W Fundamental Identities and Families of ldentities

LEARNING OBJECTIVES

In Section 7.1 you will see
how we can:

Q A. Use fundamental
identities to help
understand and recognize
identity “families”

[ B. Verify other identities
using the fundamental
Identities and basic
algebra skills

@ C. Use fundamental
identities to express a
given trig function In
terms of the other five

e

EXAMPLE 1

Solution

WORTHY OF NOTE

The Pythagorean identities are
used extensively in future courses.
See Example 1 of the Connections
to Caleulus feature at the end of
this chapter.

654

In this section, we begin laying the foundation necessary to work with identities
successfully. The cornerstone of this effort is a healthy respect for the fundamental
identities and vital role they play. Students are strongly encouraged to do more than
memorize them —they should be internalized, meaning they must become a natural
and instinctive part of your core mathematical knowledge.

A. Fundamental Ildentitles and Identity Famllies

An identity is an equation that is true for all elements in the domain. In trigonometry,
some identities result directly from the way the functions are defined. For instance,
the reciprocal relationships we first saw in Section 6.2 followed directly from their def-
initions. We call identities of this type fundamental identities. Successfully working
with other identities will depend a great deal on your mastery of these fundamental
types. For convenience, the definitions of the trig functions are reviewed here, followed
by the fundamental identities that result.

Given point P(x, y) is on the terminal side of angle  in standard position, with

r=Va+ y* the distance from the origin to (x, y), we have
X
cos @ =— sint9=Z tan6=2;x=)&0
r r x
r r
sec=—x#0 cscfd =—y#0 cot9=£;y#0
x y ¥y

Fundamental Trigonometric ldentities

Reciprocal Ratio Pythagorean
identities identities identities
. 1 sin # |
sin@ = —— tan @ = cos’® + sin0 = 1
csc f cos 0
sec @
cosf = tan 8 = 1 + tan’d = sec®d
sec § csc 8
9
tan = — cot@ = C?S cot’@ + 1 = csch
cot 8 sin 6

Proving a Fundamental Identity

Use the coordinate definitions of the trigonometric functions to prove the identity
cos’® + sin’g = 1.

We begin with the left-hand side.

X
cos’@ + sin’0 = (;) ( ) substitute-;-ffor COS U,j—:fnrsin ¢

= f + y—2 squars ferms |

el

2 2
x + Y |

add terms

’2 |
|
Noting that r = V% + % implies ¥ = x* + y*, we have '
7. |
# J

Now try Exercises 7 through 10
7-2



EXAMPLE 2

Solution

& A. You've just seen how
we can use fundamental
identities to help understand
and recognize identity
“families™

Sectlon 7.1 Fundamental Identities and Familles of ldentitles 655

The fundamental identities seem to naturally separate themselves into the three
groups or families listed, with each group having additional relationships that can
be inferred from the definitions. For instance, since sin @ is the reciprocal
of csc 8, csc @ must be the reciprocal of sin . Similar statements can be made
regarding cos 8 and sec @ as well as tan # and cot 6. Recognizing these additional
“family members” enlarges the number of identities you can work with, and will
help you use them more effectively. In particular, since they are reciprocals:
sin@cscd = 1,cos @ sec @ = 1, and tan 8 cot @ = 1. See Exercises 11 and 12,

Identifying Families of Identities

Starting with cos”# -+ sin?@ = 1, use algebra to write four additional identities that
belong to the Pythagorean family.

cos?6 + sin’f = 1
1) sin%0 = 1 — cosd
2) sin@ = *V1 — cos?d
cos?d + sin’g = 1
3) cos’9 =1 —sin’6
4) cos® = £V1 — sin®@

For the identities involving a radical, the choice of sign will depend on the
quadrant of the terminal side.

Now try Exercises 13 and 14

The fact that each new equation in Example 2 represents an identity gives us more
options when attempting to verify or prove more complex identities. For instance,
since cos’® = 1 — sin®f, we can replace cos’6 with 1 — sin’8, or replace | — sin*6
with cos20, any time they occur in an expression. Note there are many other members
of this family, since similar steps can be performed on the other Pythagorean identities,
In tact, each of the fundamental identities can be similarly rewritien and there are a va-
riety of exercises at the end of this section for practice.

B. Verifylng an Identity Using Algebra

Note that we cannot prove an equation is an identity by repeatedly substituting input
values and obtaining a true equation. This would be an infinite exercise and we might
easily miss a value or even a range of values for which the equation is false. Instead we
attemplt to rewrite one side of the equation until we obtain a match with the other side,
so there can be no doubt. As hinted at earlier, this is done using basic algebra skills
combined with the fundamental identities and the substitution principle. For now we'll
focus on verifying identities by using algebra. In Section 7.2 we’ll introduce some
guidelines and ideas that will help you verify a wider range of identities.
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EXAMPLE 3

Solution

EXAMPLE 4

Solution

" EXAMPLE 5

Solution

ﬁ B. You've just seen how we
can verify other identities using
the fundamental identities and
basic algebra skills

Using Algebra to Help Verify an Identity
Use the distributive property to verify that sin &(csc 8 — sin 8) = cos’# is an
identity.

Use the distributive property to simplify the left-hand side.

sin @ csc 6 — sin®@  disiribute

1 — sin’@ substitute 7 for sin # csc 9
= cos’ 1 - 8in"y = cos’n

sin @(csc @ — sin 9)

Since we were able to transform the left-hand side into a duplicate of the right,
there can be no doubt the original equation is an identity.

a Now try Exerclses 15 through 24

Often we must factor an expression, rather than multiply, to begin the verification
process.

Using Algebra to Help Verify an Identity
Verify that | = cot’a sec’a — cot’a is an identity.

The left side is as simple as it gets. The terms on the right side have a common
factor and we begin there.
cot’a sec’a — cot’a = cot?a (sec’a — 1)
= cot’a tan’w
= (cot a tan &)’
=12=1

J

Now try Exercises 25 through 32

Examples 3 and 4 show you can begin the verification process on either the left or
right side of the equation, whichever seems more convenient. Example 5 shows how
the special products (A + BYA — B) = A* — B*and/or (A = B)? = A® + 24B + B?
can be used in the verification process.

Using a Speclal Product to Help Verify an ldentity

Use a special product and fundamental identities to verify that

(sin 8 — cos 8)°> = 1 — 2 sin 8 cos £ is an identity.

Begin by squaring the left-hand side, in hopes of using a Pythagorean identity,

(sin 8 — cos B = sin®8 — 2sin B cos B + cos?B  binomial square

= cos’B + sin’8 — 2sinBoos B rewrite terms
=1~-2sinBcosf substitute 1 for cos’8 + sin’g

Now try Exerclses 33 through 38

Another common method used to verify identities is simplification by combining

A C AD=*BC %9
terms, using the modelE * ) = — a0 Forsec ¢ = 2::8 7 + cos 8, the right-hand
sin%0 + cos’

|
side immediately becomes , which gives osp _ 5¢C 6. See Exercises 39

through 44.

cos
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EXAMPLE 6

Solution

WORTHY OF NOTE

Although Identities are valid where
hoth expressions are defined, this
does not preclude a difference in
the domains of each functlon, For
axample, the result of Example 6 Is
Indeed an identity, even though the

left side is defined at% whils the
right side is not.

EXAMPLE 7

Solution

Section 7.1 Fundamental Identities and Families of Identities 6h57

C. Writing One Function in Terms of Another

Any one of the six trigonometric functions can be written in terms of any of the other
functions using fundamental identities. The process involved offers practice in work-
ing with identities, highlights how each function is related to the other, and has practi-
cal applications in verifying more complex identities.

Writing One Trig Function in Terms of Another |
Write the function cos # in terms of the tangent function, ‘

Begin by noting these functions share “common ground” via sec 8, since
¥ g

ec @
sec’d = 1 + tan’@ Pythagorean identity

sec @ = *\V1+tan®f  square roots

We can now substitute =V 1 + tan®8 for sec 8 incos § =

1
sec’® = 1 + tan’¢ and cos § = ocd' Starting with sec’d, ‘

sec 0
1

cos ) = ————m——
+V/1 + tan%

Note we have written cos & in terms of the tangent function.

Now try Exercises 45 through 50

Example 6 also reminds us of a very important point——the sign we choose for the
final answer is dependent on the terminal side of the angle. If the terminal side is in QI
or QIV we chose the positive sign since cos ¢ = 0 in those quadrants. If the angle ter-
minates in QII or QIIL, the final answer is negative since cos § < 0 in those quadrants.

Similar to our work in Section 6.7, given the value of cot 8 and the quadrant of 6,
the fundamental identities enable us to find the value of the other five functions at 6. In
fact, this is generally true for any given trig function and angle 0.

Using a Known Value and Quadrant Analysis to Find Other Function Values |

Givencot § = % with the terminal side of @ in QIV, find the value of the other |

five functions of 8. Use a calenlator to check your answer.

40 .
The function value tan 8 = iy follows immediately, since cotangent and tangent

are reciprocals. The value of sec # can be found using sec’ = 1 + tan’f.

sec’0 = 1 + tan’ @ Pythagorean identity !

substitute 599 for tan ¢

1]

+

|

< |3
‘\"-—-{\}

_ 81 1600 40 B— |
= 21 -+ 31 square 5 subsmuteafon i
1681
sec’ = _8 N combing ierms |

take square roots |
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Check

m’ €. You've just seen how
we can use fundamental
identities to express a given
trig functlon in terms of the
other flve

. - . o 1 |
Since sec 8 is positive for a terminal side in QIV, we have sec 8 = Iy ‘I

This automatically gives cos 8§ = Tl (reciprocal identities), and we find ‘

. 40 . . em . sin 6 .
sin @ = —— using sin* § = 1 — cos®¢ or the ratio identity tan ¢ = = (verify).
4] cos 8 {
41 |
This result and another reciprocal identity gives us our final value, csc 8 = ~70 n|

As in Example 9 of Section 6.7, we find 8, using @ (TAN"H 409

@ 7, which shows 6, = 1,3495 (Figure 7.1). Since the terminal side of 8 is in
QIV, one possible value for 8 is 27 — 8,. Note in Figure 7.1, the @@ (6) (ANS) |
feature was used to compute 8, which we then stored as X. In Figure 7.2, we verify that

g = 30 _9 ..
tan @ = 9,cosﬂ 4l,amds.m(:? al
Figure 7.1 Figure 7.2
tan- 1t 48.-.9) tan(¥)rFrac
1.349481884 489
2n-An= cos{X)*rFrac
4.9337B3423
Aris>x sincHIrFrac
4,933783423 48,41

4

l;l_ow try Exercises 51 through 60 >

™Y 7.1 EXERCISES

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Three fundamental ratio identities are 4. An

is an equation that is true for all

9 = Y P dcotd = v elements in the - To show an equation is an
= 0s 0 tand = e coLe. = sin @' identity, we employ basic algebra skills combined
with the identities and the substitution
principle.
em ol A_C ADZ*BC
2. The three fundamental reciprocal identities are §. Use the pattern — * — = ————— (0 add the
Lo L B D BD
sin@=1__ ,cosf =1/__., and followi hi
tan 8 = 1/____. From these, we can infer three ollowing terms, and comment on this process

additional reciprocal relationships: csc 8 = 1/____,
secfd =1/ _,andcot@ = 1/__.

3. Starting with the Pythagorean identity 6
cos’8 + sin?@ = 1, the identity 1 + tan’0 = sec?8
can be derived by dividing both sides by
Alternatively, dividing both sides of this equation by
sin6, we obtain the identity ;

versus “finding 4 common denominator.”
cosf sind

sinf sec#

Name at least four algebraic skills that are used
with the fundamental identities in order to rewrite a
. trigonometric expression. Use algebra to quickly
rewrite (sin 8 + cos §)°.
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» DEVELOPING YOUR SKILLS

Use the definitions of the trigonometric functions to cos O cotf +cos @ |
prove the following fundamental identities. 32. = sin @

cot fl + (:01"1'8
7.1 + tan0 = sec’® 8. coi’0 + | = esc’f

Verify the equation is an identity using special products

9, tan § = sin 10; cot o =288 and fundamental identities,
cos f sin 6 . 5
(sin @ + cos @) )
33, ———————— =sec# + 2sinb
Starting with the ratio identity given, use substitution cos ¢
and fundamental identities to write four new identities (1 + tan 6)°
belonging to the ratio family, Answers may vary. 34, T =sech + 2sinf
11. tan § = g 12. cot § = 2 o 35, (1 + sin 8)(1 — sin 6) = cos’d
cos 6 sin 0 )
36. (sec @ + 1)(sec @ — 1) = tan“9
Starting with the Pythagorean identity given, use (csc O — cot 0)(cse 6 + cot )
algebra to write four additional identities belonging to 37. = cot @

tan 0

the Pythagorean family. Answers may vary.
(sec @ + tan @)(sec # — tan @)

13. 1 + tan®0 = sec’d 14, cot?d + 1 = csc’f 38. = sin @
csc 0
Verify the equation is an identity using multiplication . T ) ) .
and fundamental identities. Verify the equ:tmn g. an :i:ntlt; ;smg fundamental
AD + BC
15. sinfcotf =cos® 16, cosftanf = sin @ identities and 3 = D= D to combine terms.
17. sec?0 cot’d = csc?@  18. csc®f tan6 = secd " c6i%n . sing _ y
19. cos 0 (sec & — cos 9) = sin’@ * sin 6 T
20. tan 9 (cot @ + tan ) = sec’d 40, 5@ _ tan’e -
21. sin 8 (csc & — sin 8) = cos’ T sec @
22. cot 6 (tan 8 + cot §) = csc’@ 41 anf sinf _sinf — 1
23, tan § (csc 8 + cot @) = sec B + 1 cscf  cosé cot ¢
24. cot @ (sec @ + tan @) = csc 6 + 1 42. cot§ cos® cost — 1
sec@ sin# tan 6
Verify the equation is an identity using factoring and seéd | osed
fundamental identities, 43, e = tan @
25, tan’8 csc?6 — tan’0 = 1 e
26. sin’@ cot’6 + sin’@ = 1 44. cosf  cscf cot &
smfcos® + sinf
27. c0s @ + cos?8 = tan § Write the given function entirely in terms of the second
function indicated.
i +
28. L 6 cgsf = Z;S 9 = cot # 45, tan @ in terms of sin
sin sin
| + sind 46. tan # in terms of sec 8
29. M N T N ! S g 47. sec 0 in terms of cot 8
% 1 + cos @ - 48. sec @ in terms of sin ¢
"sin@ + cos@sin@® e 49, cot @ in terms of sin @
sin@tan @ + sinf 80, cot @ in terms of csc @

os @
tan 6 + tan’6
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.| For the given trig function f(6) and the quadrant in which @ terminates, state the value of the other five trig
= functions. Use a calculator to verify your answers.

20 7
§1, cos = ~% with 8 in QII 56, csc @ = p with @ in QII
. [V . e .

52. sinf = ET) with & in QII 57. sinf = =13 with 8 in QIII
15 23 )

53. tan g = ) with 8 in QIII 58, cos @ = 25 with 8 in QIV
S g .

54, sec @ = 3 with 6 in QI'V 59, sec @ = —5 with 8 in QI
X ..., mn

35, cot @ = 3 with 8 in QI 60. cot § = 5 with & in QIV

> WORKING WITH FORMULAS

nx?\ cos(15%)
61. The versine function: V = 2 sin’0 62. Area of a regular polygon: 4 = (T) ;I-‘—(T_,}’g_&j
For centuries, the haversine formula has been used The area of a regular polygon is given by the i
in naVigaLion o calculate the nautical distal'lcc formu]_a Shown‘ where n represents [he number of
between any two points on the surface of the Earth, sides and x is the length of each side.

One part of the formula requires the calculation of
V, where 8 is half the difference of latitudes
between the two points. Use a fundamental identity
to express Vin terms of cosine.

a. Rewrite the formula in terms of a single trig
function.

b. Verify the formula for a square with sides of

8 m given the point (2, 2) is on the terminal
side of a 45° angle in standard position.

> APPLICATIONS
Writing a given expression in an alternative form is a 69. Show cos?8 sin  — cos28 can be factored into
skill used at all levels of mathematics. In addition to —1(1 + sin )1 — sin 8)%.

standard factoring skills, it is often helpful to ) N
decompose & power into smaller powers (as in writing 70. Show 2 cot’d csc § + 22 cot®d can be factored

AlasA -AY), into 2(csc @ + V2)(csc @ — 1)(csc § + 1).

63. Show that cos’@ can be written as cos (1 — sin®6). 71. Angle of intersection: At their point of intersection,
a ) . the angle 8 between any two nonparalle] lines
64, Show that tan”8 can be written as tan 6(sec”8 — 1). satisfies the relationship (m, — m;)cos 8 =
65. Show that tan & + tan’8 can be written as sin @ + mymysin 6, where m, and m, represent the
tan (sec28). slopes of the two lines. Rewrite the equation in

4 : . terms of a single trig function,
66. Show that cot’8 can be written as cot 8(csc”8 — 1), . _
72. Angle of intersection: Use the result of Exercise 71

67. Show tan’f sec § — 4 tan’@ can be factored into to find the tangent of the angle between the lines
(sec 8 — 4)(sec @ — 1)(sec & + 1).

68. Show 2 sin*@ cos # — V/3 sin @ can be factored
into (1 — cos 8)(1 + cos 8)(2 cos § — V3). 7,

2 7
Y, =§x—3andY2=-§x+ 1.
Angle of intersection: Use the result of Exercise 71
to find the tangent of the angle between the lines

Y| = 3x — landY2= —2x+ 7.
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» EXTENDING THE CONCEPT
74. The word tangent literally means “to touch,” which in mathematics we take to Exercise 74
mean fouches in only and exactly one point. In the figure, the circle has a radius ¥

of 1 and the vertical line is “tangent” to the circle at the x-axis. The figure can be
used to verify the Pythagorean identity for sine and cosine, as well as the ratio

identity for tangent. Discuss/Exptain how.

sin @

75. Simplify —2 sin*9 + V3 5in¢ + 2 sin’0 — /3 sin 8 using factoring and r o

fundamental identities.

> MAINTAINING YOUR SKILLS

76. (5.5) Solve for x;

2500

2351 = | + o~ LOI5

77. (6.6) Standing 265 ft from the base of the
Strastosphere Tower in Las Vegas, Nevada, the
angle of elevation to the top of the tower is about
77°. Approximate the height of the tower 1o the
nearest foot.

78. (4.2} Use the rational zeroes theorem and other
“tools” to find all zeroes of the function
flx) = 2% + 9 ~ 43? —~ 36x — 6.

79. (6.3) Use a reference rectangle and the rule of
Sfourths to sketch the graph of y = 2 sin(2f) for ¢ in
[0, 2m),

I8 More on Verifying Identities

LEARNING OBJECTIVES In Section 7.1, our primary goal was to illustrale how basic algebra skills can be used

In Section 7.2 you will see to rewrite trigonometric expressions and verify simple identities. In this section, we’ll

how we can: sharpen and refine these skills so they can be applied more generally, as we develop the
ability to verify a much wider range of identities.

[ A. Identify and use identities
due to symmetry

Q B. Verify general identities ~ A. Identities Due to Symmetry

[ C. Use counterexamples and
contradictions to show an
equation is not an identity

The symmetry of the unit circle and the wrapping Figure 7.3
function presented in Chapter 6’s Reinforcing Basic I
Skills feature, lead us directly to the final group of
fundamental identities. Given ¢ > 0, consider the
points on the unit circle associated with ¢ and —¢, as
shown in Figure 7.3. From our definitions of the trig
functions, sin ¢ = y and sin{~¢) = —y, and we recog-
nize sine is an odd function: sin{~f) = —sin ¢. The re-
maining identities due to symmetry can similarly be
developed, and are shown here with the complete
family of fundamental identities.
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WORTHY OF NOTE Fundamental Trigonometric ldentities
The identities due to symmetry are

sometimes referred to as the Reciprocal Ratio Pythagorean Identities due
evenfodd properties. These 3 v . . s
properties can help express the identities identities identities to symmetry
cofunction identities in shifted form, 1 dnt
For example, sinf = — tanr=——  cos’t + sin’t = 1 sin(—1) = —sin ¢
sint = ms(az_r _ t) csc ¢ cos !
1 sec t 2 2
” cost=—— tant = — I + tan”t = secr cos(—1) = cost
=003-t-§ sect csc
1 cos !
= cos(t - 3), tant = — cotr = —  cot’t + | = csc’y tan{—7) = —tan ¢
2 cot ¢ sin ¢

EXAMPLE 1 Using Symmetry to Verify an Identity
Verify the identity: (1 — tan £)* = sec’s + 2 tan(—1)
Solution Begin by squaring the left-hand side, in hopes of using a Pythagorean identity.
(1 —tang)> =1 —2tan¢ + tan’s
1 + tan’t — 2tan¢
= sec’t — 2tant

At this point, we appear to be off by two signs, but quickly recall that tangent is an
odd function and —tan ¢ = tan(—¢). By writing sec’t — 2 tan r as sec’t + 2(—tan ),
we can cormnplete the verification.

= sec’t + 2(~tan f)
sec’t + 2 tan(—1)

@ A. You've just seen how
we can identify and use -
identities due to symmetry Now try Exercises 7 through 12

B. Verifying ldentities

We're now ready to put these ideas and the ideas from Section 7.1 to work for us. When
verifying identities we attempt to mold, change, or rewrite one side of the equality
until we obtain a match with the other side. What follows is a collection of the ideas
and methods we’ve observed so far, which we’ll call the Guidelines for Verifving Iden-
tities. But remember, there really is no right place to start. Think things over for a mo-
ment, then attempt a substitution, simplification, or operation and see where it leads. If
you hit a dead end, that’s okay! Just back up and try something else.

Guldelines for Verifying ldentities

WORTHY OF NOTE L As;:; general rule, worll(] on onl)f one side of the ldentl‘ty. . ’ )
L
When veritying Identities, f is e cannot assume the equation is true, so properties of equality cannot be

actually permissible to work applied.

an sach side of the equality o We verify the identity by changing the form of one side until we get a match
independently, in the effort to with the other.

create a "match.” But propertles . * . N . . .
of equality can never be used, 2. Work with the more complex side, as it is easier to reduce/simplify than to
since we cannot assume an “huild.”

equality exists. . . .. 5
3. If an expression contains more than one term, it is often helpful to combine

" ingAy € _ADE BC
erms using 5D~ 8D
Converting all functions to sines and cosines can be helpful,
Apply other algebra skills as appropriate: distribute, factor, multiply by a
conjugate, and so on.
6. Know the fundamental identities inside out, upside down, and
backward—they are the key!

4
5
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EXAMPLE 2

Solution

EXAMPLE 3

Solution

Sectlon 7.2 More on Verlfying |dentities 663

Note how these ideas are employed in Examples 2 through 35, particularly the fre-
quent use of fundamental identities.

Verifying an Identity
Verify the identity: sin’# tan’9 = tan%6 — sin4.

As a general rule, the side with the greater number of terms or the side with
rational terms is considered “more complex,” so we begin with the right-hand side.

2
. sin“f )
tan’ — sin’¢ = == sin’é
cos“f '
sin%0 | 2 '
= v — sin@
1 cos“d

= sin®f sec’d — sin’0 '
= sin%f (sec?d — 1) i
= sin’# tan6

Now try Exercises 13 through 18

In the first step of Example 2, we converted all functions to sines and cosines. Due
to their use in the ratio identities, this often leads to compound fractions that we’ll need
to simplify to complete a proof.

Verifying an ldentity by Simplifying Compound Fractlons

. . . 1+ cotx
Verify the identity —————— = cos x
secx + cscx
Beginning with the left-hand side, we’ll use the reciprocal and ratio identities to
express all functions in terms of sines and cosires.

Cos X
1+ — |
1 +coty sin x |
secx + cscx 1 1
cosx sinx
Cos X .
(l + sin x )(cos * sim x) multiply numerator and
= denominator by cos x sin ¥
I 1 . {lhe LCD for a#f fractions)
+ — Kcos x sin x)
CosX  sinx
. COs X )
(1)(cos x sin x) + ( - )(cos X siarr)
Sigr
= disiribuie
( 1 )(s:os—x in )+( ! )(cosx,s.i-n-ﬂr)
— sin x —_
foie’: o o Six
cos x sin x + cos %
= = simplify
sinx + cosx '
c08 x[sin x-+eos} |
= . N factor aut cos x in numerator :
=L0S X simplify

Now try Exerclses 19 through 24
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Examples 2 and 3 involved facroring out a common expression. Just as often, we'll
need to multiply numerators and denominators by a common exptession, as in Example 4.

EXAMPLE 4 Verifying an Identity by Multiplylng Conjugates

cost 1 —cost
Verify the identit
y 4 1+ sect  tan’
Solution Both sides of the identity have a single term and one is really no more complex

than the other. As a matter of choice we begin with the left side. Noting the
denominator on the left has the term sec ¢, with a corresponding term of tan’t on
the right, we reason that multiplication by a conjugate might be productive,

cost cost 1 — sect . ) )
= multiply numerafor and denominator by the conjugate
1+ sect 1 +sect/\1—sect

cost— 1

1 — sect
cost — 1

Il

—tan’t
1 — cos {
tan’t

Now try Exercises 25 through 28

Example 4 highlights the need to be very familiar wn;h families of identities. To re-
place 1 — sec?, we had to use ~tan’, not simply tan’, since the related Pythagorean
identity is 1 + tan’t = sec’r.

As noted in the Guidelines, combining rational terms is often helpful. At this point,

AD = B
students are encouraged to work with the pattern % * % = _m)_C as a means of

combing rational terms quickly and efficiently.

EXAMPLE 5 Verifying ;n ldentity by Combining Terms

: 2 2

secx sifL x tan"x + cos’x

Verify the 1dem1ty = == .,
nx SeC x tun x

Solution We begin with the left-hand side.

secx sinx _ sec’x — sin’x

sihx secx sin x sec x
_ (1 + tan®x) — (1 — cos’x)

() &)

tan x + - L0S Iy

Now try Exerclses 29 through 34

Identities come in an infinite variety and it would be impossible to illustrate all

- vatiations, The general ideas and skills presented should prepare you to verify any of

B. You've just seen how those given in the Exercise Set, as well as those you encounter in your future studies.
we can verify general identities  See Exercises 35 through 58.
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EXAMPLE 6

Solution

Section 7.2 More on Verifying Identitles 866

C. Showing an Equation Is Not an Identity

To show an equation is not an identity, we need only find a single value for which the

functions involved are defined but the equation is fafse. This can often be done by trial

and error, or even by inspection. To illustrate the process, we’ll use two common mis-

conceptions that arise in working with identities.

Showing an Equation Is Not an Identity '

Show the equations given are not identities. |
a, sin(2x) = 2sinx b. cos(a + B) = cosa + cos B |

a. The assumption here seems to be that we can factor out the coefficient from
the argument. By inspection we note the amplitude of sin(2x) is A = 1, while
the amplitude of 2 sin x is A = 2. This means they cannot possibly be equal for
all values of x, although they are equal for integer multiples of #. For instance, |
substituting 7 for x shows the left- and right-hand sides of the equation are '
equal (see Figure 7.4). However, Figure 7.5 shows the two sides of the equation

m . o 2 .
are not equal when x = 3 This equation is not an identity.

Flgure 7.4 Figure 7.5
¥ N/6K
] 3. 141592554 _ . 9235987756
sinc2¥) sin(2X)
) a |« BEEBZD4833
2sincH) 5 28ind®)

b. The assumption here is that we can distribute function values, This is similar to
saying Vx + 4 = Vx + 2, a statement obviously false for all values except
x = 0, Here we’ll substitute convenient values to prove the equation false,

- |

b

3m
namely, @ = 1 and 8 = e
C (11: + -) = 005(3_11') + cos(—)
T T3 4 4
V2 V2 ,
cosmr=—+ — simplify
2 2
-1#0 result is false

Now try Exercises 59 through 64

Many times, a graphical test can be used to help determine if an equation is an iden-
tity. While not fool-proof, seeing if the graphs appear identical can either suggest the iden-
tity is true, or definitely show it is not. When testing identities, it helps to @ the left-hand
side of the equation as'Y ) on the €% screen, and Flgure 7.8
the right-hand side as'Y,. We can then lest whether 4
an identity relationship might exist by graphing IZ1-Cot (I |
both relations, and noting whether two graphs or a I
single graph appears on the @& screen.

. A 2 . - (
Consider the equation 1 — cos’x = sin“x. M&&

After entering Yy =1 —cos(X)* and 2 o
Y, = sin(X)% we obtain the graph shown in
Figure 7.6 using the calculator’s @& 7:ZTrig H=0 y=0

feature. —4
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Since only one graph appears in this window, it seems that an identity relationship
likely exists between Y, and Y,. This can be further supported (but still not proven) by
entering Y3 = Y, + 1 to vertically translate the graph of Y, up 1 unit (be sure to
deactivate Y,) and observing the @ (see Figure 7.7). Of course the calculator’s
TABLE feature could also be used on Y; and Y.

To graphically investigate the equation sin{2x) = 2 sin x, Y, = sin(2X) and
Y, = 2 sin(X) and note the existence of two distinct graphs (Figure 7.8). The resulting
graphs confirm our solution to Example 6(a): sin(2x) # 2 sinx—even though
sin(2x) = 2 sin x for integer multiples of 7 (the points of intersection). See Exercises

65 through 68.
Figure 7.7
4
TisVasl
P W
I B f% Y e |
H €. You've just seen how
we can use counterexamples I
and contradictions to show an $=0 =i
equation is not an Identity -4

=27

Figure 7.8

4

I¥1=sinizH}

; Y

A=3.Ani59e7

e

"MLY 7.2 EXERCISES

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed,

1. The identities —sin x tan x = sin(—x) tan x and
cos{—x) cot x = cos x cot x are examples of
due to

3. To verify an identity, always begin with the more
expression, since it is easier to
than to

5. Discuss/Explain why you must not add, subtract,
multiply, or divide both sides of the equation when
verifying identities,

» DEVELOPING YOUR SKILLS

Verify that the following equations are identities,
7. (1 + sinx)[1 + sin(—x)] = cos’x
8. (secx + 1)[sec(—x) — 1] = tan’x

9, sin’(—x) + cosx = 1

2, To show an equation is nor an idenrity, we must

find at least

input value where both

sides of the equation are defined, but results in a

equalion.

4. Converting all terms to functions of

may help verify an identity.

and

6. Discuss/Explain the difference between operating
on both sides of an equation (see Exercise 5) and
working on each side independently.

10. 1 + cot®(—x) = csc’x

1 — sin{~x}

ll.

= 8eC X

cos x + cos(—x) sinx

1 + cos(—x)

12,

= CsCcx

sin x ~ cos x sin(—x)
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13. cos®x tan®c = 1 — cos’x
14. sin®x cot?x = 1 — sin*x
15, tanx + cotx = secxcscx

16. cot xcos x = ¢scx — sin x

COs X )
i7. = ¢gscx — sinx
tan x
sin x
18, — =secx —cosx
cotx
sec x .
19, —— =ginx
cotx + tanx
csc X
20, ——=cosx
cotx + tanx
sinx — cscx
21, ————"= = —cog’x
csC X
CO5Xx — secx .
22, /== = —in’x
sec x
1
23, ———————— =tanxsecx
cscx — sinx
1
24, ————— =cotxcscx
secx — cosx
cos 0
28, —————— =3sech +tan o
| — sin@
sin @
26— =cscO +coth
I —cos 0
2 1—sinx  cosx
‘' cosx 1+ sinx
l — cosx sin x
28. I =
sin X 1 + cosx
2 + 2
29 csCx COs X colx + sIinx
‘cosx cscx cotx
1 1
30, —5= + ——— = csc’vsec’x
. C08°x n‘x ik
$in x sin x
31 — — — = ~2tan’x
| + sinx | — sinx
COS X COS X
2. - = —2 cot’x
1 + cosx 1 —casx
cot x colx
33. - =72 seex
1 ecscx 1 —csex
tan x tan x
¢ - = 2¢8Cx
1 -+ secx 1 = secx

38,

37.
38,
39
40

41.

42,

49,
51.
52.
53.
54,
8,
56.
57,

58,

Saction 7.2 More on Verlfying Identitles
sec’x csex
———— = tan’x 36, ————— = cot’x
| -+ col™x 1 + tan"x
sin’x (cot’x — csc?x) = —sin’x
cos?s (tan’x — sec’t) = —cos%x

cosxcotx + sinx =cscx

sinxtanx + cosx = secx

1 + sinx

———— = (tanx + sec x)°
| — sinx

| — cosx
————— = {cscx = cotx)
| 4+ cosx

cosx —sinx _ cosx + sinx
1 —tanx I+ tan x

| —cotx sinx —cosx

| + cotx sinx + cosx

tan’x — cot>x

= CSCXsecx
lanxy — colx
coly — tanx .
— 5 = siInXCcos X
cotx — lan"x
col x .2
— =1 - sit'x
cotx + lanx
tanx
— = - coe’x
colx + tanx
sec“.‘r = t'=1t14..\' _ 50 L'St.‘d.t' = col"x
sec’y + tan’x 1 esc’x + cot’x
costx — sin'x 3
——— =2 —sec’x
cosx
sin*x — cos*x .
——5 =28
sin‘x
, _ (sinx+ 1y
(secx + tanx)* = ————
cos“x
, (cosx+ 1)
(cscx + cotx)* = ————
sinTx
cosy | sinx  cscx _ secx + cosx
sinx  c€osXx  secx sinx
cosx | sinx  secx ‘cscx +sinx
sinx  cosx  csex cos X
sin®s — cos®s _ sinx — cosx
gin’x + cos’x 1 —sinxcosx
sin*r = cosx  sinx + cosx
sin®x — cos®x 1+ sinxcosx

887



668 CHAPTER 7 Trigonometric dentlties, Inverses, and Equations 7-16

Show that the following equations are not identities. Determine which of the following are not identities by
s . using a calculator to compare the graphs of the left- and
59, sin(& + 3) =sinf + sin(;) right-hand sides of each equation,
— sin?
i aT 65. 1-singd = cos @
60.cos:1~ + cos 6 = cos z-i-ﬂ cos @
66. cos(2x) = | ~ 2sin’x
61. cos(26) = 2cos 6 )
62 26) = 2 tan 8 67 cos x :I+smx
- tan(20) = 2 tan "1+ sinx cos x
0 tan ¢
G tan(z) " tan4 68, —=% _ = secx — tan x
I —sinx

64, cos’0 — sin%0 = —1

» WORKING WITH FORMULAS

% 69. Distance to top of movie screen: d> = (20 + x cos 0)% + (20 — x sin 0)*

At a theater, the optimum viewing angle depends on a number of A (not o scale)
factors, like the height of the screen, the incline of the auditorium, the
location of a seat, the height of your eyes while seated, and so on. One

of the measures needed to find the “best” seat is the distance from your

eyes to the top of the screen. For a theater with the dimensions shown, 49 ¢
this distance is given by the formula here (x is the diagonal distance
from the horizontal floor to your seat), (a) Show the formula is
equivalent to d* = 800 + 40x(cos & — sin 8) + x°. (b) Find the
distance d if @ = 18° and you are sitting in the eighth row with the
rows spaced 3 ft apart.

2gin A sin B
70. The area of triangle ABC: 4 = < S 0
; 2sinC

If one side and three angles of a triangle are known, its area can be computed using this
formula, where side ¢ is opposite angle C. Find the area of the triangle shown in the

diagram.
> APPLICATIONS

71. Pythagorean theorem: For the triangle shown, 72. Pythagorean theorem: For the triangle shown,
(a) find an expression for the length of the (a) find an expression for the area of the triangle in
hypotenuse in terms of tan x and cot x, then terms of cot x and cos x, then determine its area
determine the length of the hypotenuse when ) T _ .
x = 1.5 rad. (b) Show the expression you found in CNEDE = 2 (b) Show the expression you found in
part (a) is equivalent to = Vesc x sec x and 1
recompute the length of part (a) is equivalent to A = 5 (cscx — sin x)
the hypotenuse using this h :: ooTs _
expression. Did the Lol and recoompltjl’lc the Exerclse 72
answers match? Jaanx area using this

expression, Did the

COs X
answers match?

cotx
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73. Viewing distance: Referring to Exercise 69, find a for the same seat described in part (b) of
formula for D—the distance from a patron’s eyes Exercise 69,
to the bortom of the movie screen. Simplify the
result using a Pythagorean identity, then find the
value of D for the same seat described in part (b} of
Exercise 69. sin &

75. Intensity of light: In a study of the luminous
intensity of light, the expression
. licos @
\/(I,cos 0)° + (Lsin )
Simplify the equation for the moment /; = .

¢an occur.

74. Viewing angle: Referring to Exercises 69 and 73,
once d and D are known, the viewing angle a (the

angle subtended by the movie screen and the 76. Intensity of light: Referring to Exercise 75, find
viewer’s eyes) can be found using the formula the angle § given /; = I and & = 60°.
cos & ol Find the value of cos
S o
2dD "

» EXTENDING THE CONCEPT

‘6 6 i vt g b
] ) . sin"x — cos’x . 78. Use factoring to show the equation is an identity:

77, Verify the identity ———— =1— sin’x cos’xr. sinr + 2 sinx costx + cosix =1
sin“x — cos™x .

> MAINTAINING YOUR SKILLS

79. (4.4) Graph the rational function given. 81. (6.6) Use an Exerclse 82
h(x) = i appropriate trig ratio to 400 yd
¥ -4 find the length of the 62° N
7 3 bridge needed to cross \
80. (6.2) Verify that (— —) is a point on the unit the lake shown in the S
4 4 figure. Nd
cm:le., then state tll1e va}ues of sinr, cos ¢, and tan ¢ 82. (2.3) Graph using N
associated with this point. ] N
transformations of a N
toolbox function:

fx)=-2x -3+ 6

&8 The Sum and Difference Identities

LEARNING OBJECTIVES The sum and difference formulas for sine and cosine have a long and ancient history.
In Section 7.3 you will see Originally developed to help study the motion of celestial bodies, they were used cen-
how we can: turies later to develop more complex concepts, such as the derivatives of the trig func-
tions, complex number theory, and the study of wave motion in different mediums.
CJ A. Develop and use sum and  These identities are also used to find exact results (in radical form) for many nonstan-
difference identities for dard angles, a result of great importance to the ancient astronomers and still of notable
cosine mathematical significance today.
[ B. Use the cofunction
identities to develop the

sum and difference A. The Sum and Difference ldentities for Cosine

identities for sine and On the unit circle with center C, consider the point A on the terminal side of angle a,
tangent and point B on the terminal side of angle 8, as shown in Figure 7.9, Since r = 1, the
O C. Use the sum and coordinates of A and B are (cos a, sin &) and (cos S, sin 8), respectively. Using the

difference identities to
verify other identities
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Figure 7.9

{cos e, sin «)

A
(cos 3, sin B)
| B
a—-p

o

Figure 7.10

EXAMPLE 1

Solution

Flgure 7.11

cos(15)

. 9659258263
CfCEI+TC2) )4

. FED9255263

distance formula, we find that segment AB is equal to
AB = V(cos @ — cos B)* + (sina — sin B)

3 3 = . : : binomial
= \cos’a — 2 cos a cos B + cos’B + sin’a — 2 sin o sin B + sin’8 squares

= \/(oosza + sina) + (cos’B + sin’B) — 2cos e cos B — 2 sin a sin Breiou
=V2 - 2cosacos 3 — 2sinasinf

With no loss of generality, we can rotate sector ACB clockwise, until side CB coin-
cides with the x-axis. This creates new coordinates of (1, 0) for B, and new coordinates
of (cos(a — B), sin{a — B)) for A, but the distance AB remains unchanged! (See
Figure 7.10.) Recomputing the distance gives

AB = V[cos(a — B) — 1% + [sin{ — B) — O]
= Vcos¥(a — B) — 2cos(@ — B) + 1 + sin’(a — B)
= V]cos* (e — B) + sin*(a — B8)] — 2 cos{a — B) + 1
= V2 — 2 cos(la — B)

Since both expressions represent the same distance, we can set them equal to each
other and solve for cos(a — 8).

V2 —2cos(a — B) = V2 —2cosacos 8 — 2sinasin

2—2cos{@ —B)=2—2cosaxcosB — 2sinasin properly of radicals

—2cos{ax — B) = ~2cosacos B — 2sinasin B sublract 2
cos{a — B) = cosacos B + sinasin 8 divide both sides by —2

The result is called the difference identity for cosine. The sum identity for
cosine follows immediately, by| substituting —8 for 8.

cos{a ~ B) = cosa cos B + sin @ sin 8 ditference identity

cos{e — [—B)]) = cos acos(—B) + sin a sin(—S) substitute —¢ for
cos(a + B) = cosacos B — sinasin B cos( ~ ) = ¢os J; sin(~ 2) = —sin
The sum and difference identities can be used to find exact values for the trig func-

tions of certain angles (values written in nondecimal form using radicals), simplify
expressions, and to establish additional identities.

Finding Exact Values for Non-Standard Angles
Use the sum and difference identities for cosine to find exact values for |

a. cos 15° = cos(45° — 30°) b. cos 75° = cos(45° + 30°) ‘
Check results on a calculator in degree . |
Each involves a direct application of the related identity, and uses special values. |

a. cos{ae — B) =cosacosB + sinesin S difference identity
cos(45° — 30°}) = cos 45° cos 30° + sin45°sin30° . - 45,5 - 30

()6
=| — — )+ — ]| - slandard values
2 2 2 2
Ve + V2

cos 15° =
4

combine terins

See Figure 7.11.
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Flgure 7.12 b.  cos(a + B) = cosacos B — sinasinp
GGE(?5%588199451 cos{(45° + 30°) = cos 45° cos 30° — sin 45° sin 30°
(F¢6r-§12)) -4 =(ﬁ)(£)_(ﬁ)(l)
« 2388198451 2 2 2 J\2
Ve — V2
cos 75° = —
4
See Figure 7.12.
Now try Exerclses 7 through 12
r /1 CAUTION » Be sure you clearly understand how these identities work. In particular, note that

cos(60° + 30°) # cos 60° + cos 30° (0 # % + ?) and in general f(a + b) # f(a) + f(b).

These identities are listed here using the “=” and “F ™ notation to avoid need-
less repetition. In their application, use both upper symbols or both lower symbols,
with the order depending on whether you’re evaluating the cosine of a sum or differ-
ence of two angles. As with the other identities, these can be rewritten to form other
members of the identity family. One such version is used in Example 2 to consoli-
dale a larger expression.

The Sum and Difference ldentitles for Coslne

cosine family: cos(a + 8) = cosacos B ¥ sinasin

EXAMPLE 2

Solution

cos(S7)cosLr8y—=
in(S7¥rsincr8)

-, cAF1B67812
cos(135)

-, rAF1lB67B12
~f{2x72

.87 1BE7B1Z

cosacos B F sinasin B = cos(a * B)

Using a Sum/Difference ldentity to Simplify an Expression
Write as a single expression in cosine and evaluate: cos 57° cos 78° — sin 57°sin 78° |

Since the functions repeat and are expressed as a difference, we use the sum
identity for cosine to rewrite the difference as a single expression,

cos a cos 8 — sina sin 8 = cos{a + B)
cos 57° cos 78° — sin 57° sin 78° = cos(57° + 78°)
= cos 135°

The expression is equal to cos 135° = —%. See the figure.

Now try Exercises 43 through 16

The sum and difference identities can be used to evaluate the cosine of the sum of
two angles, even when they are not adjacent or expressed in terms of cosine.
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EXAMPLE 3

Solutlon

Figure 7.13
¥

" 12 X
5%+ 122 =132

Figure 7.14
¥

FAN.

X
(=7 + 242 = 257

@& A. Youve just seen how
we can develop and use sum
and difference identities for
cosine

Computing the Cosine of a Sum
Given sin @ = 75 with the terminal side of a in QI, and tan 8 = —% with the
terminal side of 8 in QII. Compute the value of cos(a + B).

To use the sum formula we need the value of cos a, sin a, cos 8, and sin 8.
Using the given information about the quadrants along with the Pythagorean
theorem, we draw the triangles shown in Figures 7.13 and 7,14, yielding the
values that follow.

12 o0 S 1 ngo
cosa = = (QD), sina = T (given), cos B 75 (QII), and sin 8 = 58 (QII)

Using cos(a + 8) = cos & cos 8 — sin « sin 8 gives this result:

wie-n=(313)-(31E)

&4 120
325 325
_ 204

Now try Exerclses 17 and 18

To verify the result of Example 3, we can use the inverse trigonometric functions
and our knowledge of reference angles to approximate the values of & and 8. In the
first line of Figure 7.15, we find the QI value of « is Figure 7.15
approximately 22.62°, and store it in memory loca- e
tion A using @ I @D (4). Noting the termi-  (F1NT¢ 13038 o0

nal side of S is in QII, we compute its value |]8@=-tan-1¢24-7FI1+B
(==106.26°) as shown in the second calculation and

store it in memory location B. For the final step of the 186, 2602647
verification, we evaluate cos(A + B) in fractional |COSSA+BI*Erac

—204 204,325
form and obtain 325 as in Example 3,

B. The Sum and Difference Identities for Sine and Tangent

The cofunction identities were introduced in Section 6.6, using the complementary

angles in a right triangle, In this section we’ll verify that cos 5 # ) = sin @ and

. : . . . .
sm(g - 6) = cos §. For the first, we use the difference identity for cosine to obtain

T T T
—_— = — — + sin— si
cos(2 9) cos 2 cos @ + sin 3 sin 6
= (0)cos @ + (1)sin @
= sgin @
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For the second, we use cos(g - B) = sin @, and replace 8 with the real number% -t
This gives '

™ g
cos(; = 6‘) = sin @ cofunction identity for cosine

o m . O
COS(E - I:—i - t]) = Sln(-'z- - t)
- | (E B )
cOs £ = sIn ) {

This establishes the cofunction relationship for sine: sin (% - .t) = cos ¢ for any

real number ¢. Both identities can be written in terms of the real number f. See
Exercises 19 through 24.

The Cofunction Identlties
ccts(E = ) = sin ¢ sin(zr— = ) = cost
2 2

The sum and difference identities for sine can easily be developed using cofunction

e . T
identities, Since sin ¢ = cos(; = t), we need only rename ¢ as the sum (@ + 8) or the

difference (@ — B) and work from there.

) T
sint = cos(; = !) cofunction identity
) r
sin(a + B) = 005[7 ol % o B)} substitute (@ + 8) for ¢
T
= OOS[(E — a) - ﬁ:l regroup argument
m L f T .
= cos(—z— - a)cos B+ sm(E - a)sm B apply difference identity for cosine
sin{fa + B) = sine cos B + cos & sin B result

The difference identity for sine is likewise developed. The sum and difference
identities for tangent can be derived using ratio identities and their derivation is left as
an exercise (see Exercise 78).

The Sum and Difference Identities for Sine and Tangent

sine family: sin{c + B) = sinacos B * cosa sin B  functions alternate, signs repeat
sinacos B * cosasinB = sin(a = B) can be used to expand or contract

tangent family: tan(e = 8) = %‘MM signs match ariginal in numerstor,

=+ tan a lan B signs alternate in denominator
tan e * tan B

——— =tan{ax *
| + tan a tan B e A)
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EXAMPLE 4A Simplifying Expresslons Using Sum/Difference Identities
Write as a single expression in sine: sin(2¢) cos # + cos(2f) sin r.

Solution Since the functions in each term alternate and the expression is written as a sum, |
we use the sum identity for sine:

sinacos B +cosasinB =sin{a + B8)  sumidentity for sine
sin(2f)cos ¢ + cos(2f)sin ¢ = sin(2¢ + 1) substitute 2¢for «v and tor g

= sin(37) simplify
The expression is equal to sin(3f).
With Y, = sin(2X)cos(X) + cos(2X)sin{X) and Figure 7.16

Y, = sin(3X), the TABLE feature of a calculator set 7 7y BE

in radian @ provides strong support for the resultof | g 0 0

Example 4A (see Figure 7.16), % EE%E };;;E
3 Migdz | Miziz
Yy -.5366 | ~.5366
L L5029 | RSOZ2D
] "5l "5l

YeBsin(3Ix
EXAMPLE 4B Simplifying Expressions Using Sum/Difference Identities
11
Use the sum or difference identity for tangent to find the exact value of tan TZE
1
Solution Since an exact value is requested, % must be the sum or difference of two standard
2
angles. A casual inspection reveals 111_27:' = ?ﬂ + % This gives
tan e + tan B
tan(a + f) = ————
an(e + B) | — tanex tan B

" (f_ﬂ)+ ; (z

(211_ ﬂ_) an 3 an 1
tanl —+ — | =

3 4 [ =1 2_71' (T

tan 3 lan 4

_ =V3+1
1 = (=V3)1)
@i B. You've just seen how = - V3 simplity expression
we can use the cofunction 1+ V3

identitles to develop the sum =
and difference identitles for Now try Exerclses 25 through 54
sine and tangent

C. Verlfying Other Identities

Once the sum and difference identities are established, we can simply add these to the
tools we use to verify other identities.

EXAMPLE 5 Verifylng an Identity

) wy _ tanf — 1 . .
Verify that tan(ﬂ 4) = o 1 san identity.
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Solution Using a direct application of the difference formula for tangent we obtain

o

tan § — tan—

tan(ﬂ - E) ———4
4

T
1 + tan 6 tan—

1l

4
_tanf — ] _‘tan(}—_l
1 +tan@ tan & + | j

—Nﬁw try Exercises 55 through 60

EXAMPLE 6 Verifying an Identity
Verify that sin(a + B)sin(a — 8) = sin‘e — sin’f is an identity.
Solution Using the sum and difference formulas for sine we obtain

sin{fa + B)sin{e — B) = (sin @ cos B -+ cos « sin B)(sin « cos B — cos e sin B)
sina cos’B — cos’a sin’g
sin%a (1 — sin?8) — (1 — sin’a) sin’B

2 2

a — sin’e sin’B — sin’@ + sin“a sin’B  distribute

& ©. You've just seen how sinfo — sin’B simplify

we can use the sum and — — e — e - .
difference Identities to verify Now try Exercises 61 through 68
other identitles

= sin

r,

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. Since tan 45° + tan 60° > 1, we know tan 45° + 2. To find an exact value for tan 105°, use the sum
tan 60° = tan 105° is since tan § < Qin . identity for tangent witha = ___and 8 = .
3. For the cosine sum/difference identities, the 4. For the sine sum/difference identities, the functions
functions in each term, with the in each term, with the sign
sign between them. between them.
: F S sin(ee —
5. Dlscluf;fExplam g;w w:r know the exact value for 6. Discuss/Explain why tan(a — 8) = (( : ﬁ))
- 2w w\ . . . cos(B —
AT COS( 3 & 4 ) sl G s is an identity, even though the arguments of cosine

to applying any identity. have been reversed. Then verify the identity.
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> DEVELOPING YOUR SKILLS

Ej Find the exact value of the expression given using a sum
or difference identity, Some simplifications may involve
using symmetry and the formulas for negatives. Check
resulés on a calculator,

7. cos 105° 8. cos 135°

ks S
9, cns(l—z) 10. cos(——IE)

Use sum/difference identities to verify that both
&= expressions give the same resuit. Check resuits on a
calculator,

11, a. cos(45° + 30°) b, cos(120° — 45°)

T o7 T 7
1. L —_— e e 5 —_—— e
2. a 003(6 4) b cos(4 3)

Rewrite as a single expression in cosine,
13, cos(76) cos(28) + sin(78) sin(26)

i 7] A AN
14. cos(g) cos(g) = sm(3)sm(6)

g Find the exact value of the given expressions. Check
results on a calculator,

15. cos 183° cos 153° + sin 183° sin 153°

16 cos(‘;—ﬂ) )q(-s-z) — si (?—ﬂ) sin(sl)
* 36/ 36/ T "™ 36 36

4
17. Forsina = 75 with terminal side of & in QIV and
5
tan 8 = 2 with terminal side of 8 in QII, find
cos{a + B).

|
18. Forsina = 2 with terminal side of a in QII and

113
8
sec B = —-3% with terminal side of 8 in QII, find
cos(a — B).

Use a cofunction identity to write an equivalent
expression,

19. cos 57°

5w

T
30 i -
2 sm( ; 8)

20, sin 18°

o
22, sec (ﬁ)

24, cos(% + 9)

7-24

Rewrite as a single expression,
25. sin{3x) cos(5x) + cos(3x) sin(5x)

s wf2Jonls) - )

tan(50) — tan(20)
"1 + tan(56) tan(26)

3) + ()
=) on()

Find the exact value of the given expressions.
29. sin 137° cos 47° — cos 137° sin 47°

Cf 1l S 11\ . {57
30, sm( 2 )cos(24) + cos( % )sm(24)
(l|ﬂ) (4w)
tan\ —— | — tan| —
21 21
1l dar
1 = {;m( 2 )tzm(-ﬁ)
[‘ln(gz) -t l'm(—?r—)
N\ 20 10
RECOE
™20/ "\ 10

33, Forcosa = —5?5- with terminal side of & in QII

28,

3l

32.

1
andcot B = ?5 with terminal side of 8 in QIII, find

a. sin{a + B) b. tan(a + B)

29
3. Forcsca = 0 with terminal side of & in QI and

12
cos B = 37 with terminal side of 8 in QIIL, find
a. sin(la — B)

Find the exact value of the expression given using a sum
or difference identity, Some simplifications may involve
using symmetry and the formulas for negatives.

b. tan{a — B)

35. sin 105°

L {5
37. sm( 12)

36. sin(—75°)

{1l
38. sm( 2 )
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2y Exerciss 54 Exercise B2
39, tan 150° 40, tan{ 3 )
41, tan 75° 42, tan(—i)
: 12 I5

Use sum/difference identities to verify that both
expressions give the same result.

43, a. sin(45° ~ 30°) b, sin(135° — 120°)

(7w . 52. Use the diagram indicated to compute the
44, a. sm(S 4) b sm(4 6) following:
A sin B b, cos ¢ tan 8

45. Find sin 255° given 150° + 105° = 255°, See

Exercises 7 and 35. ' :
xercises 7 an 83, For the figure indicated, show that § = a + 8 and

" 1947 57 194 .compute the following:
46. Find CUS( 2 )Ewut 2m— - 12 See & sin 8 b, cos @ ¢ tan @

Exercises 10 and 37,

Exercise 83
47. Given « and B are acute angles withsina = I
35
andtan 8 = T3 find

a. sin(a + 8) b cos(a -8 @ tan(a + B)

. . 8

48. Given o and B are acute angles with cosa = = 84, For the figure indicated, show that 8 = « + B and
and sec 8 = _2'_5_’ find compute the following: |
7 : a, sin @ b cos 8 ¢ tan 6
a. sin{eat B) b cos(a - B) c. tan(e + B) Exercise 54
28 9,
49. Given a and B are obtuse angles w1th sina = = g 5 !/7 ~—_ 12
. andcosﬁ = -g find i ’ . : o X
a. sinfe = B) b. cos(a + ) ¢ tan{a - B) \@/

50. Given o and B are obtuse 'angles,with tan @ = _%
i i 11 Veriy each identity.

58, gin(r ~ @) = sina 86, cos(w — a) = —cosw
a. sinfe — B) b cos(a + B) e tan(a -8) " ( ,ﬂ) \/2
COS =

35
and sinf3 = 37 find -

8l Xt =

(cos x ~ sin x)

4 2
51. Use the diagram indicated to compute the = 3
following: 58, sm(x + ) 5 (sinx + cos x)
a. sin A b. cos A ¢ tanA "

ar | + tanx
£9, Izm(.r -+ —) = ——
4 | — tan x



678 CHAPTER 7 Trigenometric Identities, Inverses, and Equations 7-26

( 1'.") _tanx — 1 66. cos(37) = 4cos®t — 3cos ¢
60. tanf x — — | = ——
4 tanx + 1 67. Use a difference identity to show

61. cos(a + B) + cos(e — B) = 2cosacos B
62. sin(a + B) + sin{a — B) = 2sina sin B cos(

63. cos(2f) = cos’t — sin’s

- E) = ﬁ(cosx + sin x)
4 2 i

68. Use sum/difference identities to show
64. sin{2f) = 2sintcos ¢
65. sin(3r) = —4sin’t + 3sint

sin(x + %) + sin(x - %) = V2 sin x.

> WORKING WITH FORMULAS

69. Force and equilibrium: F = % tan(p — @)

The force required to maintain equilibriom when a screw jack is nsed
can be modeled by the formula shown, where p is the pitch angle of the
screw, W is the weight of the load, @ is the angle of friction, with & and ¢
being constants related to a particular jack. Simplify the formula using

the difference formula for tangent given p = % and § = %

n
70. Brewster’s law of reflection: tan 8, = f

1
Brewster’s law of optics states that when unpolarized light strikes a dielectric surface, the transmitted light rays
and the reflected light rays are perpendicular to each other. The proof of Brewster’s law involves the expression

. L7 . . . . . . o
ny sin 8, = n, sin 3" 8, ). Use the difference identity for sine to verify that this expression leads to

Brewster’s law.

» APPLICATIONS

71. AC circuits: In a study of AC circuits, the equation
COS § COS./ . .
= —————— sometimes arises. Use a sum
wCsin(s + 1)
identity and algebra to show this equation is
1

wC(tans + tanf)’

equivalent to R =

72. Fluid mechanics: In studies of fluid mechanics,
the equation v,V sin o = y,V,sin(ee — f8)
sometimes arises. Use a difference identity to show
that if y,V; = -y,V5, the equation is equivalent to
cosf3 —cotasing = 1.

73. Art and mathematics: When working in two-point
geometric perspective, artists rnust scale their work
to fit on the paper or canvas they are using. In

) ] tan @ .
doing so, the equation B wan(90° — 0) arises.
Rewrite the expression on the right in terms of sine
and cosine, then use the difference identities to

. . A
show the equation can be rewritten as 3 = tan® 4.

74. Traveling waves: If two waves of the same
frequency, velocity, and amplitude are traveling
along a string in opposite directions, they can be
represented by the equations Y, = A sin{kx — wt)
and Y, = A sin(kx + wr). Use the sum and
difference formulas for sine to show the result
Yrz = Y, + Y, of these waves can be expressed as
Y = 24 sin(kx)cos{w?).

75. Pressure on the eardrum: If a frequency
generator is placed a certain distance from the ear,
the pressure on the eardrum can be modeled by the
function Py(r) = A sin{2mt), where fis the
frequency and ¢ is the time in seconds. If a second
frequency generator with identical settings is placed
slightly closer to the ear, its pressure on the eardrum
could be represented by P»{(t) = A sin(2wft + C),

where C is a constant, Show that if C = %, the

total pressure on the eardrum [Py (1) + Py(r)] is

P(1) = A[sin(2nft) + cos(2uft)].
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76. Angle between two cables: Two cables used to steady a radio tower are
attached to the tower at heights of 5 ft and 35 ft, with both secured to a
stake 12 fi from the tower (see figure), Find the value of cos 8, where 8 is
the angle between the upper and lower cables,

Exercise 76

77. Difference quotient: Given f{x) = sin x, show that the difference quotient
flx +h) = f(x) i .. fcosh—1 sin h
= results in the expression sin x —7 + cosx /)

0o 35t
78. Difference identity: Derive the difference identity for tangent using
sy —
tan{ee — B) = M (Hint: After applying the difference identities,
cos(a — B)

divide the numerator and denominator by cos « cos 3.)

> EXTENDING THE CONCEPT

A family of identities called the angle reduction formulas will be of use in our study of complex numbers and other
areas. These formulas use the period of a function to reduce large angles to an angle in [0, 360°) or [0, 27) having an

equivalent function value: (1) cos(r + 27k) = cos r; (2) sin(¢ + 27k) = sin ¢. Use the reduction formulas to find
values for the following functions (note the formulas can also be expressed in degrees).

79, cos 1665° 80. cos(ng”) 81. sin(“T”) 82. sin 2385°

84, Verify the Pythagorean theorem for each right
triangle in the diagram, then discuss/explain how

the diagram offers a proof of the sum identities for
sine and cosine.

83. An alternative method of proving the difference
formula for cosine uses a unit circle and the fact
that equal arcs are subtended by equal chords
(D = d in the diagram). Using a combination of
algebra, the distance formula, and a Pythagorean .
identity, show that cos(a — B) = cos wcos 8 + CREICISEIES
sin « sin B (start by computing D* and d%). Then
discuss/explain how the sum identity can be found
using the fact that 8 = —(—8).

sin Bcos A \>

sin 8
Exercise 83
{cos(ex — B}, sin{ee — B)) sin 8 sin A
'l
' . fil
(€08 ar, 511 oY) cos f3, sin
D

d

cos B sin A

I

=
(]* 0 f—————cos Bcos A ————
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> MAINTAINING YOUR SKILLS

85. (6.5) State the period of the functions given: 87. (6.6) Clarence the Clown is about to be shot from a

a y= 3sin(£x—£)
] 8° 3

b. y=4lan(2x+%)

circus cannon to a safety net on the other side of
the main tent. If the cannon is 30 ft long and must
be aimed at 40° for Clarence to hit the net, the end
of the cannon must be how high from ground

level?
86. (2.5) Graph the piecewise-defined function given: 88. (1.4) Find the equation of the line parallel to
3 < —] 2x + 5y = —10, containing the point (5, —2).
f=3s -1=x=1 Write your answer in standard form.
x x>

.8 The Double-Angle, Half-Angle, and Product-to-Sum ldentities

LEARNING OBJECTIVES

In Section 7.4 you will ses
how we can:

(J A. Derive and use the double-
angle identities for cosine,
tangent, and sine

[ B. Develop and use the
power reduction and
half-angle identities

O C. Derive and use the
product-to-sum and sum-
to-product identities

2 D. Solve applications using
identities

The derivation of the sum and difference identities in Section 7.3 was a “watershed
event” in the study of identities. By making various substitutions, they lead us very
naturally to many new identity families, giving us a heightened ability to simplify
expressions, solve equations, find exact values, and model real-world phenomena. In
fact, many of the identities are applied in very practical ways, as in a study of projec-
tile motion and the conic sections (Chapter 10). In addition, one of the most profound
principies discovered in the eighteenth and nineteenth centuries was that electricity,
light, and sound could all be studied using sinusoidal waves. These waves often
interact with each other, creating the phenomena known as reflection, diffraction,
superposition, interference, standing waves, and others, The product-to-sum and
sum-to-product identities play a fundamental role in the investigation and study of
these phenomena.

A. The Double-Angle ldentities

The double-angle identities for sine, cosine, and tangent can all be derived using the
related sum identities with two equal angles (@ = ). We'll illustrate the process here
for the cosine of twice an angle.

cos(er + B) = cosacos B — sinasin 8 sum idenlity for cosine

COS(C! + a) = COS & COS o = §in e 8in ¢ asstime . == {3 and substiluie « for g
cos(2a) = cos’a — sin‘e simplify -— double -angle identity for cosine

Using the Pythagorean identity cos’a + sin’a = 1, we can easily find two
additional members of this family, which are often quite useful. For cos’a = 1 — sin’a
we have

003(20:) = cosza - sinza double-angle identity for cosine

. -] . . .
(l - sm%r) — 5IN"® substitule 1 — sine for cos”e

P . .
cos{2a) = 1 — 2sin“a double-angle in terms of sine

Using sin’e = 1 — cos® we obtain an additional form:

cos(2a) = cos’a — sin‘a tleuble-angle identity for cosine

= cos’a — (1 — cosza) substitute 1 - cos™w for s’

cos(2a) = 2 cos’a — 1 double-angle in terms of cosine
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EXAMPLE 1

Solution

£in {3,824
38.68218745

cosC2AvFrac
732

EXAMPLE 2

Solution

Sectlon 7.4 The Double-Angle, Half-Angle, and Product-to-Sum Identities 681

The derivations of sin{2a) and tan(2e) are likewise developed and are asked for in
Exercise 105. The double-angle identities are collected here for your convenience.

The Double-Angle Identitles

cosine: cos(2a) = cos’a — sin’a sine: sin(2a) = 2sinacosa
=1 = 2 sin’a
= 2 ¢cos’a — 1
2tan
tangent: tan(2a}) = ————
ge (22) 1 — tan’a

Using a Double-Angle Identity to Find Functlon Values

5
Givensina = 3 find the value of cos(2a). 1

Using the double-angle identity for cosine interms of sine, we find I

cos(2a) = 1 — 2sina  double-angle in lerms of sine
2 i
=1- 2(%) substituta%for sin a I'
25
=1-—
32 |
_ 7 :.
32
, 5 7 . .
Ifsina = L then cos(2a) = Ev A calculator check is shown in the figure. |

Now try Exercises 7 through 20

Like the fundamental identities, the double-angle identities can be used to verify
or develop others. In Example 2, we explore one of many multiple-angle identities,
verifying that cos(30) can be rewritten as 4 cos’d — 3 cos @ (in terms of powers of
cos B).

Verifying a Multiple Angle ldentlty
Verify that cos(38) = 4 cos’@ — 3 cos 8 is an identity.

Use the sum identity for cosine, with @ = 26 and 8 = . Note that our goal is an !
expression using cosines only, with no multiple angles. |
|

cos(a + B) = cosacos 8 — sina sin 8
cos(20 + @) = cos § — sin 6 {
cos(39) = cos @ — sin @ |
= 2¢0s’9 — cos § — 2 cos 0 sin’0 |
= 2¢05°9 — cos § — 2 cos 8(1 — cos® §)
=2¢05°0 ~ cos & — 2cos § + 2 cos>@
= 405’0 — 3cos @ J

Now try Exerclses 21 and 22
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EXAMPLE 3 Using a Double-Angle Formula to Find Exact Values
Find the exact value of sin 22.5° cos 22.5°,
Solution A product of sines and cosines having the same argument hints at the double-angle
identity for sine. Using sin(2a) = 2 sin & cos « and dividing by 2 gives
sin(2a)
2

) sin[2(22.5°)]
8in 22.5° 0§ 22.5° = —————=  replace « wilh 22.5°

sihoe cos ¢ = double-angle identity for sine

b

sin 45°
2

we can derive and use the

double-angle identities for Now try Exercises 23 through 30 .
cosine, tangent, and sine

B. The Power Reduction and Half-Angle Identities

Expressions having a trigonometric function faised to a power occur quite frequently
in various applications. We can rewrite even powers of these trig functions in terms of
m an expression containing only cosine to the power 1, using what are called the power
reduction identities, In calculus, this becomes an indispensible tool, making expressions
easier to use and evaluate, It can legitimately be argued that the power reduction identities
are actuatly members of the double-angle family, as all three are a direct consequence. To
find identities for cos®a and sin’a, we solve the related double-angle identity involving

cos(2a).
1 — 2sin’a = cos(2e) c03(2a:) in terms of sine
-2 sin’a = cos(2a) — 1 subtract 1, then divide by —2
., 1 —cos(2a)
SNy = —2“-- power reduction identity for sine
. . . 5 1 + cos{2a) . .
Using the same approach for cos“a gives cos“a = TN The identity
2 . 2tan o Lo
for tan“a can be derived from tan(2cx) = T-t—z_ (see Exercise 106), but in this
— tan‘a
2 | — cos(2e)
: : N sin“a ) cos(Za
case it’s easier to use the identity tan’a = >— The result is —————
cos‘a I+ cos(2e)

The Power Reduction Identitles

) 1 + cos{2a) i 1 — cos(2a) ) | — cos(2a)
cosey = —————~ sin‘g = —— tan‘ = ———
2 2 | + cos(2a)

EXAMPLE 3 Using a Power Reductlon Formula I

Write 8 sin“x in terms of an expression containing only cosines to the power 1 and
use the @ feature of a calculator to support your result.
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Sojution

Section 7.4 The Double-Angle, Half-Angle, and Product-to-Sum ldentitles 683

8 sin*x = 8(sin’x)’
1 — cos(2x) |?
- 8[ 2 ]
= 2[1 — 2 cos{2x) + cos*(2x)]
1 + cos(4x)

—
=2 — 4cos(2x) + 1 + cos(4x)
= 3 — 4 cos(2x) + cos(4x) |

= 2[1 — 2cos(2x) +

To support our result, we enter Y| = 8 sin(X)"4 Y

and Y, = 3 — 4.cos(2X) +cos(4X) Ya=z~booseR)+cas(ind
in our calculator. Recognizing Y, can only ?\
take on nonnegative values less than or

v

equal to 8, we set the window as shown in —2w m

the figure. Anticipating that only one graph
will be seen (since Y and Y, should be
coincident), we can vertically shift Y, down R=1.570796z IV=B
4 units and graph Y3 = Y, — 4. The figure -6
then helps support that 8 sin*x = 3 — 4 cos(2x) + cos(4x).

Now try Exercises 31 through 36

The half-angle identities follow directly from the power reduction identities, using

N 1 + cos(2a)

algebra and a siraple change of variable. For cos“a = — we first take square

_ 1 + cos(2a)
roots and obtaincos @ = —7—

and making these substitutions results in the half-angle identity for cosine:

R - . H
. Using the substitution # = 2 gives o = >

1+ L
cos (-;—) =t / _cos_u, where the radical’s sign depends on the quadrant in which

2
i . . o : . , (H | —cosu
2 terminates. Using the same substitution for sine gives sm(a) = =+ s
o i 1~ cosu U
and for the tangent identity, tan (—) = i'\/ ————— In the case of l;an(—). we can
2 1+ cosu 2

actually develop identities that are free of radicals by rationalizing the denominator

or numeraior. We’ll illustrate the former, leaving the latter as an exercise (see
Exercise 104).

LAY {1 — cosu)(l — cosu)
tan(i) a _\/(l + cos u)(1 — cos u}

(1 — cos u)?
1 — cos’u
(1 = cos )’
= + e T Pythagorean identity
sin“u

| — cosu
— [ —_—

sin i

: . N u .. .
Since 1 — cos 4 > 0 and sin « has the same sign as lan(E) for all # in its domain,

1 —cosu

the relationship can simply be written tan(%) =

sin u
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The Half-Angie Identitles

cos(E)=+ 1+ cosu sin(£)=+ 1—cosu tan(£)=+ /I—cosu
2 - 2 2 In 2 2 "Y1+ cosu

EXAMPLE S Using Half-Angle Formulas to Find Exact Values
Use the half-angle identities to find exact values for (a) sin 15° and (b) tan 15°,

Solution Noting that 15° is one-half the standard angle 30°, we can find each value by
applying the respective half-angle identity with ¥ = 30° in Quadrant L

&ﬁ4mj_ [T = cos 30° ht(mj_l_mﬂw
2 2 ™27 Tsinaoe

V3
sincl3) _ 2
BT o o P B
. 2582190451 s = V2= V3 2
2
Note the verification of part (a) in the figure. Part (b) can be similarly checked with
a calculator in degree @ .
Now try Exercises 37 through 48
EXAMPLE 6 Uslhg Half-Angle Formulas to Find Exact V;Iues
7
Forcosfd = Yy and @ in QIII, find exact values of sin(g) and cos (g)
6 g .3
Solution With@inQIll -7 < ¢ < 3?1?, we know > must be in QIT —>% < 3 < Tﬂ
and we choose our signs accordingly: sin(g) > 0 and cos(g) < 0
n(f-) _ {1 —cos8 cos(g) _ [l tcosd
M2V 2 2)” N 2
K 7\
—_ e + —_———
() [ (E)
2 2
; _ [16_4 -_/2__3
@ B. You've just seen how V25 s 2% 5
we can develop and use the _ B
power reduction and Now try Exerclses 49 through 64

half-angle identities
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The Product-to-Sum Identities

Sectlon 7.4 The Double-Angle, Half-Angle, and Product-to-Sum Identitles 685

C. The Product-to-Sum Ildentities

As mentioned in the introduction, the product-to-sum and sum-to-product identities
are of immense importance to the study of any phenomenon that travels in waves, like
light and sound. In fact, the tones you hear as you dial a telephone are actually the sum
of two sound waves interacting with each other. Each derivation of a product-to-sum
identity is very similar (see Exercise 107), and we illustrate by deriving the identity for
cos & cos 3. Beginning with the sum and difference identities for cosing, we have

cos & cos 8 + sina sin B = cos(a — B) cosine of a difference
+ cos @ cos B — sin & sin B = cos(a + B) i

2 cos a cos B = cos(a — B) + cos(e + B) combine equations
cosacos B = %[cos(a — B) + cos(a + B)] divideby2

In addition to wave phenomenon, the identities from this family are very useful in
a study of calculus and are listed here.

cosacosfB = %[cos(a — B) + cos(e + B)] sinasin 8 = é—[cos(a — B) — cos{e + B}]
sine cos B = —;-[sin(a + B) + sin{a — B)] cos @ sin 8 = —;—[sin(a + B) — sin(la — 8)]
EXAMPLE 7 Rewtlting a Product as an Equivalent Sum Using I_d;nﬂ;es

Solution

Write the product 2 cos(27¢) cos(15¢) as the sum of two cosine functions.

This is a direct application of the product-to-sum identity, with
a=27rand 8 = 15z

cos a cos B = %[CC'S(C|f — B) + cos(e + )]

1
2 cos(27¢)cos(15¢) = 2(5)[005(2?1‘ — 15¢) + cos(27¢ + 15¢)]  substitute

= cos(12¢) + cos(42¢) result

Now try Exerclses 65 through 74

There are times we find it necessary to “work in the other direction,” writing a sum
of two trig functions as a product. This family of identities can be derived from the
product-to-sum identities using a change of variable, We’ll illustrate the process for
sin # + sin v, You are asked for the derivation of cos # + cos v in Exercise 108, To
begin, we use 2a = u + v and 23 = u — v. This creates the sum 200 + 28 = 2u and
the difference 2a — 28 = 2v, yielding a + 8 = u and a — 8 = v, respectively.
+ v h—v .

and 8 = — which all
together make the derivation a matter of direct substitution, Using these values in any
product-to-sum identity gives the related sum-to-product, as shown here.

Dividing the original expressions by 2 gives @ = .
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sinacos B = %[sin(a + B) + sin(a - B)]

N EEAN -r.rHv_l. .
sin| ——— Jeos| —— | = 5(3111 u + sinv)

Cfuwty u—1y . .
2 sin = cos = =gsinu + sinv

The sum-to-product identities follow.,

v u— v R . L fu+v H—v
cus( 5 ) sinu + gsiny =2 sm( 5 )cos( 2 )

i =y Lfutrvy  fu—v

sm( 5 ) COsH —cosy = —2 sm( 2 )sm( 3 )

EXAMPLE 8 Rewriting a Sum as an Equivalent Product Using Identities

Given y, = sin(127¢) and y, = sin{107¢), express y, + y, as a product of
trigonometric functions.

The Sum-to-Product ldentitles

u +
cos i + cosv = 2 cos

. ) i
sin# — siny = 2005(

[
b
e

Solutlon This is a direct application of the sum-to-product identity sin z + sin v, with

2

1 + 107t 12791t — 10
sin(1297¢) + sin(10at) = 2 sin( Lo 5 Ll )cos( ™ m)

. . L fu+
sin # + sinv = 2 sin

7-34

2
= 2 sin(114¢) cos(mr)
& €. Youve just seen how Now try Exercises 75 through 84
we can derlve and use the
product-to-sum and sum-to-
product identities For a mixed variety of identities, see Exercises 85 through 102,

D. Applications of Identitles

In more advanced mathematics courses, rewriting an expression using identities
enables the extension or completion of a task that would otherwise be very difficult (or
even impossible). In addition, there are a number of practical applications in the phys-

ical sciences.

Projectlle Motion

A projectile is any object that is thrown, shot, kicked, dropped, or otherwise given an
initial velocity, but lacking a continuing source of propulsion. If air resistance is
ignored, the range of the projectile depends only on its initial velocity v and the angle

¢ at which it is propelled. This phenomenon is modeled by the function

1
r(@) = Ev’ sin 0 cos 6
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EXAMPLE 9

Solution

EXAMPLE 10

Sectlon 7.4 The Double-Angle, Half-Angle, and Product-to-Sum Identities

Using Identities to Solve an Application

1
a. Use an identity to show 1{(8) = —6v sin @ cos @ is equivalent to

r{) = -—v * 5in{26).

887

b. If the prolectile is thrown with an initial velocity of v = 96 ft/sec, how far will

it travel if @ = 15°7

c. From the result of part (a), determine what angle @ will give the maximum

range for the projectile.

a. Note that wc can use a double-angle identity if we rewrite the coefficient.

1
Writing E as 2(5) and commuting the factors gives

r(8) = ( ) (2 sin @ cos §) = (3—12)vzsin.(_29).

1
b. With v = 96 fusec and § = 15°, the formula gives r(15°) = (5)(96)25in 30°,

Evaluating the result shows the projectile travels a horizontal distance of 144 ft.

¢. For any initial velocity v, r(8) will be maximized when sin(28) is a maximum,

This occurs when sin{26) = 1, meaning 26 = 90° and § = 45°. The maximum
range is achieved when the projectile is released at an angle of 45°. For verification

we'll assume an initial velocity of 96 ft/secand 350

1 Yi=zHEBsn(2H)
enter the function #(8) = 5(96)25111(29) = s e,
288 sin(26) as Y. With an amplitude of 4
288 and results confined to the first 0 /
quadrant, we set an appropriate window, .4”

graph the function, and use the nce) s

(CALC) 4:maximum feature. As shown in |45 et VSEHH o

the figure, the max occurs at § = 45°, 0

90

Now try Exercises 111 and 1142

Sound Waves

Each tone you hear on a touch-tone phone is actually the combination of
precisely two sound waves with different frequencies (frequency f is defined as

B
f= E)' This is why the tones you hear sound identical, regardless of what phone

you use. The sum-to-product and product-to-sum formulas help us to understand,
study, and use sound in very powerful and practical ways, like sending faxes and using

other electronic media.

Using an ldentity to Solve an Application

On a touch-tone phone, the sound created by pressing (1] [2] [3]«697¢cps |
5 is produced by combining a sound wave with (5] [6]~—770¢ps
frequency 1336 cycles/sec, with another wave having (7] [8) [5]=852cps

frequency 770 cycles/sec. Their respective equations
are y; = cos(27 13367) and y, = cos(2m 770¢),
with the resultant wave being y = y; + v, or

y = c0s(2672mt) + cos(1540m¢). Rewrite this sum
as a product, 1336 cps

!

1209 cps | 1477 cps

(0] [#]=—941cps
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Solution This is a direct application of a sum-to-product identity, with # = 2672#1 and !
v = 1540, Computing one-half the swm/difference of & and v gives |
26727t + =

7wt + 15407t = 21067 and 2672t — 15407t — 566mt.
2 2
v u—v _
cosu + cosv = 2cos( 5 )cos( 2 ) sum-ta-product identity
|

substitute 268725 for

c08(2672m1) + cos(1540mt) = 2 cos(2106m1)cos(56671) i 1ottt I

"

Now try Exercises 113 through 116

Note we can identify the button pressed when the wave is written as a sum. If we
have only the resulting wave (written as a product), the product-to-sum formula must

M D. Yow've just seen how be used to identify which button was pressed.
we can solve applications Additional applications requiring the use of identities can be found in
using identities Exercises 117 through 122.

. WY 7.4 EXERCISES

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

¢

1. The double-angle identities can be derived using 2, If @ is in QIII then 180° < @ < 270° and -- must be
the identities with @ = 8. For cos(26) we 0 2
expand cos(a + B) using in . since < > < .

3. Multiple-angle identities can be derived using 4. For the half-angle identities the sign preceding the
the sum and difference identities. For sin (3x) use radical depends on the in which g
sin{—— + ),

7
5. Explain/Discuss how the three different identities 6. In Example 6, we were given cos § = 35 and
for tan (E) are related. Verify that in QIIL Discuss how the result would differ if we
2 ) stipulate that & is in QIT instead.
1 —cosu __ sinu
sin u 1+ cosu

» DEVELOPING YOUR SKILLS

|Find exact values for sin(26), cos(260), and tan(20) using . 48
the information given. Check results on a calculator. 13. sin 8 = 737 08 6<0

oy iy i’ ey
7.sm9—13,6mQII 8. cos§ = 29,BmQII 14.cos€=——$—;lan6'>0

17

9 63
9. cos = —— 0inQIl 10. sind = "—E; @ in QIII

41 15, csc @ = ;—; secd <0

13 53
= 2.0 =2".8; 80
11. tan 6 Y PinQIII 12. sech 28,61n QI 16. cot 8 = —39;-:039 >0
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Find exact values for sin 8, cos 6, and tan @ using the
information given.
4
17. sin(26) = 26 in QII

240 ,
30’ 26 in QIII

18. sin(20) = —

19. cos(20) = 23 in QIT

120
169’

21, Verify the following identity:
sin(36) = 3sin 6 — 4 sin’0

22, Verify the following identity:
cos(40) = 8 cos*d — 8 cos? + 1

20. cos{20) = ——;20in QIV

Use a double-angle identity to find exact values for the
following expressions.

23, cos 75°% sin 75°

—2and{ T
25. 1 — 2sin (8)

an 22.5°
g7, 2BSEeT 28,
| — tan~22.5°

24. cos’15° — sin®15°

aT
26. 2 -1
()

2 tan(75)
I — tan*(%)
29. Use a double-angle identity to rewrite

9 sin (3x) cos (3x) as a single function.
[Hint: 9 = $(2).]

30. Use a double-angle identity to rewrite
2.5 — 5 sin’x as a single term.
[Hint: Factor out a constant.]

é Rewrite in terms of an expression containing only
cosines to the power 1. Verify result with a ealculator.

31. sin’c cos®x 32. sinx cos’x
33, 3 cos’x 34, cosx sinx
35, 2 sinx 36. 4 cosx

t Use a half-angle identity to find exact values for
=Isin 0, cos @, and tan @ for the given value of 0. Check
results on a calculator.

37. 6 =225° 38. 8 =175°
5‘?1'
9,
39. 0= 1 5 40. ¢ = ETY
41. 8 = 67.5° 42. 8 = 112.5°
43. 0 = 3 44, ¢ = 1ir

8 12

Use the results of Exercises 37-40 and a half-angle
identity to find the exact value,

45. sin 11,25° 46. tan 37.5°

S5
47, sm(24) 48. cos(24)

Use a half-angle identity to rewrite each expression as a

single, nonradical function.
1+ 30° [1— 45°
1 cos 30 50, 1 — cos
2
1 + cos(60)

1 - cos(fw
1+ 005(49) 1 — cos(66)

sin(2x) | — cos(6x)
"1 + cos(2v) sin (6x)

Find exact values for sin (—g—), ws(%). and tan(%) using
the information given,

1
85, sinf = l_i; @ is obtuse

56. cos & = —%; 8 is obtuse

§7. cosh = —%; @ in QII
£8. sinf = =l @ in QIII
) 25°

5
59, tan @ = —3—; @ in QII

12

65
60, sec 8@ = 3?’,t‘)mQIII

15
61, sin@ = 3 1 @ is acute

43
62, cos 9 = -_E; 9 is acute

21 3r
3 =—T<h<—
63. cot f 2011' ;] 5
41 =
64. =— — <<
csc @ 5" 8 <
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Write each preduct as a sum using the product-to-sum
identities.

65, sin(—48) sin(86) 66. cos(15a) sin(—3a)

AN AT AN E:
67. ZCos(z)sm(z) 68. 2sm(2)sm(2)

69. 2 cos(1979n1) cos(43947)
70. 2 cos(2150mt) cos(268m1)

Find the exact value using product-to-sum identities.
71, 2 cos 15° sin 135° 72. 2 cos 105° cos 165°

L w T L fTmy T
73. sun( 2 )cos(g) 74, 51n(12)51n( 12)

Write each sum as a product using the sum-to-product
identities,
75. cos(9h) + cos(4h) 76. sin{14k) + sin(41k)

Cf 1x . 5x Tx 5x
77, sm( n ) sm(s) 78. cos(ﬁ) cos(6)

79. cos(697mt} + cos (14477)
80. cos(85271) + cos(1209)

Find the exact value using sum-to-product jdentities,
81. cos 75° + cos 15°
82. cos 285° — cos 195°

17w . {137
83, sm( ) ) sm( T )
AL . T
. sin{ — | + sin| —
84 sm( 7 ) Sm(IZ)

Verify the following identities.
85, 2ihactey S,in = tan(2x)
COS™X — s’y
I — 2sin’x
*2sinxcosx cot(2x)
87. (sinx -+ cosx)* = 1 + sin(2x)
88. (sin’x — 1)*> = sin*x + cos(2x)
89. cos(86) = cos’(40) — sin’(46)

90. sin{4x) = 4 sin x cos x(1 ~ 2 sin’x)

7-38

cos(20)

» pl
sin“f

91. = cot?g — 1

cos(28
92, csc’9 — 2 = ,(2 )
sin“g

F

cotf — tan @

2 cos(26)
sin(20)

95. tanx + cot x = 2 csc(2x)

93. tan(26) =

94. cot® —tan 6 =

|
96. csc(2x) = S cscxsecx

97. cosz(g) = sin2(~;-) =cos X
—end XY = o5
98. I — 2sin (4) cos(z)

99. 1 — sin’(26) = 1 — 4sin°0 + 4 sin*f

100. 2(:052(%) —1=cosx
sin(1207r1) + sin(80arr)

= —cot(204rt
cos(120a1) — cos(80mr) o )
sinm + sin n (m + n)

102, ——— = tan
cos m + cos n 2

101,

2
103. Show sin’a + (1 — cosa)® = [2 sin(?a)] L

l = cosiu . ivalent
|/ is equivalen
I + cosu €

sin u L
——— by rationalizing the numerator.
| + cosu

I+

104. Show that tan (%) =

1085, Derive the identity for sin(2a) and tan{2«) using
sinfar + B) and tan(a + B), where a = 8.

106, Derive the identity for tan’(e) using
2 tan(e) ,
tan(2e) = -—. Hint: Solve for tan“e and
I — tan“(a)

work in terms of sines and cosines.
107, Derive the product-to-sum identity for sin « sin 8.

108, Derive the sum-to-product identity for
COs U + Cos V.
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> WORKING WITH FORMULAS

é‘ 109. Supersonic speeds, the sound barrier, and Mach numbers: M = csc(—-)

The speed of sound varies with temperature and altitude., At 32°F, sound
travels about 742 mi/hr at sea level. A jet-plane flying faster than the speed
of sound (called supersonic speed) has “broken the sound barrier.” The
plane projects three-dimensional sound waves about the nose of the craft
that form the shape of a cone. The cone intersects the Earth along a
hyperbolic path, with a sonic boom being heard by anyone along this path.

Section 7.4 The Double-Angle, Half-Angle, and Product-to-Sum Identities 891

0

The ratio of the plane’s speed to the speed of sound is called its Mach

number M, meaning a plane flying at M = 3.2 is traveling 3.2 times the speed of sound. This Mach number can
be determined using the formula given here, where 8 is the vertex angle of the cone described. For the following
exercises, use the formula to find M or 8 as required. For parts (a) and (b), answer in exact form (using a

half-angle identity) and approximate form.,
a, 6 = 30° b. 8 = 45° c. M=2

110, Malus’s law: I = I, cos®0

When a beam of plane-polarized light with intensity /, hits an analyzer, the intensity 7 of the transmitted beam of
light can be found using the formula shown, where 8 is the angle formed between the transmission axes of the
polarizer and the analyzer. Find the intensity of the beam when @ = 15° and /, = 300 candelas (cd). Answer in
exact form (using a power reduction identity) and approximate form.

» APPLICATIONS

Range of a projectile: Exercises 111 and 112 refer o
Example 9. In Example 9, we noted that the range of a
projectile was maximized at 6 = 45°. If @ > 45° or

f << 45°, the projectile falls short of its maximum
potential distance. In Exercises 111 and 112 assume that
the projectile has an initial velocity of 96 fi/sec.

111. Compute how many feet short of maximum the
projectile falls if (a) & = 22.5° and (b) & = 67.5°.
Answer in both exact and approximate form.

5 112. Use a calculator to compute how many feet short of
= maximum the projectile falls if (a) 8 = 40° and

# = 50° and (b) # = 37.5°and § = 52.5°. Do you
see a pattern? Discuss/explain what you notice and
experiment with other values to confirm your
observations.

Touch-tone phones: The diagram given in Example 10
shows the various frequencies used to create the tones
for a touch-tone phone. Use a sum-to-product identity to
write the resultant wave when the following numbers are
pressed.

113.
114.

One button is randomly pressed and the resultant wave is
modeled by y(¢) shown. Use a product-to-sum identity to
write the expression as a sum and determine the bution
pressed.

115, ¥(f) = 2 cos(21507¢) cos(2687t)
116. y(¢) = 2 cos(19067¢) cos(512m¢)

117, Clock angles: Kirkland
City has a large clock
atop city hall, with a
minute hand that is 3 ft
long. Claire and Monica
independently attempt to
devise a function that
will track the distance
between the tip of the
minute hand at ¢ minutes between the hours, and
the tip of the minute hand when it is in the vertical
position as shown. Claire finds the function

t
dir) = [6 sin(z—o) ‘ , while Monica devises
d(t) = \/ 18

from this section to show the functions are
equivalent.

)
‘l = cos(%)}. Use the identities
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118,

119.

CHAPTER 7 Trigonometric Identitles, Inverses, and Equations 7-40

Origami; The
Japanese art of
origami involves the
repeated folding of a
single piece of paper
to creale various art
forms. When the

functions that track the height of point P above the
horizontal plane shown, for a rotation of 8° by the
larger gear. The functions they develop are:
Engineer A: f(8) = sin(28 - 90°) + 1;

Engineer B: g(8) = 2 sin’6;
Engineer C: k(6) = 1 + sin?8 — cos*§; and

21.6 cm

upper right corner of a 28 em Engineer D: h’(ﬂ) = 1 — co0s(28). Use any of the

rectangular 21.6-cm 1dent1't1cs you've !earned so far to show these four

by 28-cm piece of paper is folded down until the functions are equivalent.

corner is flush with the other side, the length L of 120. Working with identities: Compute the value of

the fold is refated to the angle § by L = — 10.8 - 1o sin 1§° two ways, first l:lsing the’ half-ang!e ide‘ntity

sin 6 cos™0 for sine, and second using the difference identity

.- . 21.6sec for sine. (a) Find a decimal approximation for each

(a) Show this is equivalent to L = - sin(20) to show the results are equivalent and (b) verify

(b) find the length of the fold if @ = 30°, and algf:braically that lht?y are equivalent.

(c) find the angle 0 if L = 28.8 cm. (Hint: Square both sides.)

121. Working with identities;: Compute the value of
cos 15° two ways, {irst using the half-angle identity

first has a radius of 2 ¢m ey tf‘or cosine, and s_econd us_ing the dif‘fqrcnc; id:mity

and the second a radjus of or cosine. (a) Find a decimal approximation for

1 em, so the smaller gear }z\m each to show the results are equivalent and

Machine gears: A machine
part involves two gears, The

NIENIEE Bl (b) verify algebraically that they are equivalent.
larger gear. Let @ represent (Hint: Square both sides.)

the angle of rotation in the ' 122. Standing waves: A clapotic (or standing) wave is

larger gear, measured from o, formed when a wave strikes and reflects off a seawall

a vertical and downward _{‘"@’] - or other immovable object. Against one particular

starting position. Let Pbe a h - seawall, the standing wave that forms can be

point on the circumference P modeled by summing the incoming wave represented

of the smaller gear, starting at the vertical and by the equation y; = 2 sin(1.1x — 0.6¢) with the

downward position. Four engineers working on an outgoing wave represented by the equation

improved design for this component devise Yo = 2sin{1.1x + 0.6¢). Use a sum-to-product
identity to express the resulting wave y = y; + y, as
a product.

> EXTENDING THE CONCEPT

E 123,

124

*

125,

Can you find three distinct, real numbers whose sum is equal to their product? A little known fact from
trigonometry stipulates that for any triangle, the sum of the tangents of the angles is equal to the products of their
tangents, Use a calculator to test this statement, recalling the three angles must sum to 180°. Our website at
www.mhhe.com/coburn shows a method that enables you to verify the statement using tangents that are all
rational values,

A proof without words: From elementary geometry we have the following: Exercise 124

(a) an angle inscribed in a semicircle is a right angle; and (b) the measure of an

inscribed angle (vertex on the circumference) is one-half the measure of its

intercepted arc. Discuss/explain how the unit-circle

diagram offers a proof that tan (g-) = lf—r:::w' Be detailed and thorough.

Using 6 = 30° and repeatedly applying the half-angle identity for cosine, show
V2+ V2 + 2+ 3

that cos 3.75° is equal to Z 2 v ¥ . Verify the result

using a calculator, then use the patterns noted to write the value of cos 1.875° in \

closed form (also verify this result). As @ becomes very small, what appears to be

happening to the value of ¢os 6?
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> MAINTAINING YOUR SKILLS

126. (4.2} Use the rational roots theorem to find all 129, (6.5) Write the equation of 5
zeroesof x* + x° — 82 — 6x + 12 = 0. the function graphed in o~ .
terms of a sine function of | N\

127, {6.1) The hypotenuse of a certain right triangle is
twice the shortest side. Solve the triangle.

the form -
y = Asin(Bx + C} + D. 2
128. (6.2) Verify that (32, &) is on the unit circle, then ‘

find tan @ and sec 8 to verify 1 + tan°6 = sec?d.

LY MID-CHAPTER CHECK

1. Verify the identity using a multiplication: ' - e .56
sinx(cse x — sinx) = cos’x 7. Given a and 8 éu(‘)e obtuse angles with sina = o5
2. Verity the identity by factoring: and tan § = “39° find
cos’x — cot’x = —cos’x coty .
a. sin{la — B)
3. Verify the identity by combining terms: b. cos(a + f3)
28inx  cosx .
- = cosxsinx ¢. tan(a — 8)
seCX  CsCX
8. Use the diagram

4. Show the equation given is not an identity.

5 p shown to
I + sec’x = tan“x compute sin A,
5. Verify each identity. cos A, and tan A,
sin’x + cos’x i .
a.———————=1—3sinxcosx 9, Given
sinx -+ cos x 15
I +secx 1 +cosx COS9=—1‘7‘
CcsC x cot x and & in QII, find
o e .. (8 6
6. Verify each identity. exacl values of sm(E) and cos (5)
sec’x — tan’x N
A ———5——— = cosx 7
sec x , . . N
10. Given sin &« = ——=with « in QIII, find the value
cotx—tanx 5, ., ‘ 25
osc ysec x| ool — S E of sin{2a), cos(2a), and tan{2e),

¥ REINFORCING BASIC CONCEPTS

Identities—Connections and Relationships

It is a well-known fact that information is retained longer and used more effectively when it is organized, sequential,
and connected. In this feature, we attempt to do just that with our study of identities. In Aowchart form we’ll show that
the entire range of identities has only two tiers, and that the fundamental identities and the sum and difference identities
are really the keys to the entire range of identities, Beginning with the right triangle definition of sine, cosine, and
tangent, the reciprocal identities and ratio identities are more semantic (word related) than mathematical, and the
Pythagorean identities follow naturally from the properties of right triangles. These form the first tict.
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Basic Definitions

adj . _ opp
hyp me= ad]

Fundamental Identities

defined derived

Reci dentities Ratio Identities Pythagorean [dentities

1 sin 0

m = csc @ o5 0 = tan & cos’8 + sinZ@ = 1
1 0 cos (0

cosf see sin o 1 + tan’d = sec’ cot’d + 1 = csc?d
1 sec 0 (divide by cos’§) (divide by sin’9)

= ¢cot @ — = tan @
tan 9 csc B

The reciprocal and ratio identities are actually defined, while the Pythagorean identities are derived from these
two families. In addition, the identity cos*@ + sin’6 = 1 is lhe only Pythagorean identity we actually need to
memorize; the other two follow by division of cos?¢ and sin®@ as indicated.

In virtually the same way, the sum and difference identities for sine and cosine are the only identities that need to be
memotized, as all other identities in the second tier flow from these.

/

Double-Angle Identltles Power Reductlon Idemmes
use o = solve for cos’a, sine in
in sum 1dent1t1es related cos{2a} identity

Sum/Difference Identities

cos(a +B)=cosacos B + sinasinf
sin{fe £ B) = sinacos B % cos asin B

\

Half-Angle Identities  Product-to-Sum Identities
solve for cos «, sin « combine various

and use @& = w/2 in the sum/difference identities
power reduction identities

I + cos(2a 1+

sin(2a) = 2 sin & cos @ cos’a = —2(—) cos( ) i L see Section 7.4
1 — cos(2a | —cos

cos(2a) = cos’a — sina sin‘a = # sm( ) * £ see Section 7.4

/\ 2
cos(2a) = 2cos’a — 1 cos{2a) = 1 — 2 sine

(use sine = | — cos cr) (use cos’e = 1 - sin’a)

Exercise 1: Starting with the identity cos’e + sin’a = 1,

Exercise 2: Starting with the identity cos(a = 8) =
derive the other two Pythagorean identities,

cos @ cos B F sin a sin B, derive the double-angle
identities for cosine.
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LEARNING OBJECTIVES

In Section 7.5 you will see
how we can:

[ A. Find and graph the inverse
sine function and evaluate
related expressions

[ B. Find and graph the inverse
cosine and tangent
functions and evaluate
related expressions

O €. Apply the definition and
notation of inverse trig
functions to simplify
compositions

[ D. Find and graph inverse
functions for sec x, csc x,
and cot x

[J E. Solve applications involving
inverse functions

While we usually associate the number # with the features of a circle, it also occurs in
some “interesting” places, such as the study of normal (bell} curves, Bessel functions,
Stirling’s formula, Fourier series, Laplace transforms, and infinite series. In much the
same way, the trigonometric functions are surprisingly versatile, finding their way into
a study of complex numbers and vectors, the simplification of algebraic expressions,
and finding the area under certain curves—applications that are hugely important in a
continuing study of mathematics. As you’ll see, a study of the inverse trig functions
helps support these fascinating applications.

A. The Inverse Sine Function

In Section 5.1 we established that only one-to-one functions have an inverse, All six
trig functions fail the horizontal line test and are not one-to-one as given. However, by
suitably restricting the domain, a one-to-one function can be defined that makes find-
ing an inverse possible. For the sine function, it seems natural 1o choose the interval
T L, . . . .

[—? 5] since it is centrally located and the sine function attains all possible range
values in this interval. A graph of ¥y = sin x is shown in Figure 7.17, with the portion cor-
responding to this interval colored in red. Note the range is still [ — 1, 1] (Figure 7.18).

Figure 7.17 Figure 7.18 Figure 7.19
" 4 ,,.fy “_Ly F=ain
T 2T T s
= g
1+ y=3sinx | —8 1+ 7 _—.
2 = P £
/ < 5 5
f/
f——t——1 = — | i ¥ o —
_,\_w_ M P 1 Tk _E 1 1 T x = i i Iy
z / F] 3 z
(-3, -1
(% -1) / (
I+ L ’ EAN
2 4 y=x
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We can obtain an implicit equation for the inverse of y = sin x by interchanging
x- and y-values, obtaining x = sin y. By accepted convention, the explicit form of the
inverse sine function is written y = sin”x or y = aresin x. Since domain and range
values have been interchanged, the domain of y = sin”!x is [—1, 1] and the range is

mm

{ Y E] The graph of y = sin™ 'x can be found by reflecting the portion in red across
the line y = x and using the endpoints of the domain and range (see Figure 7.19).

The Inverse Sine Function

For y = sin x with domain [ —%, g]
and range [~ 1, 1], the inverse sine function is

Y p=sin—lx

]:‘1,%}

v

y = sin"'x ory = arcsin x, \ a

vala
=

with domain [~1, 1] and range [*% %] /

14
y =sin"xifand only if siny = x [_1,_§]! 1

695
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EXAMPLE 1

Solution

Table 7.1

sin x

"

| |

ol AR wE e
|

| NI'&

I s =Y
S SIS

EXAMPLE 2

Solution

From the implicit form x = sin y, we learn to interpret the inverse function as, “y
is the number or angle whose sine is x.”” Learning to read and interpret the explicit form
in this way will be helpful.

y=sinlxox=siny x=sinyey=sin"l

Evaluating y = sin~1x Using Special Values
Evaluate the inverse sine function for the values given:

a y= sin_l(?) b y= arcsin(—%) ¢ y=sin"!(2)

T
F. ~1,1}and
or x in | } an ym[ > 2]

a y=sin~ l(ﬂ): y is the number or angle whose sine is kL

2 2
=>siny=£ §0 sin ,(_\/_5)_3
2’ 2/ 3

1 1
b y= arcsin(—i): y is the arc or angle whose sine is ~3

=-giny = -1 s0 arcsin(——l-) =z
my=Ty 2 6
¢. y = sin~'(2): y is the number or angle whose sine is 2

=>sin y = 2. Since 2 is notin [~ 1, 1], sin™ '(2) is undefined.

Now try Exercises 7 through 12

1

In Examples 1(a) and 1(b), note that the equations sin y = 73 and siny = ~3
each have an infinite number of solutions, but only one solution in {—%, -g-]
1 V3 -1

When x is one of the standard values | 0, — TR , 1,and soon ),y = sin” xcan be

evaluated by reading a standard table “in reverse.” For y = arcsin(—1), we locate the

number —1 in the right-hand column of Table 7.1, and note the “number or angle
o . ™ . R

whose sineis —1,” is EEY If x is between —1 and 1 but is not a standard value, we can

use the sin~' function on a calculator, which is most often the @@ or INV' function

for €.

Evaluating y¥ = sIn™ ~x Using a Calculator

Evaluate each inverse sine function twice. First in radians rounded to four decimal
places, then in degrees to the nearest tenth,
a. y = sin~10.8492 b. y = arcsin(~0.2317) |

For xin [—1, 1], we evaluate y = sin"'x,

|

a. y = sin~'0.8492: With the L(I|Lll|dt0l‘ in radian g, use the keystrokes @ |
P 0.8492 P &). We find sin~ (0. 8492) = 1.0145 radians. In degrec Gg®, |
the same sequence of keystrokes gives sin™'(0.8492) = 58.1° (note that |
1.0145 rad ~ 58.1°),
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WORTHY OF NOTE

The sin~ "x notation for the Inverse
sine function i a carryover from the
£~ 1(x) notatlon for a general inverse
function, and llkewise has nothing
to do with the reciprocal of the
functlon. The arcsin x notation
derives from our work In radlens on
the unit circls, whare y = arcsinx
can be interpreted as “y is an arc
whose sine (s x.”

EXAMPLE 3

Solution

Section 7.5 The Inverse Trig Functions and Thelr Applications

b. ¥y = arcsin{—0.2317): In radian @, we find

sin~!(—0.2317) = —0.2338 rad. In degree . sin~'(—0.2317) ~ —13.4°.

897

|
1

Now try Exercises 13 through 16

From our wortk in Section 5.1, we know that if f and g are inverses, (f ¢ g){x) = x and
(g ° H(x) = x. This suggests the following properties.

Inverse Function Properties for Sine

For f(x) = sin x and g(x) = sin™"'x:

L (fe g)x) = sin(sin"'x) = xforxin[—1, 1]

and

™

IL (g °f)(x) = sin"'(sinx) = x for x in [ > %}

Evaluating Expressions Using Inverse Function Properties

Evaluate each expression and verify the result on a calculator.

a. sin[sin_l(%)] b. arcsin[sin(—})] ¢. sin~'(sin 150°)

1

1 1
. T LI 2 _
a. sm[sm (2)] 5 since = is in [—1,1]

el 3)] - § e T
. drcsing sin 4 = 4,511'1(364 8

|

4

Property |

T T
_ *-] Property Il

¢. sin~'(sin 150°) # 150°, since 150° is not in [ —90°, 90°].

This doesn’t mean the expression cannot be evaluated, only that we cannot use
Property II. Since sin 150° = sin 30°, sin™'(sin 150°) = sin™!(sin 30°) = 30°.

The caiculator verification for each is shown in Figures 7.20 and 7.21, Note

m
T~ 07854,
Figure 7.20
Parts (a) and (b)
£incsin-1C1-2>
sinsintn 4y
- 253581634

Now try Exercises 17 through 24

Figure 7.21
Part (¢)

sin1(sin(158;
sin1(sinc3a)

The domain and range concepts at play in Example 3(c) can be further explored
with the TABLE feature of a calculator, Begin by using the TBLSET screen (G
Gmeow) to set TblStart = 90 with ATbl = —30. After placing the calculator in degree
@D, go to the 7y screen and input Y, = sin X, Y, = sin™!X, and Y = Yx(Y))
(the composition Y, ¢ Y). Then disable Y, so that only Y, and Y, will be displayed
(Figure 7.22). Note the inputs are standard angles, the outputs in Y are the (expected)
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E' A, You've just seen how
we can find and graph the
inverse sine function and
evaluate related expressions

7-46

standard values, and the outputs in Y5 return the original standard angles. Now scroll
upward until 180° is at the top of the X column (Figure 7.23), and note that Y5 contin-
ves to return standard angles from the interval [ —90°, 90°], including Example 3(c)’s
result: sin~ '(sin 150°) # 150°, This is a powerful reminder that the inverse function
properties cannot always be used when working with inverse trigonometric functions.

Figure 7.22 Flgure 7.23
b Y1 Y 2 # Y1 Y2
95 i 90 1] 0
a0 .BaR03 | 6O ﬁh B 30
30 .E 30 igo .He603 | af
0 0 - 17] g0
“=0 =5 -0 1] HBENE | B0
“al ol [ &l 20 = 30
~80 -1 - [ 0 L] 0
VzBYz (Y1) Aa=158

B. The Inverse Cosine and Inverse Tangent Functions

Like the sine function, the cosine function is not one-to-one and its domain must also
be restricted to develop an inverse function. For convenience we choose the interval
x € [0, ] since it is again somewhat central and takes on all of its range values in this
interval. A graph of the cosine function, with the interval corresponding to this interval
shown in red, is given in Figure 7.24. Note the range is still [ ~1, 1] (Figure 7.25).

Flgure 7.24 Flgure 7.25 Figure 7.26
Y ¥ v
(=1, m
-+ 1 g 3
2 ’ \‘A;-
/_ = ¥ = cos(x) @1 v ©, 1y4 \\’»
—i 1 s — ———— 'I‘Ii."i__I'
% ‘zl'. T _\E'r 2w X - P % T X _% P {1’0) - ky
=i & =14 e (m =D Aty im 1)
For the implicit equation of inverse cosine, ¥y = cos x becomes x = cos y, with the
cotresponding explicit forms being y = cos™'x or y = arccos x. By reflecting the
graph of y = cos x across the line y = x, we obtain the graph of y = cos™' x shown in
Figure 7.26.
The Inverse Cosine Function
Fory = cos x with domain [0, 7] —m A
and range [ —1, 1], the inverse cosine function is R it
y = cos”"xory = arccos x T
with domain [ —1, 1] and range [0, 7]. | ;]& 0:) >
y =cos 'xifandonlyifcosy = x : ’
EXAMPLE 4 Evaluating y = cos™ "x Using Special Values

Evaluate the inverse cosine for the values given;

a, y =cos”'(0) b. vy = arccos(-—Ts) c. y =cos l(m)
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Solution Forxin[—1,1]and yin [0, 7],
a. y = cos”'(0): y is the number or angle whose cosine is 0 =>cosy = 0.

This shows cos ™ '(0) = %

cos-10n) 3
ERE: DEHH IH b.y= arcoos(—T): y is the arc or angle whose cosine is
(P
E.EE::\L::- V3 V3. V3\ 5w
_T= cosy = 5 This shows arccos 5 = o

c. y = cos”'(): y is the number or angle whose cosine is 7 =>cos y = .
Since 7 & [—1, 1], cos™'(a) is undefined. Attempting to evaluate cos~ ‘()
on a calculator will produce the error message shown in the figure.

Now try Exercises 25 through 34

Knowing that y = cos x and y = cos™~ 'x are inverse functions enables us to state
inverse function properties similar to those for sine.
Inverse Function Propertles for Cosine
For f(x) = cos x and g{x) = cos™'x:
L (fe g)x) = cos(cos™'x) = xforxin [—1,1]
and

IL (g °f)(x) = cos™ ! (cos x) = x forxin [0, =]

EXAMPLE 5 Evaluating Expresslons Using Inverse Function Properties
Evaluate each expression,

a. cos[cos"'(0.73)] b armos[cos(%)] ¢ cos_l[cos(%)}

Solution a. cos{cos™'(0.73)] = 0.73, since 0.73 is in [—1, 1]
b. arccns{cus (%)] = %, since % isin [0, 7]
4 4
c. cos ! {cns(;)] # Tﬂ, since 4?# is not in [0, 7). II

This expression cannot be evaluated using Property II. Since

B Y e e

The results can also be verified using a calculator.

Now try Exercises 35 through 42

For the tangent function, we likewise restrict the domain to obtain a one-to-one

. . . . T w . :
function, with the most common choice being o E) The corresponding range is R.
The implicir equation for the inverse tangent function is x = tan y with the explicit
forms y = tan~'xory = arctan x, With the domain and range interchanged, the domain

' R ™ W A mwm
x is R, and the range is (—-5, 7’) The graph of ¥ = tan x forxin (—? %)

ofy = tan!
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is shown in red (Figure 7.27), with the inverse function y = tan™! x shown in blue

(Figure 7.28).
Figure 7.27 Flgure 7.28
y=tanx ,y »
S I’ i 4
| |
| 2 f ! 22T p=tanl
i R =
A oy
¥ — 1 i } ';; ; - —4 f}/ —+—4 FII_ }
i _il'! ;'f'_' II a :‘Z_f:;g_'_.: ________
L2 -1,-%) 2t
TS 1
The Inverse Tangent Function Inverse Function Propertles for Tangent
. ) w o o
For y = tan x with domain XY and For f(x) = tan x and g(x) = tan™'x:
range R, the inverse tangent function is L (feg)(x) = tan{tan™'x) = xforxin R
y =tan"'xory = arctan x, and
= tan=! - [
e ooy mgﬁ(_% o) B (g /%) = tanYan ) = xforcin (-2, )
y=tan"'xifandonlyif tany = x
EXAMPLE 6 Evaluating Expresslons Involving Inverse Tangent ‘
Evaluate each expression.
a. tan”'(—V73) b. arctan[tan(—0.89)]
Solution For x in R and y in (—% g)
a. lan_l(—\/§) = —%, since tan(—%) = -3 |
|
] woar |I
[ B. Youve just seen how b. arctan[tan{—0.89)] = —0.89, since ~0.8%isin{ —-=, —] Property |
we can find and graph the 22
inverse cosine and tangent . -
functions and evaluate related Now try Exercises 43 through 52

expressions

C. Using the Inverse Trig Functions to Evaluate Compositions

In the context of angle measure, the expression y = sin~ l(—%) represents an angle—
the angle y whose sine is —%. It seems natural to ask, “What happens if we take the
tangent of this angle?” In other words, what does the expression tan[sin_l(—%)]

mean? Similarly, if y = cos (g) represents a real humber between —1 and 1, how do

we compute sin~! [cos(—g)]? Expressions like these oceur in many fields of study.
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EXAMPLE 7 Simplifying Expressions Involving Inverse Trig Functions ‘
Simplify each expression: |

I T

1
Solution a. In Example 1 we found arcsin(w%) = —%. Substituting —-g— for arcsin(—i)
: T V3 _ 1 V3
gives tan )= "3 showing tan| arcsin =5 |

b. For sin™" [cos(%)] , we begin with the inner function cos(%) = -% Substituting

% for cos (%) gives sin™ 1(%) With the appropriate checks satisfied we have

sin'l(l) =z showing sin™’ cos(z) =z
2] ¢ £ 3 6
Now try Exerclses 53 through 64

If the argument is not a special value and we need the Figure 7.29
answer in exact form, we can draw the triangle described
by the inner expression using the definition of the trigono-
metric functions as ratios, In other words, for either y or 17 g

8
g = sin_l(—), we draw a triangle with hypotenuse 17

17 0
and side 8 opposite & to model the statement, “an angle adj

8 o
whose sine is 17 = ﬁ” (see Figure 7.29). Using the Pythagorean theorem, we find

the adjacent side is 15 and can now name any of the other trig functions.

EXAMPLE 8 Usling a Dlagram to Evaluate an Expression Involving Inverse Trig Functions

Evaluate the expression tan[sin"(—%)}.

Sotution The expression tan [ sin” l(—%)] is equivalent to tan 8, where # = sin™ 1(—-§~)

17
8
Figure 7.30 with @ in —%,% (QIV or QI). For sin 8 = —ﬁ(sin ¢ < 0), @ must be in
0 S QIII or QIV. To satisfy both, & must be i Flgure 7.31
- or , 'To satis , @ must be in - =

g y 8 £in 1 ~8-17)
17 i QIV. From Figure 7.30 we note tan § = ——, -28.872486%4
' 8 s ban N 2 sa333333
(15.-9) showing tan[sin_‘(-—ﬁ)} =I5 Ans*Frac ‘8,15

A calculator check is shown in

Figure 7.31.

Now try Exerclses 65 through 72 '
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m These ideas apply even when one side of the triangle is unknown. In other words,

we can siill draw a triangle for § = cos™! ) since “# is an angle whose
e X adj X+ 16
cosing is —— = ——."

Val +16  hyp

EXAMPLE 9 Using a Diagram to Evaluate an Expression Involving Inverse Trig Functions
X
Evaluate the expression tan{cos_ '(4-—)] Assume x > 0 and the inverse
Vx* + 16
function is defined for the expression given.
. . -1 X
Solution Rewrite lan[cos (—*—\/2*_)} as tan 6, where v v
x*+ 16 opp
x
9= cos_‘(——-——). Draw a triangle with
x + 16 d _

side x adjacent to & and a hypotenuse of
Vx% + 16 (see the figure). The Pythagorean
theorem gives x* + opp” = (Vx? + 16)%, which leads to opp? = (x* + 16) — »*

' g i . . - 4
& C. You've just seen how giving opp = V16 = 4. This shows tan § = tan[cos ‘(; ] =,

we can apply the definition VaZ + 16 X

and notation of inverse trig

functions to simplify Now try Exercises 73 through 76
compositions

D. The Inverse Functions for Secant, Cosecant, and Cotangent

As with the other functions, we restrict the domains of the secant, cosecant, and cotan-
gent functions to obtain one-to-one functions that are invertible {(an inverse can be
found). Once again the choice is arbitrary, and because some domains are easier to
work with than others, these restrictions are not necessarily used uniformly in subse-
quent mathematics courses. For ¥y = sec x, we’ve chosen the “most intuitive” restric-
tion, one that seems more centrally located (nearer the origin). The graph of y = sec x
is reproduced here, along with its inverse function (see Figares 7.32 and 7.33). The
domain, range, and graphs of the functions y = csc™'x and y = cot™'x are given in

Figures 7.34 and 7.35.
Figure 7.32 Figure 7.33
y = secx y =sec 'x
v
_____ Y. T A
y=secx !:' y=seclx J J
XE[0,HUE. /! €, ~NUL® et
yE (=, = 1]U I, =) ,' ye0.HUE, 1 .
| { x
frm fefef—t R e e e e
- | w X - [
|
|
I

S e
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Figure 7.34 Figure 7.35
y=csc"lx y=cot™lx
iy v
y=cselx = t y=cot ly N T
XE(—%, —1JU[1,=) £\ X E (=, ) ;iaf\
yel-Lovof s, yEQ©,m N
- -} " S
5 . b e
1 X
_'r__ -
2

WORTHY OF NOTE

While the domalns of y = cot™"x
and y = tan~"x both include all real
numbers, evaluating cot™'x using

tan"(% involves the restriction

x # (. To maintain conslstency,
the equation cot™Tx = % —tan"'x
is often used. The graph of

¥ = g - tan"'x is that of

y = tan”~x reflacted across the
X-axis and shiﬂedg units up, with

the result identlcal to the graph of
y =cot 1x,

EXAMPLE 10

Solutlon

The functions y = sec™'x, vy = csc™'x, and ¥ = cot™ 'x can be evaluated by not-

ing their relationships to y = cos™'x, ¥ = sin~'x, and y = tan™ 'x, respectively. For
y = sec” 'x, we have

seCy =x
L1
secy X

_ 1
cosy =~

= cos_l(l)
y= X
sec”x = cos_l(l)
x

In other words, to find the value of y = sec” 'x, evaluate y = cos_](i—), =1

1
Stmilarly, the expression csc™'x can be evaluated using sin"(;), i = 1. The

expression cot™'x can likewise be evaluated using an inverse tangent function:

_ 1
cof x = tan -
X

Evaluating an Inverse Trig Function
Evaluate using a calculator only if necessary:

a. sec"(%) b. cot™ l(%)

a. From our previous discussion, for sec™ i , we evaluate cos™? ﬁ ,
P V3 2

Since this is a standard value, no calculator is needed and the result is 30°.

12
b. For cot™ '(1—2), find tan™ 1(?) on a calculator:

_f12
cor‘(i) = tan '(——) ~ 1.3147.
12 T

Now try Exercises 77 through 86

A summary of the highlighis from this section follows.
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Summary of Inverse Function Propertles and Compositions

1. For sin x and sin ™ 'x,

2. For cos x and cos ™ 'x,

sin(sin~'x) = x, for any x in the interval [—1, 1]; cos(cos~'x) = x, for any x in the interval [—1, 1];

sin~'(sin x) = x, for any x in the interval [ —1—;, %}

3. For tan x and tan™ 'x,

tan(tan™'x) = x, for any real number x;

i , . T
tan™ '(tan x) = x, for any x in the interval ( iy —)

ﬁ D. You've just seen how
we can find and graph inverse
functions for sec x, csc x, and
cotx

Ej EXAMPLE 11

cos~'(cos x) = x, for any x in the interval [0, 7]
4, To evaluate sec™ x, use cos %/ =1

- L f 1
csc”'x, use sin ](}- L= 1;

2'2 >

L -1
cot™ 'x, use 3 — tan” 'x, for all real numbers x

Our calculators can lend some insight to the varied domain restrictions the inverse trig
functions demand, simply by graphing y = f(g(x)). The result should yield the identity
function y = x for the domain specified. With the calculator in radian @ and a @0
4:ZDecimal window, compare the graphs of Y; = sin(sin™'X) and Y, = sin™'(sin X)
shown in Figures 7.36 and 7.37, respectively. A casual observalion verifies property 1:
sin(sin~'x) = x for any x in the interval [—1, 1] and sin™ '(sin x) = x for any x in the

interval _%’ % . See Exercises 87 through 90 for verifications of properties 2 and 3.

Flgure 7.36 Figure 7.37
3.1 31
Yi=ginlsin-1H1) YEssin=1sincH)
L
b
7 |—— NE— P
4=q V=1 $=1.5707863 I¥=1.570795%
-3.1 -3.1

E. Applications of Inverse Trig Functions

We close this section with one example of the many ways that inverse functions can
be applied.

Using Inverse Trig Functions to Find Viewing Angles

Believe it or not, the drive-in Figure 7.38

movie theaters that were so #“HT
popular in the 19503 are
making a comeback! If you -4
arrive early, you can park in 304 |
one of the coveted “center

spots,” but if you arrive late,
you might have to park very
close and strain your neck to
watch the movie. Surprisingly,
the maximum viewing angle
(not the most comfortable
viewing angle in this case) is actually very close to the front. Assume the base of a
30-ft screen is 10 ft above eye level (see Figure 7.38).

10 ft
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a. Use the inverse funciion concept to find expressions for angle « and angle 3.
b. Use the result of part (a) to find an expression for the viewing angle 0.

¢. Use a calculator to find the viewing angle & (to tenths of a degree) for
distances of 15, 25, 35, and 45 ft, then to determine the distance x (to tenths of
a foot) that maximizes the viewing angle.

Solution a. The side opposite 8 is 10 ft, and we want to know x — the adjacent side. This

10 _f 10
suggests we use tan 8 = e giving B = tan 1(7 , In the same way, we find

0
that & = lan"'(4—).
X

b. From the diagram we note that & = & — 3, and substituting for & and 8
: . —f 40 —f 10
directly gives # = tan </ tan </

40 10
¢, After weenier Y, = tan '(-——) - tan—l(i), a graphing calculator in degree

X
@ gives approximate viewing angles of Figure 7.39
35.8°, 36.2°, 32.9°, and 29.1°, for x = 15, 50

25, 35, and 45 ft, respectively. From this F1=tan-140/#=an-(10/8)

data, we note the distance x that makes 8
a maximum must be between 15 and

35 ft, and using @i (CALOC)
4:maximum shows 6 is a maximum of
36.9° at a distance of 20 ft from the

nE2h.00000Y _¥=36.869098 .

E’ E. You've just seen how screen (see Figure 7.39). 0 |
we can solve applications NN S ———— A
involving inverse functions Now try Exercises 93 through 99

"S” 7.5 EXERCISES

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed.

1. All six trigonometric functions fail the — 2. The two most common ways of writing the inverse
— test and therefore are not -to-— . function for y = sin x are and

4. The domain for the inverse cosine function is
and the range is

3, The domain for the inverse sine function is
and the range is

5. Most calculators do not have a key for evaluating 6. Discuss/Explain what is meant by the implicit form
an expression like sec 'S, Explain how it is done of an inverse function and the explicit form. Give
using the @@ key. algebraic and trigonometric examples.
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» DEVELOPING YOUR SKILLS

The tables here show values of sin 8, cos 8, and tan 8 for € [—180° to 210°]. The restricted domain used to develop
the inverse functions is shaded. Use the information from these tables to complete the exercises that follow.

y=sin8 y=rcosh y=tan@
(/] sind 8 sin @ ] cos 6 0 cos f ] tan 0 e tan &
1
—180° 0 30° N —~180° | -1 30° —V—G —180° 0 30° \/—6
2 2 3
1 V3 V3 1 V3
— 1500 I 600 I [ l a — o . —_ ] o —_— @
3 2 50) 2 60 3 50 3 60 V3
3
—120° ~% 90° | —120° —% 90° 0 —120° V3 90° —
V3
-90° -1 120° = —90° 0 120° —% -90° — 1200 | =3
/3 1 i V3 V3
-60° -— | 150° = —60° = o —— —60° - P | ==
2 32 3 150 5 6 V3 150 5
1
~30° —— 180° 0 -30° ﬁ 180° -1 -e —-ﬁ 180° 0
2 2 3
o ! V3
0 0 210 5 0 1 210° _? 0 0 210° 3

Use the preceding tables to fill in each blank (principal Q Evaluate using a calculator, Answer in radians to the
values only). = nearest ten-thousandth and in degrees to the nearest tenth.

7. " —
sin0 =0 sin"'0= 13, arcsin 0.8892 14, arcsin(z)
sin(f—) = arcsin (1) ~Z i
6/ — YA 1 1-V5
e —
Sin(_s_#)z i sin‘l(—l) ) 15. sin (\/?) 16. sin ( > )
g 2 2 Evaluate each expression, keeping the domain and range
sm(_i) = =) sin~(—1) = =' of each function in mind. Check results using a
2 calculator.,
2 3
8. . 1 il 17. sin[sin_l(i)] 18, sin{arcsin(i)]
sin 30° = 5 L - p— 2 2
V3 /3
sin 120° = —= sin '( \’ ) = 19. arcsin[Sin(g)] 20. sin~'(sin 30°)
in(=60% = —3 aisird ~V3) = =
sin(=60%) = =3 arcsm( 2 ) - 21. sin™'(sin 135°) 205 arcsin[sin( ;ﬂ)]
sin 180° = arcsin 0 = 0°

23, sin(sin™' 0.8203) 24, sin[arcsin(g)]

Evaluate without the aid of calculators or tables, 5
keeping the domain and range of each function in mind. Use the tables given prior to Exercise 7 to fill in each
Answer in radians. blank (principal values only).
. V2 . (V3 ; ——
9. sin '(i) 10. arcsm(~——-) 25 cos0 = | cos 'l = ___
? 2 COS(E) = amcﬂs(ﬁ) = E
.= . 1 6 g 2 6
11, sin” 1 12, arcsin{ ——
cos 120° = —— arccos(——) =___
cos T = —1| cos '(—1)=
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cos(—60°) = 3 cos (5) =
(92 (D)
o e 5 cos 5 )" —
cos(—120°%) = ___ arccos(—%) = 120°
cos(2m) = 1 cos 'l =

Evaluate without the aid of calculators or tables.

Answer in radians.
1
27. cos"(—) 28. arccos(——v—g)
2 2
30. arccos ()

29. cos”I(—1)

Q Evaluate using a calculator. Answer in radians to the
= nearest ten-thousandth, degrees to the nearest tenth.

4
32. arccos ( 7 )

\/E—l)
5

31. arccos 0,1352

33 cos"(%)

34, cos"(

Evaluate ¢ach expression, keeping the domain and range
€ of each fanction in mind. Check results using a
calculator.

35, arccos [ cos(%)] 36. cos™ '(cos 60°)

8
37. cos(cos™' 0.5560)  38. cos[arccos(—ﬁ)]

39. cos[cos_‘(——\é—i)] 40, cos[arccos(?)]

5
41, cos_{cos("f)] 42, arccos(cos 315.8°)

Use the tables presented before Exercise 7 to fill in each
blank,

43,

1

tan0 =0 tan” 0= —

ol 3)-

V3 V3
tan 30° = T arctan T =

an(Z) =

'+ arctan(—V3) = —%

tan {(V3)=
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4 tan(—150%) = ? fan~ '(—\;—3) o il
tanw =0 tan"'0=
tan 120° = -3  arclan(—V3) = ___
tan (%) . Bl arctan 1 = %

Evaluate without the aid of calculators or tables.

45, tan_l(—ﬁ)
3

47. arctan(V3)

46, arctan(—1)
48. tan~'0

Evaluate using a calculator. Answer in radians to the
nearest ten-thousandth and in degrees to the nearest
tenth.

49, tan"'(—2.05)

29
51. arctan (E)

Simplify each expression without using a calculator.

oo ol )] s cm (5
o ()] 56 s i)}
sr.cuf s ()] s oL

59. arccos[sin(—30°)]  60. arcsin{cos 135°)

&
50. tan~'(0.3267)

52. arctan(—V/6)

Explain why the following expressions are not defined.
61. tan(sin™'1) 62. cot(arccos 1)

afeel5)] o {(Z)

Use the diagrams below to write the value of: (a) sin 9,
(b) cos &, and (c) tan 6.

65. 66. 10
0.5 0.4
0.3

67. T 68.
|
Y100 + 9x2
6 10
x
f
Bl f

Ix
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Evaluate each expression by drawing a right triangle 78. sec(—60°) = 2 oo
and labeling the sides,
r s E) = == arcsec(—-z—) =__
69, sin cos"( —i)} 70, cos[sin"’( ——ﬂ)] g V3 V3
I 25 61 sec(—360%) = 1 arcsec 1 =
[ 5 \/ sec(60”) = sec™ 12 = 60°
71. sin tan'l(—v—:)] 72, tan[cos_l(—é-g)] B
3x 3 /| Evaluate using a calculator in degree @7 only as
73, cot -arcsm( 5 )] 74. tan[arcsec( 2x)] @ necessary.
2
75. cos|sin” ( )] 79, arccsc 2 80. csc"( —7)
12 + x° 3
(V942 81. cot™'V3 82. arccot(—1)
76. tan| sec o 7
P o 83, arcsec 5.789 84. col_l(—T)
Use the tables given prior to Exercise 7 to help fill in
each blank. 85. sec”'V7 86. arccsc 2.9875
77. sec( =1 L 7] Use the graphing feature of a calculator to determine
T _ _w = the interval where the following functions are equivalent
A3/ — BEESCd = to the identity function y = x. If necessary, use the G
3 5 or @ @ (CALC) features to determine whether or
see(—30°) = Ox ﬂmeﬂ(ﬁ) = — not endpoints should be included.
sec(m) = sec” (-1 =7 87. Y = cos(cos™'x) 88. Y = cos™!(cos x)

89. Y = tan(tan™ 'x) 90. Y = tan~ '(tan x)

> WORKING WITH FORMULAS

91. The force normal to an object on an inclined plane: F, = mg cos 0

When an object is on an inclined plane, the normal force is the force Fy Fiy
acting perpendicular to the plane and away from the force of gravity, and is

measured in a unit called newtons (N). The magnitude of this force % Ve &
depends on the angle of incline of the plane according to the formula ?;)
above, where m is the mass of the object in kilograms and g is the force of z

gravily (9.8 m/sec?). Given m = 225 g, find (a) Fy for 8 = 15° and
=45 and (b) B for Fy = 1 Nand Fy = 2 N,

J

92. Heat flow on a cylindrical pipe: T = (T — Tg) sln(
xt + y

2)+Tg;y20

Fan
When a circular pipe is exposed to a fan-driven source of heat, the temperature of C>‘<D

Heat source

the air reaching the pipe is greatest at the point nearest to the source (see diagram).
As you move around the circumference of the pipe away from the source, the
temperatyre of the air reaching the pipe gradually decreases. One possible model of
this phenomenon is given by the formula shown, where 7'is the lemperatu? of the
air at a point (x, y) on the circumference of a pipe with outer radius r = Vx* + y?,
Ty is the temperature of the air at the source, and T is the surrounding room
temperature. Assuming Tp = 220°F, T = 72° and r = 5 cm: (a) Find the
temperature of the air at the points (0, 5), (3, 4), (4, 3), (4.58, 2), and (4.9, 1).

(b} Why is the temperature decreasing for this sequence of points? (c) Simplify the
formula using r = 5 and use it to find two points on the pipe’s circumference where
the temperature of the air is 113°,
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> APPLICATIONS

93. Snowcone

3

95

96.

Exerclse 93

dimensions: Made in
the Shade Snowcones
sells a colossal size
cone that uses a conical
cup holding 20 oz of
ice and liquid. The cup
is 20 cm tall and has a
radius of 5.35 cm. Find
the angle @ formed by a
cross-section of the
cup.

Avalanche conditions: Exercise 94
Winter avalanches occur )
for many reasons, one Je.

being the slope of the
mountain. Avalanches seetn
to occur most often for
slopes between 35° and 60°
(snow gradually slides off
steeper slopes). The slopes
at a local ski resort have an
average rise of 2000 ft for
each horizontal run of
2559 fi. Is this resort prone to avalanches? Find the
angle @ and respond.

2000 fi

2559 ft

Distance to hole: A Exerclse 85

popular story on the
PGA Tour has Gerry
Yang, Tiger Woods’
teammate at Stanford
and occasional caddie,
using the Pythagorean
theorem to find the
distance Tiger needed
to reach a particular
hole. Suppose you
nolice a marker in the
ground stating that the
straight-line distance
from the marker to the hole (H) is 150 yd. If your
ball B is 48 yd from the marker (M) and angle
BMH is aright angle, determine the angle ¢ and
your straight-line distance from the hole.

Exercise 96

Ski jumps: Ata
waterskiing contest on
a large lake, skiers use
a ramp rising out of the
water that is 30 ft long
and 10 ft high at the
high end. What angle 6
does the ramp make
with the take?

Viewing angles for advertising: A 25-ft-wide
billboard is erected perpendicular to a straight
highway, with the closer edge 50 ft away (see
figure). Assume the advertisement on the billboard
is most easily read when the viewing angle is 10.5°
ot more, {(a) Use inverse functions to find an
expression for the viewing angle 6. (b) Use a
calculator to help determine the distance d (1o
tenths of a foot) for which the viewing angle is
greater than 10.5°, (¢) What distance d maximizes
this viewing angle?

Exerclse 97
d

Ve
v Mo
T —
b

A’ 50t

25 fi

Viewing angles at an art show: At an art show, a
painting 2.5 ft in height is hung on a wall so that its
base is 1.5 ft above the eye level of an average
viewer (see figure). (a) Use inverse functions to
find expressions for angles a and 8. {(b) Use the
result to find an expression for the viewing angle 0.
{¢) Use a calculator to help determine the distance
X (to tenths of a foot) that maximizes this viewing
angle.

Exerclse 98

15 f “(/9/
= P, @I::::;;;-..r"

X
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] 99. Shooting angles and shots on geal: A soccer player is on a breakaway and is

= dribbling just inside the right sideline toward the opposing goal (see figure).
As the defense closes in, she has just a few seconds to decide when to shoot.
(a) Use inverse functions to find an expression for the shooting angle 8. (b)
Use a calculator to help determine the distance d (to tenths of a foot) that will
maximize the shooting angle for the dimensions shown.

> EXTENDING THE CONCEPT

Consider a satellite orbiting at an altitude of x mi above Earth. The distance d from the
satellite to the horizon and the length s of the corresponding arc of Earth are shown in the
diagram.

100. To find the distance d we use the formulad = V2 + ¥% (a) Show how this formula was
developed using the Pythagorean theorem. (b) Find a formula for the angle & in terms of »
and x, then a formula for the arc length s.

101. If Earth has a radius of 3960 mi and the satellite is orbiting at an altitude of 150 mi,
(a) what is the measure of angle 87 (b) how much Jonger is d than 5?7

> MAINTAINING YOUR SKILLS

102, (7.4) Use the triangle given with a double-angle 104, (4.8) Solve the inequality f(x} = 0 using zeroes
identity to find the exact value of sin(28). and end-behavior given f{x) = x> — 9x.
- -~ 105. {1.4) In 2000, Space Tourists Inc, sold 28 low-orbit
& . travel packages. By 2003, yearly sales of the low-
6 39 orbit package had grown to 105, Assuming the
growth is linear, (a) find the equation that models
B this growth (2000 — ¢ = 0), (b) discuss the
7 80 meaning of the slope in this context, and (c) use the
equation to project the number of packages that
103, (7.3) Use the triangle given with a sum identity to were sold in 2010.

find the exact value of sin{fa + 8).



[l Solving Basic Trig Equations

LEARNING OBJECTIVES

In Section 7.6 you will see
how we can:

[ A. Use a graph to gain
infermation about
principal roots, roots in
[0, 27), and roots in R
Use inverse functions to
solve trig equations for
the principal root

Solve trig equations for
roots in [0, 27) or [0, 360°)
Solve trig equations for

) B.

Qc.
Qapb.

In this section, we’'ll take the elements of basic equation solving and use them to help
solve trig equations, or equations containing trigonometric functions. All of the alge-
braic techniques previously used can be applied to these equations, including the prop-
erties of equality and all forms of factoring (common terms, difference of squares,
ete,). As with polynomial equations, we continue to be concerned with the number of
solutions as well as with the solutions themselves, but there is one major difference,
There is no “algebra” that can transform a function like sin x = 1 into x = solution.
For that we rely on the inverse trig functions from Section 7.5.

A. The Principal Root, Roots in [0, 277), and Real Roots

In a study of polynomial equations, making a connection between the degree of an
equation, its graph, and its possible roots, helped give insights as to the number, loca-
tion, and nature of the roots. Similarly, keeping graphs of basic trig functions in mind

roots in R helps you gain information regarding the solution(s) to trig equations. When solving trig
equations, we refer to the solution found using sin ', cos ™', and tan~" as the principal
root. You will alternatively be asked to find (1) the principal root, (2) solutions in
[0, 247) or [0°, 360°), and (3) solutions from the set of real numbers R. For convenience,
graphs of the basic sine, cosine, and tangent {unctions are repeated in Figures 7.40
through 7.42. Take a mental snapshot of them and keep them close at hand.
Figure 7.40 Flgure 7.41 Flgure 7.42
y ¥
" b ¥y =siny ¥ =C0sK ko 34 e
/ & | /: ; /: |
I I =T /I |
—H . | , /0 :
= L DA B A B
‘\—-—t-- g 2w :/ :E{l-— : ] :/n i
1 1[5 ] [
| 5T |
| I 2 I |
EXAMPLE 1 Visualizing Solutions Graphically Il
Consider the equation sin x = . Using a graph of y = sinxand y = 3, !
a. state the quadrant of the principal root. [
b. state the number of roots in [0, 277) and their quadrants. |
¢. comment on the number of real roots. II
Solution We begin by drawing a quick sketch of Iy
y = sinxand y = 2, noting that solutions will A sinx
occur where the graphs intersect. # e
a. The sketch shows the principal root o

WORTHY OF NOTE

Note that we refer to (0. g) as

Quadrant | or QI, regardless of
whathet we're discussing the unlt
circle or the graph of the function.
In Example 1{b), the solutions
corraspond to those found in QI
and QIl on the unit circle, where
sin x is also positive,

7-59

occurs between 0 and % in QL

b. For [0, 27) we note Lhe graphs intersect
twice and there will be two solutions in this interval, one in QI and one in QIIL

Since the graphs of y = sin xand y = % extend infinitely in both directions,
they will intersect an infinite number of times—but at regular intervals! Once
a root is found, adding integer multiples of 24 (the period of sine} to this root
will give the location of additional roots.

c

Now try Exerclses 7 through 10
711
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[ A. You've just seen how
we can use a graph to gain
information about principal
roots, roots in [0, 27}, and
roots in R

EXAMPLE 2

Solution

ﬁ B. You've just seen how
we can use inverse functions
to solve trig equatlons for the
principal root

Table 7.2

0 sin® cosé@
0 0 1

T 1 V3
6 2 | 2
" V2 V2
4 Tz 2
T V3 1

3 | 2| 2
kil

3 1 0
2 V3 1
3 2 2
3m V2 V2
4 2 2
5 1 V3
6 2 2
T 0 -1

When this process is applied to the equation Figure 7.43
tan x = —2, the graph shows the principal root occurs »

between —% and 0 in QIV (see Figure 7.43). In the

—_ 3
L s
t

interval [0, 27r) the graphs intersect twice, in QII and
QIV where tan x is negative (graphically—below the
x-axis). As in Example 1, the graphs continue infinitely
and will intersect an infinite number of times—but  ~—
again af regular intervals! Once a root is found, adding
integer multiples of # (the period of tangent} to this root
will give the location of other roots.

T ) L o |

——

B. Inverse Functions and Principal Roots

To solve equations having a single variable term, the basic goal is to isolate the vari-
able term and apply the inverse function or operation. This is true for algebraic
equations like 2x — 1 = 0,2Vx — 1 = 0, or 2+ — 1 = 0, and for trig equations
like 2 sinx — 1 = 0. In each case we would add 1 to both sides, divide by 2, then
apply the appropriate inverse. When the inverse trig functions are applied, the result
is only the principal root and other solutions may exist depending on the interval
under consideration.

Finding Principal Roots

Find the principal root of V3tanx — 1 = 0.

We begin by isolating the variable term, then apply the inverse function.

Vienx—1=0
tan x = %
|
tan”!(tan x) = tan_'(ﬁ)
=T
*T%

Now try Exerclses 11 through 28

Equations like the one in Example 2 demonstrate the need to be very familiar with
the functions of special angles. They are frequently used in equations and applications
to ensure results don’t get so messy they obscure the main ideas. For convenience, the
values of sin @ and cos @ are repeated in Table 7.2 for 8 € [0, 7], Using symmetry and
the appropriate sign, the table can easily be extended to all values in [0, 27). Using the
reciprocal and ratio relationships, values for the other trig functions can also be found.

C. Solving Trig Equations for Roots in [0, 277) or [0°, 360°)

To find multiple solutions to a trig equation, we simply take the reference angle of the
principal root, and use this angle to find all solutions within a specified range. A men-
tal image of the graph still guides us, and the standard table of values (also held in
memory) allows for a quick solution to many equations.
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EXAMPLE 3

Solution

WORTHY OF NOTE

Note how the graph of a trig
function displays the Information
regarding quadrants. From tha
graph of y = cos x we “read” that
cosine is negative in Qll and QIII
[the lower "hump” of the graph is
helow the x-axis In (x/2, In/2)] and
positive In QI and QIV [the graph is
above tha x-axis in the intervals

(0, 7/2) and (3w/2, 2m).

EXAMPLE 4

Solution

Sectlon 7.6 Solving Basic Trig Equations 713

Finding Solutions in [0, 27)
For 2 cos 8 + V2 = 0, find all solutions in [0, 24). |

Isolate the variable term, then apply the inverse function,

2cosf + V2Z=0 given equation
V2
cosf = —**2"— sublract /2 and divide by 2
|
- of V2 ‘ _ |
Cos (cos 3) = C0§ —T apply inverse cosing 1o both sides
Ar
o =— result
4 |
|
. 3 . a Y
With Y as the principal root, we know 8, = T | = cosx

Since cos x is negative in QI and QIII, the second
Sqr —
solution is T The second solution could also have il N
been found from memory, recognition, or symmetry
on the unit circle. Our (mental) graph verifies these |

are the only solutions in [0, 27r). |

Now try Exercises 29 through 34

Finding Solutlons in [0, 21) |
For tan’x — 1 = 0, find all solutions in [0, 2r). .

As with the other equations having a single variable term, we try to isolate this
term or attempt a solution by factoring.

tan’x = 1 = 0 given equation
Vitan2x = £V  add 1 to both sides and take square roots |
tanxy = *1 result |
The algebra gives tan x = 1 or tan ¥ = —1 and we solve each equation |'
independently. "
tanx = 1 tanx = —1 ‘
tan~'(tan x)} = tan~'(1)  tan"'(tan x) = tan"}(—1) apply inverse tangent
X L = incipal root
= X = - rincipal roots
4 2 princip
L. m, o,
Of the principal roots, only x = el the o Y = tanx
. ' ' s o | |
specified interval. With tan x positive in QI and I
T . 7T, || |
QIIIL, a second solution is rE While x = ~2 is T T I T
| |
not in the interval, we still use it as a reference =il =
to identify the angles in QI and QIV (for i
tan x = —1) and find the solutions - I
37w ) i '
x = =~ and —~. The four solutions are ol |
w Im 5w T |
x= —, and ——

LRI g which is supported by the graph shown. Jl

Now try Exerclses 35 through 42
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EXAMPLE 5

Solution

Flgure 1.44

1—c059

PP W \i;/ e [
- L O A N -

[ﬂ" C. You've just seen how
we can solve trig equations for
roots in [0, 27} or [0, 360°%)

For any trig function that is not equal to a standard value, we can use a calculator to ap-
proximate the principal root or leave the result in exact form, and apply the same ideas
to this root to find all solutions in the interval.

Finding Solutions In [0°, 360°)
Find all solutions in [0°, 360°) for 3 cos’® +cosf —2 =0,

Use a u-substitution to simplify the equation and help select an appropriate
strategy. For u = cos 8, the equation becomes 3u* + u — 2 = 0 and factoring
seems the best apgroach The factored form is (4 + 1){(3u — 2) = 0, with solutions
¢ = —1 and # = %. Re-substituting cos 8 for u gives

cos @ = —1 cosﬂ=§

2
cos " (cos 8) = cos™!(~1) cos " (cos §) = cos"(g)

g = 180° & ~= 48.2° principal roats

Both principal roots are in the specified interval. The first is quadrantal, the second
was found using a calculator and is approximately 48.2°. With cos 8 positive in QI
and QIV, a second solution is (360 —~ 48.2)° = 311.8°. The three solutions seen in
Figure 7.44 are 48.2°, 180°, and 311.8° although only 8 = 180° is exact. With the
calculator still in degree @, the solutions 6 = 180° and § =~ 311.8° are verified
in Figure 7.45. While we may believe the second calculation is not exactly zero due
to round-off error, a more sanstactory check can be obtained by storing the result of
360 — cos™ '(3) as X, and using 3 cos{X)” + cos(X) — 2, as shown in Figure 7.46.

Figure 7.45 Figure 7.46
Scost18@) e+cos(l JEA-Cos"1(2-3)+X
86)-2 311.28183149

3505(H)3+505(K)—
Jcos 311,832 +cos 2
(511.8)- a
6. 7P9288%e -4

Now try Exercises 43 through 50

D. Solving Trig Equations for All Real Roots ([R)

As we noted, the intersections of a trig function with a horizontal line oceur at regular, pre-
dictable intervals. This makes finding solutions from the set of real numbers a simple mat-
ter of extending the solutions we found in [0, 247} or [0°, 360°). To illustrate, consider the

solutions to Example 3. For 2 cos & + V2 = 0, we found the solutions 8 = % and

5
g = Tﬂ For solutions in R, we note the “predictable interval” between roots is identi-
cal to the period of the function. This means all real solutions will be represented by
3 5
8= Tﬂ + 2wk and @ = —f— + 2ok, k € Z (k is an integer). Both are illustrated in

Figures 7.47 and 7.48 with the primary solution indicated with a *.
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|
Figure 7.47 Figure 7.48

y=CosX

(\A/\:/,\,/._s
i VudvHvidv

I

e
d

sy —
Al‘; —
-r~|§ —_—

EXAMPLE &6 Finding Solutions in R

Find al} real solutions to
Vitanx — 1 =0.

Solution In Example 2 we found the

. LI
principal root was x = P Since

the tangent function has a period
of #, adding integer multiples of
7 to this root will identify all
solutions:

x= % + 7k, k € Z, as illustrated here.

Now try Exerclses 51 through 56

These fundamental ideas can be extended to many different situations. When asked to
find all real solutions, be sure you find all roots in a stipulated interval before naming
solutions by applying the period of the function. For instance, cos x = 0 has two solutions

3
in [0,27) | x = % and x = Tﬂ- , which we can quickly extend to find all real roots.
. o i
Butusing x = cos™'0 or a calculator limits us to the single (principal) root x = Ex and

. . . 3w N . .
we’d miss all solutions stemming from EX Note that solutions involving multiples of

an angle (or fractional parts of an angle) should likewise be “handled with care,” as in
Example 7.

EXAMPLE 7 Finding Solutions in R
Find all real solutions to 2 sin{2x) cos x — cos x = 0.

Solution Since we have a common factor of cos x, we begin by rewriting the equation as
cos x[2 sin{2x) — 1] = 0 and solve using the zero factor property. The resulting
equations are cos x = 0 and 2 sin(2x) — 1 = 0 —>sin(2x) = 1.

cosx =0  sin{2x) = =
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WORTHY 37, .
ORTHY:OKINOTE In [0, 2a7), cos x = 0 has solutions x = Toandx ==, giving x = Z + 2mk and

When solving trig equations that 2 2 2

involve arguments other than a I

single variable, & u-substitution is X = — + 2k as solutions in R. Note these can actually be combined and written
sometimes used. For Example 7, 2

substituting u for 2x gives the

T , 1 Lo il
squétion sinu = % mekingh“sagier 25 % = + 7k, k € Z. For sin(2x) = o we know that sin 1 is positive in QI and

tosee"thatu=£(since1—isa : : : _l' ol P ; - &
) 2 QII, and the reference angle for sin ¢ = — is —, This yields the solutions # = —(QI)
special value), and therefore 26 6
oy = - dx = w 5w . . T 5w .
=g ondx =17 anduy = —;(QII), orin this case 2x = s and 2x = & Since we seek all real

roots, we first extend each solution by 2ak before dividing by 2, otherwise multiple

solutions would be overlooked.

5
21=%+27rk 2x=%+27rk

5T

mk x=—+ 7k

=— 4
*= 12 12

Now try Exerclses 57 through 66

In the process of solving trig equations, we sometimes employ fundamental iden-
tities to help simplify an equation, or to make factoring or some other method possible,

EXAMPLE 8 Solving Trig Equations Using an ldentity
Find all real solutions for cos(2x) + sin’x ~ 3cosx = 1.

Solution With a mixture of functions, exponents, and arguments, the equation is almost
impossible to solve as it stands, But we can eliminate the sine function using the
identity cos(2x) = cos’x — sin’x, leaving a quadratic equation in cos x.
cos(2x) + sin’x — 3cosx = 1
cos’x = sin’x + sin’x — 3cosx = 1
cos’x — 3cosx = 1
0

Let’s substitute « for cos x to give us a simpler view of the equation. This gives
u? — 3u — 1 = 0, which is clearly not factorable over the integers. Using the

cos’x — 3cosx — 1

quadratic formula withg = 1, 6 = =3, and ¢ = —1 gives
Pk V(=3 = 4(1)(~1) |
2(1)
~3*x+13
2

To four decimal places we have u = 3.3028 and « = —0.3028. To answer in terms
of the original variable we re-substitute cos x for u, realizing that cos x =~ 3.3028
has no solution, so solutions in [0, 2#7) must be provided by cos x = —0.3028 and will
occur in QII and QIIL The primary solutions are x = cos™'(—0.3028) =~ 1.8784 and
27 — 1.8784 = 4.4048 rounded to four decimal places, s0 all real solutions are
given by x = 1.8784 + 27k and x =~ 4.4048 + 2mik.

Now try Exercises 67 through 82
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The TABLE feature of a calculator in radian @ can partially (yet convincingly)
verify the solutions to Example 8. On the (&> screen, enter Y, = 4.4048 + 27X
This expression is then used in place of X when the left-hand side of the original equa-
tion is entered as Y, (see Figure 7.49), After using the TBLSET screen to set
ThiStart = 0 and ATbl = 1, the keystrokes @) @#» (TABLE) will produce the
table shown in Figure 7.50. Note the valugs in the Y, column are all very close to 1 (the
right-hand side of the original equation), implying the Y, values are solutions.

Figure 7.49 Figure 7.50

Flotl FlotZ Plot3 w '

Y184, 4843+2nK o 4y.4040 | 99095

wWeaBooz(2Y1)+2in 1 10,686 | -9BBE

V3= 2 gz.2ch | |BAAQE

& D. You've just seen h W= ¢ |3Eac | Sages

e YU Jusi,seon how U om i hz.104 | 53955

we can solve trig equations for Ve= VY FUTEETS

roots In R “WE= ¢Boos(2Y1 2+sin..

"L 7.6 EXERCISES

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if necessary,

1. For simple equations, a mental graph will tell us 2, Solving trig equations is similar to solving
the quadrantof the _________ root, the number of algebraic equations, in that we first the
roots in , and show a pattern for all variable term, then apply the appropriate
roots. function.
3. For sinx = — the principal reotis | 4. For tan x = —1, the principal root is 5
L 2 solutions in [0, 2r) are and .
solutionelin [0’_ 2) are a}nd i and an expression for all real roots is
and an expression for all real roots is
and k€ Z
5. Discuss/Explain/Illustrate why tan x = %and 6. The equation sin’x = %has four sclutions in

[0, 27). Explain how these solutions can be viewed
as the vertices of a square inscribed in the unit
though the period of y = tan x is 7, while the circle.

period of y = cos x is 2,

3 S
cosx = L have two solutions in [0, 277), even



718

» DEVELOPING YOUR SKILLS

3
7. For the equation sin x = iy and the graphs of

. 3 -
y=sinxandy = —Z given, state (a) the quadrant

of the principal root and (b) the number of roots in

[0, 27).
Exerclse 7 Exerclse 8
¥ ¥
v =Sy T y=cosy
14 F p 5
I A -t of-4 f— ¥ =3
i Py \\ ¢ Fi 1 }-
R S0hY RRDF A T R S I N 4

8. For the equation cos x = 3 and the graphs of
y = cos x and y = § given, state (a) the quadrant of
the principal root and (b) the number of roots in
(0, 277).

9. Given the graph y = tan x shown here, draw the
herizontal line y = —1.5 and then for
tan x = —1.5, state (a) the quadrant of the

principal root and (b) the number of roots in
[0, 2m).

Exercise 10

Exercise 9

10. Given the graph of y = sec x shown, draw the
horizontal line y = § and then for sec x = 3, state
(a) the quadrant of the principal root and (b) the

number of roots in [0, 277).

11. The table shows @ in multiples of% between 0 and

4
Tﬂ, with the values for sin @ given. Complete the

table without a calculator or references using your
knowledge of the unit circle, the signs of the trig
functions in each quadrant, memory/recognition,
sin @
os f

tan @ = , and so on,

CHAPTER 7 Trigonometric Identities, Inverses, and Equations
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Exercise 11 Exerclse 12
[ sin® cos@ tan@ @ sin@® cosf tand
0 0 0 1
= 1 - Vi
6 2 4 2
= V3 Kl 0
3 2 5
& | 3w V2
2 4 2
27 V3
fntid - L. —1
3 2 V3
in | 1 7|
6 2
37
T 0 Sy
> 0
T ]
6 | 2 In V2
4 2
4 | V3
3 2 2m 1

12. The table shows 8 in multiples of — between 0 and

4

271, with the values for cos @ given, Complete the
table without a calculator or references using your
knowledge of the unit circle, the signs of the trig
functions in each quadrant, memory/recognition,

tan 0 = sin @
an cos @

, and so on.

Find the principal root of each equation.

13. 2cosx = V2
15. —4sinx = 2V/2
17. V3tanx = 1
19. 2V3sinx = -3
21. —6cosx =6

7 7
23. 8-::osx— i

25.2 =4sin@
27. ~5V3 = 10cos §

Find all solutions in [0, 247),

29, 9sinx — 35 =1

14. 2sinx = —1
16, —4cosx = 2V3
18. —2V3tanx =2
20, —3V2cscx =6
22, 4secx = —8

24. —%sinx =%
26. wtanx = 0
28. 4\/3 = 4tan #

30. 6.2cosx+4=17.1

3. 8tanx + 7V3 = -3

1 3 7
2’_ —_—_— = ——
3 2secx 3 2

2 5
3. 'é'COtx e g = 5
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34, ~110sinx = =553 35. 4 cos’x = 3

36. 4sin’x = 1 37. —7an’x = =21
38. 3sec’x =6 39. —dcsc’x = -8
40. 6V3 cos’x = 3V3 41, 4V2Zsin’x = 4V2
4

2 5
42, Zcos?x + = =—
3cosx 3

Solve the following egquations by factoring. State all
solutions in [0°, 360°). Round to one decimal place if the
result is not a standard value.

43. 3cos’0 + 14cos§ —5=0
44. 61an’0 — 2V3tan 6 = 0
45, 2cosxsinx —cosx =0
46. 2 sin’x + 7sinx = 4 47. sec’x — 6secx = 16
48. 2cos’x + cos’x =0 49. 4sin’x— 1 =0
50. 4cos’x — 3 =0
Find all real solutions. Note that identities are not
required to solve these exercises.
51. —2sinx = V2 52, 2cosx =1
53, —4cosx =2V2 54. 4sinx = 2V3
§5. V3itanx = -V3 56, 2V3tanx =2
57. 6 cos(2x) = —3 58. 2sin(3x) = —V2
59. V3tan(2x) = —V3 60. 2V3 1an(3x) = 6

61. —2V3 cos(%x) =23

62. —8 sin(%x) = —4V3

» WORKING WITH FORMULAS

83. Range of a projectile: R = 4—591?2 sin(26)

Sectlon 7.6 Solving Basic Trig Equations 719

63. V2 cosxsin{2x) — 3cosx =0

64. /3 sin x tan(2x) — sinx = 0

65, cos(3x)csc(2x) — 2 cos(3x) = 0

66. /3 sin(2x) sec(2x) — 2sin(2x) = 0
Solve each equation using a calculator and inverse trig
functions to determine the principal root (not by

graphing). Clearly state (a) the principal root and
(b) all real roots.

67. 3cosx =1
69. V2secx +3=7

71, %sin(%) = %

68. S5sinx = —2
70. V3cscx +2 =11
2 1
72. - cos(20) = 2
73. ~5cos(28) — 1 =0 74, 6sin(26) — 3 =2
Solve the following equations using an identity. State all
real solutions in radians using the exact form where

possible and rounded to four decimal places if the result
is not a standard value.

1
2
76. 4 sin’*x — 4 cos’x = 2V3

75. cos’x — sin’y =

77. 2 cos(%x)cosx =2 sin(%x)sinx =1

78. V2 sin(2x)cos(3x) + V2 sin(3x)cos(2x) = 1
79. (cos @ + sin 8)* = 1

80. (cos @ + sin 8)> =2

81. cos(20) + 2sin*0 — 3sinf =0

82. 3 5in(28) — cos(28) — 1 =0

The distance a projectile travels is called its range and is modeled by the formula shown,

where R is the range in meters, v is the initial velocity in meters per second, and @ is the
angle of release. Two friends are standing 16 m apart playing catch. If the first throw has
an initial velocity of 15 m/sec, what rwo angles will ensure the ball travels the 16 m

between the friends?

84. Fine-tuning a golf swing: (club head to shoulder)? = (club length)* +

(arm length)? — 2 (club length)(arm length)cos &

A golf pro is taking specific measurements on a client’s swing to help improve her
game. If the angle @ is too small, the ball is hit late and “too thin” (you top the ball). If 6
is too large, the ball is hit early and “too fat” (you scoop the ball). Approximate the
angle 8 formed by the club and the extended (left) arm using the given measurements

and formula shown.

Exercise 84
37 in.
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> APPLICATIONS

Acceleration due to gravity: When a steel ball is
released down an inclined plane, the rate of the ball’s
acceleration depends on the angle of incline. The
acceleratton can be approximated by the formula
A(8) = 9.8 sin 8, where 8 is in degrees and the
acceleration is measured in meters per second/per
second. To the nearest tenth of a degree,

85. What angle produces an acceleration of 0 m/sec’
when the ball is released? Explain why this is
reasonable.

86. What angle produces an acceleration of
9.8 m/sec?? What does this tell you about the
acceleration due to gravity?

87. What angle produces an acceleration of 5 m/sec?
Will the angle be larger or smaller for an
acceleration of 4.5 m/sec®?

88. Will an angle producing an acceleration of
: 2 = 7
2.5 m/sec” be one-half the angle required for an
" . 2 - .
acceleration of 5 m/sec™? Explore and discuss.

Snell’s law states that

when a ray of light light
passes from one

medium into another, {
the sine of the angle of Nl
. . i
incidence a vartes S
directly with the sine of
the angle of refraction 8
(see the figure). This
phenomenon is modeled
by the formula sin @ = & sin 3, where & is called the index
of refraction. Note the angle 8 is the angle at which the
light strikes the swrface, so that &« = 90° — #. Use this
information to work Exercises 89 to 92.

Exerclses 89 to 92
incidence | reflection

'y

N
new medium |B\ "~ reftaction

W A

sin(e) = & sin{B)

89. A ray of light passes from air into water, striking
the water at an angle of 55°. Find the angle of
incidence a and the angle of refraction 3, if the
index of refraction for water is k = 1.33.

90. A ray of light passes from air into a diamond,
striking the surface at an angle of 75°. Find the
angle of incidence & and the angle of refraction 8,
if the index of refraction for a diamond is & = 2.42,

91. Find the index of refraction for ethyl alcohol if a
beam of light strikes the surface of this medium at
an angle of 40° and produces an angle of refraction
B = 34.3° Use this index to find the angle of
incidence if a second beam of light created an

angle of refraction measuring 15°.

7-68

92. Find the index of refraction for rutile (a type of
mineral) if a beam of light strikes the surface of
this medium at an angle of 30° and produces an
angle of refraction 8 = 18,7°. Use this index to
find the angle of incidence if a second beam of
light created an angle of refraction measuring 10°,

93. Roller coaster
design: As part of , 110 1y 7 P
a science fair il
project, Hadra
builds a scale
model of a roller

¢

-----------“”"I

Loading platform [ |

bl

1
coaster using the equationy = 5 sin(zx) + 7,

where y is the height of the model in inches and

x is the distance from the “loading platform” in
inches. (a) How high is the platform? (b) What
distances from the platform does the model attain a
height of 9.5 in.?

94, Company logo: Part of the logo for an engineering
firm was modeled by a cosine function. The logo
was then manufactured in steel and installed on the
entrance marquee of the home office. The position
and size of the logo is modeled by the function
y = 9cosx + 15, where y is the height of the
graph above the base of the marquee in inches and
x represents the distance from the edge of the
marquee, Assume the graph begins flush with the
edge. (a) How far above the base is the beginning
of the cosine graph? (b} What distances from the
edge does the graph attain a height of 19.5 in.?

l‘ International Engineering

A

LTI




7-69

Section 7.7 General Trig Equations and Applications 721

» EXTENDING THE CONCEPT

95, Find all real solutions to 5 cos x — x = —xiniwo 96. Once the fundamental ideas of solving a given family
ways. First use a calculator with Yy = 5¢cos X — X of equations are understood and practiced, a student
and Y; = —X to determine the regular intervals usually begins to generalize them—making the

between points of intersection. Second, simplify by
adding x to both sides, and draw a quick sketch of
the result to locate x-intercepts. Explain why both
methods give the same result, even though the first
presents you with a very different graph.

numbers or symbols used in the equation irrelevant.
(a) Use the inverse sine function to find the principal
root of y = A sin{Bx — C} + D, by solving for x in
terms of y, A, B, C, and D. (b) Solve the following
equation using the techniques addressed in this
section, and then using the “formula” from part (a):

1
5=2 sin(Ex + %) + 3. Do the results agree?

> MAINTAINING YOUR SKILLS

97. (3.1} Use a substitution to show thatx = 2 + iisa
zero of f(x) = x* — 4x + 5.

98.

I8 General Trig Equations and Applications

{3.3) Currently, tickets to productions of the

(7.5) Evaluate without using a calculator:

a, tan[sin'l(—%)] b. sin[tan™'(—1)]

Shakespeare Community Theater cost $10.00, with

an average attendance of 250 people. Due to
market research, the theater director believes that
for each $0.50 reduction in price, 25 more people
will attend, What ticket price will maximize the
theater’s revenue? What will the average

100. (6.1) The largest Ferris wheel in the world, located
in Yokohama, Japan, has a radius of 50 m. To the
nearest hundredth of a meter, how far does a seat
on the rim travel as the wheel twrns through

8 = 292.5°7

attendance projected to become at that price?

LEARNING OBJECTIVES

In Section 7.7 you will see
how we can:

0 A

Qe

aec.
Q.
QE

Use additional algebraic
techniques to solve trig
equations

Solve trig equations using
multiple angle, sum and
difference, and sum-to-
product identities

Solve trig equations using
graphing technology
Solve trig equations of the
form Asin{Bx + C) + 0=k
Use a combination of
gkills to model and solve
a variety of applications

At this point you’re likely beginning to understand the true value of trigonometry to the
scientific world. Essentially, any phenomenon that is cyclic or periodic is beyond the
reach of polynomial (and other) functions, and may require trig for an accurate under-
standing. And while there is an abundance of trig applications in oceanography, astron-
omy, meteorology, geology, zoology, and engincering, their value is not limited to the
hard sciences. There are also rich applications in business and economics, and a grow-
ing number of modern artists are creating works based on attributes of the trig func-
tions. In this section, we try to place some of these applications within your reach, with
the Exercise Set offering an appealing variety from many of these fields.

A. Trig Equations and Algebraic Methods

We begin this section with a follow-up to Section 7.6, by introducing trig equations
that require slightly more sophisticated methods to work out a solution.
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EXAMPLE 1

Solution

EXAMPLE 2

Solution

Solving a Trig Equation by Squaring Both Sides
Find all solutions in [0, 277): sec x + tanx = V3, |

Qur first instinct might be to rewrite the equation in terms of sine and cosine, but |
that sumply leads to a similar equation that still has two different functions |
[V3cosx — sm x=1] Instead we square both sides and see if the Pythagorean
identity 1 + tanx = sec’t will be of use. Prior to squaring, we separate the
functions on opposite sides to avoid the mixed term 2 tan x sec x.

secx + tanx = V3 given equation

(sec x)* = (V3 — tan x)* subtract tan x and square
sec’y = 3 — 23 tanx + tan®x  result

Since sec’ = 1 + tan’x, we substitute directly and obtain an equation in tangent
alone.

1 + tan’s = 3 — 2V3 tanx + tan?x substitute 1 + tan®x for sec’x

—-2=-2V3tanx simplify
1
ﬁ = fanx solve for tan x

tanx > 0 in QI and QIIT

|
The proposed solutions are x = % [QI] and ?—67? [QI]. Since squaring an eguation

sometimes introduces extraneous roots, both should be checked in the original equation.

The check shows only x = -% is a solution.

Now try Exerclses 7 through 12

Here is one additional example that uses a factoring strategy commonly employed
when an equation has more than three terms,

Solving a Trig Equation by Factoring
Find all solutions in [0°, 360°): 8 sin’¢ cos & — 2cos 8 — 4sin?0 + 1 = 0.
The four terms in the equation share no common factors, so we attempt to factor by
groupmg We could factor 2 cos @ from the first two terms but instead elect to group
the sin’# terms and begin there. |
85in°0 cos @ — 2cos@ — 4sin?6 + 1 =0 given equation
(8 sin’0 cos # — 4 5in®0) — (2cos B — 1) =0 rearranye and group forms
45in’8(2cos8 — 1) — 1{2cos 8 — 1) =0 remove common faclors
(2cos @ — 1)(4sin®0 — 1) =0 remove common binomial factors

Using the zero factor property, we write two equations and solve each

independently.
2co88 —1 =0 45in°0—1=0 resulting equations
1
2cosf =1 sin’g = Z isolate variable term
cos@—l sinlf;‘—"'l I
> *3 solve
cos & > 0in QI and QIV sin# > 0in QI and QI '
# = 60°, 300° sin # < 0 in QI and QIV

& = 30°, 150°, 210°, 330°
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@’ A. You’ve just seen how
we can use additional

algebraic techniques to solve

trig equations

EXAMPLE 3

Solution

E’l B. You've just seen how
we ¢an solve trig equations
using varicus identities

Section 7.7 General Trig Equations and Applications 723

Initially factoring 2 cos 6 from the first two terms and proceeding from there would |
have produced the same result.

Now try Exercises 13 through 16

B. Solving Trig Equations Using Various Identities

To solve equations effectively, a student should strive to develop alf of the necessary
“tools.” Certainly the underlying concepts and graphical connections are of primary
importance, as are the related algebraic skills. But to solve trig equations effectively
we must also have a ready command of commonly used identities. Observe how
Example 3 combines a double-angle identity with factoring by grouping,

Using Identities and Algebra to Solve a Trig Equation |

Find all solutions in [0, 277): 3 sin(2x) + 2 sinx — 3 cos x = 1. Round solutions to |

four decimal places as necessary,
I

Noting that one of the terms involves a double angle, we attempt to replace that
term to make factoring a possibility. Using the double identity for sine, we have
3(2sinxcosx) + 2sinx — 3cosx = 1 substitule 2 sin xcos x for &in (2¥)
(6sinxcosx + 2sinx) — (3cosx + 1) =0 sotequal zero and group terms
( )= i ) =0 factor using 3 cos x + 1
( ) ) =0 common binomial factor

Use the zero factor property to solve each equation independently.

3cosx+1=0 2sinx — 1 =0 resuliing equations
1
cosx = —g ginx = 5 isolite variable ferm
cos x < 0in QII and QIII sin x > 0 in QI and QII
x ~ 1.9106, 4.3726 x= %, %’” solutions

Should you prefer the exact form, the solutions from the cosine equation could be

- ] - 1
written as x = cos '(—3) and x = 27r — cos 1(_5)_

Now try Exercises 17 through 26

C. Trig Equations and Graphing Technology

A majority of the trig equations you’ll encounter in your studies can be solved using
the ideas and methods presented both here and in the previous section. But there are
some equations that cannot be solved using standard methods because they mix poly-
nomial functions (linear, quadratic, and so on) that can be solved using algebraic
methods, with what are called transcendental functions (trigonometric, logarithmic,
and so on). By definition, transcendental functions are those that transcend the reach
of standard algebraic methods, These kinds of equations serve to highlight the value of
graphing and calculating technology to today’s problem solvers,
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EXAMPLE 4

Solutlon

Solving Trig Equations Using Technology |

Use a graphing caleulator in radian mode to find all real roots of

i
3x I
2sinx + 5~ 2 = 0. Round solutions to four decimal places. ‘
When using graphing technelogy our initial concern is the size of the viewing ‘
window. After carefully entering the equation on the % screen, we note the term
2 sin x will never be larger than 2 or less than —2 for any real number x. On the other

3 .
hand, the term ?x becomes larger for larger values of x, which would seem to cause

3 |
2sinx + -5£ to “grow” as x gets larger. We conclude the standard window is a good |
|

place to start, and the resulting graph is shown in Figure 7.51.

Flgure 7.51 Figure 7.52
10 10
Vizesin(H)ezH E~2 . - ‘fi
d
L
) LYl
_10 s s 'm‘._’:_.l'... 10 0
/\4 Y
™ iUgss? i
h=0 Y=-2 H=E ¥=1.185949
T =10

From this screen it appears there are three real roots, but to be sure none are hidden
to the right, we extend the Xmax value to 20 (Figure 7.52). Using ey
(CALC) 2:2ero, we follow the prompts and enter a left bound of 0 (a number to
the left of the zero) and a right bound of 2 (a number to the right of the zero—see
Figure 7.52). The calculator then prompts you for a GUESS, which you can bypass
by pressing &, The smallest root is approxim ately x =~ 0.8435. Repeating this
sequence we find the other roots are x = 3.0593 and x ~ 55541,

Now try Exercises 27 through 32

Some equations are very difficult to solve analytically, and even with the use of a
graphing calculator, a strong combination of analytical skills with technical skills is

. . . . , 1 1
required to state the solution set. Consider the equation 5 sm(Ex) +5= col(zx) and
solutions in [ —2ar, 277). There appears to be no quick analytical solution, and the first

1
attempt at a graphical solution holds some hidden surprises. Enter Y, =5 sin(— X) +35

2
|
and Y, = t_(T)H{_) on the T screen. Pressing @ 7:ZTrig gives the screen in Fig-
an{y
ure 7.53, where we note there are at least two Figure 7.53
and possibly three solutions, depending on how 4

the sine graph intersects the cotangent graph.

Vi=Esinl ER1+E
We are also uncertain as to whether the graphs

. \ w i . .,
intersect again between D) and o Increasing o ) e op
the maximum Y-value to Ymax = 8 shows they ™ \\I’

do indeed. But once again, are there now three

or four solutions? In situations like this it may #=-1.701698 |v=1.240801 |

—4
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M €. You've just seen how
we can solve trig equations
using graphing technology

EXAMPLE 5

Algebraic Solution

Section 7.7 General Trig Equations and Applications 725

be helpful to use the Zeroes Method for Flgure 7.54
solving graphically. On the T3> screen, dis- 4
able Y; and Y, and enter Yy as Y, — Y5, / /

Pressing @ 7:ZTrig at this point clearly
shows that there are four solutions in this

be found using @y (CALC) 2:zero:
x= —5.7543, —4.0094, —3.1416, and 0.3390. bero
See Exercises 33 and 34 for more practice n= "B FEHIRY

with these ideas. -4

interval (Figure 7.54), which can easily -2= ‘](\ o bt | 297
ﬂl'ﬂ.'l

D. Solving Equations of the FormAsin (Bx = C) = D=k

You may remember equations of this form from Section 6.5, They actually occur quite
frequently in the investigation of many natural phenomena and in the modeling of data
from a periodic or seasonal context. Solving these equations requires a good combina-

tion of algebra skills with the fundamentals of trig.

Solving Equatlons That Involve Transformations

Given f(x) = 160 sin(%x + %) + 320 and x € [0, 247), for what real numbers x
is fix) less than 2407

We reason that to find values where f(x) << 240, we should begin by finding values
where f{x) = 240. The result is

160 sin(—}x + 1‘}) +320 =240 equaiion

(T T
sm(gx + g) = —(),5 subtract 320 and divide by 160; isolate variable ferm

L - T T .
At this point we elect (o use a y-substitution for (gx + —-) = -é-(x + 1) to obtain

a “clearer view.” 3
sinu = —0.5 substitute  for -;I(x + 1)
sin # << 0 in QIII and QIV

A U e
"= ? = —6— solutions in &

. . T
To complete the solution we re-substitute E(x + 1) for « and solve.

%r_(x +1)= ’%T %(x +1)= “Tﬂ re-substitute g(x + 1y for ¢
x4+ 1= % x+1= % multiply both sides hy%
x=125 x =45  solutions

We now know f(x) = 240 when x = 2.5 and x = 4.5 but when will f(x) be less than
2407 By analyzing the equation, we find the function has period of P = 2_:'_. =6

3
and is shifted to the left | units. This would indicate the graph peaks early in the
interval [0, 2ar) with a “valley” in the interior. We conclude f(x) < 240 in the
interval (2.5, 4.5).
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Graphical Solution

E D. You've just seen how
we can solve trig equations of

theformAsin{Bx +C+ D=k

Flgure 7.57

\lc.':

EXAMPLE 6

7-14

With the calculator in radian @, enter Y, = 160 sin(gx + %) + 320 and

Y, = 240 on the screen. To set an appropriate window, note the amplitude of
Y, is 160 and that the graph has been vertically shifted up 320 units. With the x-values
ranging from 0 to 277, the @ (CALC) S:intersect feature determines (2.5,
240) is a point of intersection of the two graphs (see Figure 7.55). In Figure 7.56,

we find a second point of intersection is (4.5, 240). Observing that the graph of Yy |
falls below 240 between these two points, we conclude that in the interval [0, 2m), |
F(x) < 240 forx € (2.5, 4.5).

Figure 7.55 Flgure 7.56
600 600
Vi=LE0sinCwR A/ 3+ W/ 2304320
L, -~ .

P "nx ,*"'H-

ot e 0 N < om
_ F \__/‘( |
Interseckian
n=z.t

- ren— ) || HENE L

0 0 |

Now try Exercises 35 through 38

There is a mixed variety of equation types in Exercises 39 through 48.

E. Applications Using Trigonometric Equations

Using characteristics of the trig functions, we can often generalize and extend many of
the formulas that are familiar to you. For example, the formulas for the volume of a
right circular cylinder and a right circular cone are well known, but what about the vol-
ume of a nonright figure (see Figure 7.57)? Here, trigonometry provides the answer, as
the most general volume formulais V = V,sin 8, where Vy is a “standard” volume for-
mula and @ is the complement of angle of deflection (see Exercises 51 and 52).

As for other applications, consider the following from the environmental sciences.
Natural scientists are very interested in the discharge rate of major rivers, as this gives
an indication of rainfall over the inland area served by the river. In addition, the dis-
charge rate has a large impact on the freshwater and saltwater zones found at the river’s
estuary {where it empties into the sea).

Solving an Equation Modeling the Discharge Rate of a River |
For May through November, the discharge rate of the Ganges River (Bangladesh)

can be modeled by D{r) = 16,580 sin(%r - %'T) + 17,760 where ¢ = 1 represents ‘

May 1, and D(#) is the discharge rate in m*/sec. |
Source: Global River Discharge Database Project; www.rivdis.st.unh.edu. |
a. What is the discharge rate in mid-October? ‘

b. For what months (within this interval) is the discharge rate over
26,050 m>/sec?
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Solution a. To find the discharge rate in mid-October we simply evaluate the function at
t=0635
2m . )
D(t) = 16,580 sm(gt - T) + 17,760 given function
.| 297 .
D(6.5) = 16,580 sin 5(6.5) ~3 + 17,760  substilue 6.5 for ¢
= 1180 compute resuit on a calcuator

In mid-October the discharge rate is 1180 m*/sec.
b. We first find when the rate is equal to 26,050 m*/sec: D(t) = 26,050.

26,050 = 16,580 sm(gt - 2?) + 17,760

L 29
05 = sm(3r 3 )

, . T 27 , '
Using a #-substitution for (—t - —) we obtain the equation

3 3
0.5 = sinu
sing > 0in QI and QII
y=Z y=Z
6 6
To complete the solution we re-substitute %ﬁ = %‘T = %(r ~ 2) for u and solve. :
T T T 5w |
3(t 2)—‘5 3(t 2)—6
tr—2=05 t—2=25
t=125 t=45

The Ganges River wilt have a flow rate of over 26,050 m>/sec between
mid-June (2.5) and mid-Auvgust (4.5).

Now try Exercises 53 through 56

To obtain a graphical solution to Example 6(b), Flgure 7.58
27 . 40,000
58( - — 4+ 17,760 2
enter Y, = 16, Slsm( X 3 ) 17,760 on T T TP LT

we can use a combination of interval [1, 8], D{r) > 26,050 for ¢t € (2.5, 4.5).
skills to model and solve a There is a variety of additional exercises in the

the <% screen, then Y, = 26,050. Set the window

as shown in Figure 7.58 and locate the points of }K\
@ E. Youve just seen how intersection. The graphs verify that in the \ /‘ 8
variety of applications Exercise Set. See Exercises 57 through 64. H=i, 5 -----'l' ZEOED 4




728 CHAPTER 7 Trigonometric Identitles, Inverses, and Equations

7-76

™MLY 7.7 EXERCISES

» CONCEPTS AND VOCABULARY

Fill in each blank with the appropriate word or phrase. Carefully reread the section if needed,

1. The three Pythagorean identities are
and

3. When an equation contains two functions from a
Pythagorean identity, sometimes both
stdes will lead to a solution.

5. Regarding Example 4, discuss/explain the
relationship between the line y = %x — 2 and the

graph shown in Figure 7.52.

» DEVELOPING YOUR SKILLS

Solve each equation in [0, 27) using the method
indicated. Round nonstandard values to four decimal
places.

* Squaring both sides
6
7.sinx+oosx=\—g_— 8. cotx —cscx = V3
9, tanx —secx = ~1 10, sinx + cosx = V2

12, secx + tan x = 2

W |

11. cosx + sinx =

¢+ Factor by grouping
13, cotxcscx — 2cotx —ecscx +2 =0
14. 4sinxcosx — 2V3sinx — 2cosx + V3 =10
15, 3tan“xcos x — 3cos x + 2 = 2 tan’x
16. 43 sin*xsecx — V3secx + 2 = 8 sin’x

* Using identities
+ cot?
17 i0E, o g ot
cot'x tan“x
19. 3c0s(2x} + 7sinx — 5=0

20. 3cos(2x} —cosx+1=0

| + tan’x = ﬁ
: 3

2. One stralegy to solve equations with four terms and

no common factors is by

4. To combine two sine or cosine terms with different
arguments, we can use the to
formulas.

6. Regarding Example 6, discuss/explain how to
determine the months of the year the discharge rate
is under 26,050 m’/sec, using the solution set
given.

sy -2
sin > 3 cos , 0
22, 2c032(§—) +3 sin(g-) —3=0

23. cos(3x) + cos(5x)cos(2x) +
sin(5x)sin{2x) ~ 1

24, sin(7x)cos(4x) + sin(5x) —
cos(7x)sin{4x) + cos x

I
=g

I
<

25, secy — 2 sec®s tan’x + tan*x = tan®x

26. tan*x — 2 sec®x tan’x + sec*y = cot’x

[ Find all roots in [0, 27r) using a graphing calculator.
State answers in radians rounded to four decimal
places,

27. Scosx —x=3 28. 3sinx+x=4

29, cos*(2x) + x =3 30, sin*(2x) + 2x = |

31 2% +sin(20) =1 32 cos(2x) — x> = =5

33. (1 + sin x)* + cos(2x) = 4 cos x(1 + sin x)

M. 4sinx =2 cosz(g)
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State the period P of each function and find all solutions
in [0, P). Round to four decimal places as needed.

N w
d —_— 4+ = - -
35. 250 sm(6x 3) 125 =0

36. —TSﬁsec(%x + %) F150=0

w w
—_— — —

37. 12 + =
35003(12 4) 772 = 1750

38. —0.075 sin(%x + %) - 0.023 = -0.068

Solve each equation in [0, 27) using any appropriate
method. Round nonstandard values to four decimal
places.

V2

39, cosx — sinx = T

40, 5sec’x — 2tanx — 8 =0

> WORKING WITH FORMULAS

49. The equation of a line in trigonometric form: y =

angle § = tan™"

use the or the TABLE feature of a graphing calculator to verify that both equations

name the same line,

L Lizy=-x+35

Lyy=1x Lyy=2x

b
;). and give the equation of the line L, in trigonometric form; and (c)

IL. Ly:y= —%x-i— 5

Section 7.7 General Tng Equations and Appllcations

4l (B c:m*x n _\@_
tan“x 2
42. Scsc*x — Scotx — 5 =0

43. cscx +cotx =1

| — sin® 2
44. a:n X - _\{__
cot x 2

45. secxcos(g = x) = -1

46. sin(% — x)csc x= V3

47, sec’xc tan(g - x) =4

3
48, 2 tan(g- — x)sinzx = \—;:

D —xcosé

sin @
The trigonometric form of a linear equation is given by the formula shown, where D is \ »
the perpendicular distance from the origin to the line and @ is the angle between the
perpendicular segment and the x-axis. For each pair of perpendicular lines given, (a) find

the point (a, b} of their intersection; (b) compute the distance D = a® + b* and the

729

Exercise 49

ML Ly = ui/Bins YR,
3 3
Lyy= V3

50. Rewriting y = g cosx + b sin x as a single function: y = k sin(x + @)

Linear terms of sine and cosine can be rewritten as a single function using the formula shown, where

k=Va*+ b and 8 = sin” l(%). Rewrite the equations given using these relationships and verify they are

equivalent using the @& or the TABLE feature of a graphing calculator:

a.y=2cosx + 2V3sinx
b, y=4cosx + 3sinx

The ability to rewrite a trigonometric equation in simpler form has a tremendous number of applications in

graphing, equation solving, working with identities, and solving applications.
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> APPLICATIONS

51. Volume of a cylinder: The

52.

53.

Exercise 51
volume of a cylinder is given by

the formula V = mr?h sin 6, where |,
r is the radius and % is the height
of the cylinder, and 6 is the
indicated complement of the angle
of deflection a. Note that when

8= g the formula becomes that E—— —

of a right circular cylinder (if 8 # % then 4 is called

the slant height or lateral height of the cylinder).
An old farm silo is built in the form of a right
circular cylinder with a radius of 10 ft and a height
of 25 ft. After an earthquake, the silo became tilted
with an angle of deflection & = 5°, (a) Find the
volume of the silo before the earthquake. (b} Find
the volume of the silo after the earthquake. (¢) What
angle 8 is required to bring the original volume of
the silo down 2%?

Volume of a cone: The

volume of a cone is given by Exercise 52

1
the formula V = '3711‘)"21‘1 sin 8,

where r is the radius and 4 is
the height of the cone, and &
is the indicated complement h

of the angle of deflection «. E
Note that when # = %, the
formula becomes that of a
\.___________'__‘,_/

right circular cone (if 8 # %

then # is called the slant height or lateral height of
the cone). As part of a sculpture exhibit, an artist is
constructing three such structures each with a
radius of 2 m and a slant height of 3 m. (a} Find the
volume of the sculptures if the angle of deflection
isa = 15° (b) What angle & was used if the
volume of each sculpture is 12 m>?

River discharge rate: For June through February,
the discharge rate of the La Corcovada River
(Venezuela) can be modeled by the function

9
D(t) = 36 sin(%r - Z) + 44, where ¢ represents
the months of the year with r = 1 corresponding to
June, and £X(1) is the discharge rate in cubic meters
per second. (a) What is the discharge rate in mid-
September (+ = 4.5)? (b) For what months of the
year is the discharge rate over 50 m*/sec?

Sotiree: Global River Discharge Database Project;
WV, IivEis. sr.unit.edy,
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54. River discharge rate: For February through June,

58.

56

57

38

3

the average monthly discharge of the Point Wolfe
River (Canada) can be modeled by the function

D(1) = 4.6 sin(%t + 3) + 7.4, where ¢ represents

the months of the year with r = 1 corresponding to
February, and D(r) is the discharge rate in cubic
meters/second. (a) What is the discharge rate in
mid-March (¢ = 2.5)? (b) For what months of the
year is the discharge rate less than 7.5 m*/sec?

Source: Globaf River Discharge Database Project;
wwnw.rivdis.sr.unh.edy.

Seasonal sales: Hank’s Heating Oil is a very
seasonal enterprise, with sales in the winter far
exceeding sales in the summer. Monthly sales for
the company can be modeled by

S(x) = 1600 cos(%x - E) + 5100, where S(x) is

the average sales in month x (x = 1 — January).
(a) What is the average sales amount for July? (b) For
what months of the year are sales less than $40007?

Seasonal income: As a roofing company employee,
Mark’s income fluctuates with the seasons and the
availability of work. For the past several years his
average monthly income could be approximated by

the function K{m) = 2100 sin %m = % + 3520,

where {(m) represents income in month

m (m = 1 = January). (a) What is Mark’s average
monthly income in October? (b) For what months of
the year is his average monthly income over $45007?

Seasonal ice thickness: The average thickness of
the ice covering an arctic lake can be modeled by

the function 7(x) = 9 cos(%x) + 15, where

T(x) is the average thickness in month

x (x = 1 — January). (a) How thick is the ice in
mid-March? (b) For what months of the year is the
ice at most 10.5 in. thick?

Seasonal temperatures: The function
ki)

x) = 1931n(6x 2) + 53

models the average monthly

temperature of the water in a

mountain streatn, where T(x)

is the temperature (°F) of

the water in month x

{x = 1 — January). (a) What

is the temperature of the water

in October? (b) What two months are most llkely to

give a temperature reading of 62°F? (c¢) For what

months of the year is the temperature below 50°F?
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59. Coflee sales; Coffee sales fluctuate with the

61

weather, with a great deal more coffee sold in the
winter than in the summer. For Joe's Diner, assume

the function G(x) = 21 cos(zlx + E) + 29

365 2

models daily coffee sales (for non-leap years),
where G(x) is the number of gallons sold and x
represents the days of the year (x = 1 — January 1).
(a) How many gallons are projected to be sold on
March 21? (b) For what days of the year are more
than 40 gal of coffee sold?

Park attendance: Attendance at a popular

state park varies with the weather, with a

great deal more visitors coming in during the
summer months. Assume daily attendance at

the park can be modeled by the function

W(x) = 437 cos(;—:gx = ﬂ') + 545 (for non-leap
years}, where V(x) gives the number of visitors on
day x (x = | — January 1). {(a) Approximately how
many people visited the park on November 1

(11 X 30.5 = 335.5)? (b) For what days of the
year are there more than 900 visitors?

Exercise routine: As part of his yearly physical,
Manu Tuiosamoa’s heart rate is closely monitored
during a [2-min, cardiovascular exercise routine.
His heart rate in beats per minute (bpm) is modeled

by the function B(x) = 58 cos %x + w) + 126

where x represents the duration of the workout in
minutes, (a) What was his resting heart rate?

(b} What was his heart rate 5 min into the workout?
(¢) At what times during the workout was his heart
rate over 170 bpm?

» EXTENDING THE CONCEPT

g o5

66

As we saw in Chapter 6, cosine is the cofunction of
sine and each can be expressed in terms of the other:

T . T Iy
cos(2 6) = sin 8 and sm( > 9) cos 8.

This implies that either function can be used to
model the phenomenon described in this section by
adjusting the phase shift. By experimentation,

(a) find a model using cosine that will produce
results identical to the sine function in Exercise 58
and (b) find a model using sine that will produce
results identical to the cosine function in Exercise 59.

Use multiple identities to find all real solutions for
the equation given: sin(5x) + sin{2x)cos x +
cos(2x)sin x = 0.

Sectlon 7.7 General Tg Equations and Applications

62, Exercise routine; As part of

731

her workout routine, Sara Lee
programs her treadmill to
begin at a slight initial grade
(angle of incline), gradually
increase to a maximum grade,
then gradually decrease back
to the original grade, For the
duration of her workout, the grade is modeled by

a
= 3 cos -gx — 7 | + 4, where

G(x) is the percent grade x minutes after the workout
has begun. (a) What is the initial grade for her
workout? (b) What is the grade at x = 4 min? (c) At
G(x) = 4.9%, how long has she been working out?
(d) What is the duration of the treadmill workout?

the function G{x)

] Geometry applications: Solve Exercises 63 and 64
= graphically using a calculator. For Exercise 63, give 8 in

radians rounded to four decimal places. For Exercise 64,
answer in degrees to the nearest tenth of a degree.

63. The area of a circular

67

segment (the shaded portion
shown) is given by the

formula A = -;-1'2(9 — sin #),

where 0 is in radians. If the
circle has a radius of 10 cm,
find the angle @ that gives

an area of 12 cm®. Exerclse 64

The perimeter of a trapezoid 4

with parallel sides 8 and b,
altitude A, and base angles o

and @ is given by the formula /o
P=B+b+ hicsca+csc ) B
Iftb=30m, B =40m, 2= 10m, and a = 45°,
find the angle B that gives a perimeter of 105 m,

|
[
If
|
|

A rectangular
parallelepiped with square
ends has 12 edges and six
surfaces, If the sum of all
edges is 176 cm and the
total surface area is

1288 cm?, find (a) the
length of the diagonal of

Exerclse 67

el

the parallelepiped (shown f;'\\
in bold) and (b) the angle 4
the diagonal makes with oY

the base (two answers are possible),
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> MAINTAINING YOUR SKILLS

68. (6.7) Find the values of all six trig functions of an
angle, given P(—51, 68) is on its terminal side.

69. (4.3) Sketch the graph of f by locating its zeroes
and using end-behavior: f(x) = x* — 3¢ + 4x.

70. (5.3) Use a calculator and the change-of-base
formula to find the value of logs279,

71. (6.6) The Willis Tower (formerly known as the
Sears Tower) in Chicago, Illinois, remains one of
the tallest structures in the world. The top of the
roof reaches 1450 ft above the street below and the

7-80

antenna extends an Exerclse 71
additional 280 ft
into the air. Find the
viewing angle @ for
the antenna from a
distance of 1000 ft
(the angle formed
from the base of the
antenna to its top).

WY MAKING CONNECTIONS

Making Connections: Graphically, Symbolically, Numerically, and Verbally
Eight graphs A through H are given. Match the characteristics shown in 1 through 16 to one of the eight graphs.

(a) ' (b) J
(e) ¢ (f) A4’
H
: AN

1. fi)y=cost,t€[0, 7]

2. tan ¢ = —1

i T
3. f(r)—smr,re[ 2.2]
4. y = arcsin ¢
5. sect=2
6. sin(21)
7. X = COs Yy

3
8. (%, .}é:) is on the graph

(c)

u (d)

4" {h) S’

4
-4 4
1 7T
.1 (2 6
10. fl6) =cos™z
11 2sinfcost
574 7w 3w Tmw
124 t— 4 k) _-49 4 L) 4
S59 w w5
13. = ——, ——, = —
3 333
1 T
14, f(z) =3
15, x=siny
16. y = cos’t + sin’t
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“Wg¥ SUMMARY AND CONCEPT REVIEW

SECTION 7.1 Fundamental identities and Families of ldentities

KEY CONCEPTS
The fundamental identities include the reciprocal, ratio, and Pythagorean identities.
A given identity can algebraically be rewritien to obtain other identities in an identity “family.”

Standard algebraic skills like distribution, factoring, combining terms, and special products play an important role
in working with identities,

A _ C AD < BC | . . .
The pattern I * D= 8D gives an efficient method for combining rational terms.
Using fundamental identities, a given trig function can be expressed in terms of any other trig function.
Once the value of a given trig function is known, the value of the other five can be uniquely determined using
fundamental identities, if the quadrant of the terminal side is known.

L ]

L]

*

EXERCISES
Verify using the method specified and fundamental identities.
1. multiplication 4, combine terms using
sin x(csc x — sinx) = cos® x A, < = AD = BC
2. factoring B D BD
tan’xcsc x + cse x sec’x . tan’x
= C8C X — 8inx =
sec’y CSC X csC X

3, special product
(secx — tan x){sec x + tan x)
CSC X

= sinx
Find the value of all six trigonometric functions using the information given.

12 . 2.
85, cos0 = —-ﬁ,ﬁm QIII 6. secf = 23,l?m QIv

SECTION 7.2 More on Verifying ldentities

KEY CONCEPTS
+ The sine and tangent functions are odd functions, while cosine is even.
¢ The steps used to verify an identity must be reversible.
¢ If two expressions are equal, one may be substituted for the other and the result will be equivalent.
= To verify an identity we mold, change, substitute, and rewrite one side until we “match™ the other side.

* Veritying identities often involves a combination of algebraic skills with the fundamental trig identities.
A collection and summary of the Guidelines for Verifying Identities can be found on page 662.

= To show an equation is not an identity, find any one value where the expressions are defined but the equation is
false, or graph both functions on a calculator to see if the graphs are identical.

EXERCISES

Verify that each equation is an identity.
(=] e ]
cse”x(l — cosx)

cotx  ¢scx
. ~ = cot’x 8. —— — —— = cotx(cos x ~ csc x)
tan"x secx  tanx
s .4 4 i ae a2
sin®x — cos’x (sin x + cos x)
9, —————— =tanx — cotx 10 ———— =c¢scxsecx + 2

sin x cos x Sif X Cos x



734 CHAPTER 7 Trigonometric Identitles, Inverses, and Equations 7-82

SECTION 7.3 The Sum and Difference Identities

KEY CONCEPTS

The sum and difference identities can be used to
+ Find exact values for nonstandard angles that are a sum or difference of two standard angles.
» Verify the cofunction identities and to rewrite a given function in terms of its cofunction.
Find coterminal angles in [0°, 360°) for very large angles (the angle reduction formulas).
Evaluate the difference quotient for sin x, cos x, and tan x.
» Rewrite a sum as a single expression: cos a cos 8 + sin a sin 8 = cos{a — B).

The sum and difference identities for sine and cosine can be remembered by noting
» For cos(a = B), the function repeats and the signs alternate: cos(e = 8) = cos @ cos 8 ¥ sin « sin 8
+ For sin{ac + B) the signs repeat and the functions alternate: sin(a = 8) = sin @ cos 8 * cos « sin B

EXERCISES
Find exact values for the following expressions using sum and difference formulas.
T T
11, a. 75° b. tan| — . a © . sin| ——
a. cos a 12) 12. a, tan 15 b sm( 12)

Evaluate exactly using sum and difference formulas.
13. a. cos 109° ¢os 71° — sin 109° sin 71° b. sin 139° cos 19° — cos 139° sin 19°

Rewrite as a single expression using sum and difference formulas.
14, a. cos(3x)cos{—2x) — sin{3x)sin(—2x) b. sin(%)cos(%) + cos(ﬁ)sin(%)

Evalvate exactly using sum and difference formulas, by reducing the angle to an angle in [0, 360°) or [0, 277).
15, a. cos 1170° b. sin(mTﬂ)

Use a cofunction identity to write an equivalent expression for the one given.

16. a. cos(%) h. sin( - %)

17. Verify that both expressions yield the same result using sum and difference formulas: tan 15° = tan{45° — 30°)
and tan 15° = tan(135° — 120°).

18. Use sum and difference formulas to verify the following identity,

cos(x + %) + cos(x - g) = V3 cosx

SECTION 7.4 The Double-Angle, Half-Angle, and Product-to-Sum ldentities

KEY CONCEPTS

* When multiple angle identities (identities invelving n#) are used to find exact values, the terminal side of § must
be determined so the appropriate sign can be used.

» The power reduction identities for cos>x and sin’x are closely related to the double-angle identities, and can be
derived directly from cos(2x) = 2 cos®x — 1 and cos(2x) = 1 — 2 sin’x.

+ The half-angle identities can be developed from the power reduction identities by using a change of variable and
taking square roots. The sign is then chosen based on the quadrant of the half angle,

« The product-to-sum and sum-to-product identities can be derived using the sum and difference formulas, and have
important applications in many areas of science.
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EXERCISES
Find exact values for sin{28), cos(28), and tan(26) using the information given.

13 29

. a, =— 01 . = ——; 0 in QIII
19. a. cos & 85,f:'!mQIV b. csc @ 20 #in Q@
Find exact values for sin 8, cos 8, and tan € using the information given.
41 336
20, a, cos(20) = ~ar ¢ in QII b. sin{26) = ~&s # in QII
Find exact values using the appropriate double-angle identity.
21. a. c0s%22.5° — s§in*22.5° b.1-2 sinz(%)
Find exact values for sin 6 and cos # using the appropriate half-angle identity.
22. a. & = 67.5° b. # = S%T
. . {8 AT . )

Find exact values for sin ) and cos o )using the given information.

24 . 65 .
23. a. cos @ =-2-§;0° << 8 < 360°% ¢in QIV b. csc 8 = _E; —90° << @ <0;finQIV
24. Verify the equation is an identity. 25. Solve using a sum-to-product formula.

cos(3a) — cos o 2 tan‘a cos(3x) + cosx = 0

cos(3a) + cosa  sec’a — 2

0
26, The area of an isosceles triangle (two equal sides) is given by the formula A = x’sin (E) cos(g), where the equal

sides have length x and the vertex angle measures °. (a) Use this formula and the half-angle identities to find the
area of an isosceles triangle with vertex angle # = 30° and equal sides of 12 cm. (b) Use substitution and a

[ 1
double-angle identity to verify that x%sin (g) cos (-2—) = Exzsin 8, then recompute the triangle’s area. Do the

results match?

SECTION 7.5 The Inverse Trig Functions and Their Applications

KEY CONCEPTS
+ In order to create one-to-one functions, the domains of ¥y = sin f, y = cosr, and y = tan ¢ are restricted as follows:
. T T T
(a)y =sint, t € [_E’E]; (byy=cost,t€[0,m];and (c}y =tanty 1t € (_E’ E)
« For y = sin x, the inverse function is given implicitly as x = sin y and explicitly as y = sin"'ror y = arcsin x.
« The expression y = sin~ 'x is read, “y is the angle or real number whose sine is x.” The other inverse functions are
similarly read/understood,
« For y = cos x, the inverse function is given implicitly as x = cos y and explicitly as y = cos” 'x or y = arccos x.
» For y = tan x, the inverse function is given implicitly as x = tan y and explicitly as y = tan~ x or y = arctan x.
¢ The domains of y = sect, ¥y = ¢sc #, and y = cot ¢ are likewise restricted to create one-to-one functions:
o

o k1 o
=secr€ [0, JUlS, mhib)y=cscr,r €| -, 0]V 0
(a)y = sect ¢ [ 2)U(2 w} by csctre[ 20) ( 2

+ In some applications, inverse functions occur in a composition with other trig functions, with the expression best
evaluated by drawing a diagram using the ratio definition of the trig functions.

]; and (c)y = cott,t € (0, m).
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- 1 _ 1
+ To evaluate y = sec ]t, we use y = Cos l(?); for y = cot 1.?, use tan l(?); and so on,

¢ Trigonometric substitutions can be used to simplify certain algebraic expressions.

EXERCISES
Evaluate without the aid of calculators or tables. State answers in both radians and degrees in exact form,

. V2 _ V3
27. y = sin '(%) 28, y =csc™'2 29, y= arccos(HT)
Evaluate the following using a calculator. Answer in radians to the nearest ten-thousandth and in degrees to the nearest
tenth, Some may be undefined,

7

30. y = tan"'4.3165 31. y = sin~'0.8892 32, f(x) = arccos(g)

Evaluate the following without the aid of a calculator, keeping the domain and range of each function in mind. Some
may be undefined.

1. [sin[sin“(%)J 34, arcsec[sec(%)} 35. cos(cos™ '2)

Evaluate the following using a calculator, Some may be undefined.

@ 36. sin~!(sin 1.0245) 37. arccos[cos(—60°)] 38, cot"l{co((l—?)]

Evaluate each expression by drawing a right triangle and labeling the sides.

12 7 x
5 sn| cos”(57) s ) a1 cofsin” (== )
3 sm[cos " 40, tan| arcsec . cot| sin \/m

Use an inverse function to solve the following equations for @ in terms of x.

42, x = 5cos 8 43. 7V3secd = x 44.x=4sin(9—%)

SECTION 7.6 Solving Basic Trig Equations

KEY CONCEPTS
* When solving trig equations, we often consider either the principal root, roots in [0, 27), or all real roots.
* Keeping the graph of each function in mind helps to determine the desired solution set.

» After isolating the trigonometric term containing the variable, we solve by applying the appropriate inverse
function, realizing the result is only the principal root.

* Once the principal root is found, roots in [0, 27) or all real roots can be found using reference angles and the
period of the function under consideration.

+ Trig identities can be used to obtain an equation that can be solved by factoring or other solution methods.

EXERCISES

Solve each equation without the aid of a calculator (all solutions are standard values). Clearly state (a) the principal
root; (b} all solutions in the interval [0, 2+7); and (c) all real roots.

45, 2¢inx = V2 46, 3secx = —6 47. 8tanx + 7V3 = -3

Solve using a calculator and the inverse trig functions (not by graphing). Clearly state (a) the principal root;
(b) solutions in [0, 277); and (c) all real roots. Answer in radians to the nearest ten-thousandth as needed.

1
48, Ycosx =4 49, %sin(28)=z 50. V2escx+3=7
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SECTION 7.7 General Trig Equations and Applications

KEY CONCEPTS
« Tn addition to the basic solution methods from Section 7.6, additional strategies include squaring both sides,
factoring by grouping, and using the full range of identities to simplify an equation.
« Many applications result in equations of the form Asin(Bx + C) + D = k. To solve, isolate the factor sin(Bx + C)
(subtract D and divide by A), then apply the inverse function.

« Once the principal root is found, roots in [0, 277) or all real roots can be found using reference angles and the
period of the function under consideration.

EXERCISES
Find solutions in [0, 277) using the method indicated. Round nonstandard values to four decimal places.
51. squaring both sides 52. using identities
6
sinx+cosx=l;_— 3cos(2x) + Tsinx —5=0
53. factor by grouping 54. using any appropriate method
dsinxcosx — 2V3sinx ~ 2cosx + V3 =0 cscx +cotx =1
State the period P of each function and find all solutions in [0, P). Round to four decimal places as needed.
55, —750 sin(fx + 3) +120 = 0 56. 80 cos(f-x + E) ~40v2=0
6 2 3 4
57. The revenue earned by Waipahn Joe’s Tanning Lotions fluctuates with the scasons, with a great deal more lotion
sold in the summer than in the winter. The function R(x) = 15 sin(%x - %) + 30 models the monthiy sales of

lotion nationwide, where R(x) is the revenue in thousands of dollars and x represents the months of the year
(x = 1 ~»Jan). (a) How much revenue is projected for July? (b) For what months of the year does revenue
exceed $37,000?

1] 58. The area of a circular segment (the shaded portion shown in the diagram) is given by the

! S
formula A = Erz(ﬂ — sin #),where @ is in radians. If the circle has a radius of 10 cm, find >

the angle ¢ that gives an arca of 12 cm™.

C Y PRACTICE TEST

Verify each identity using fundamental identities and 4, Find the exact value of tan 15° using a sum or
the method specified. difference formula.
1. special products 5. Rewrite as a single expression and evaluate:
(escx — cot x)(csc x + cot x) cos 81° cos 36° + sin 81° sin 36°
$eC X - o8 6. Evaluate cos 1935° exactly using an angle reduction

2t . sin’x —cos’y formula.

- actoring S v ay, ¥ T 0S¥ 7. Use sum and difference formulas to verify

3. Find the value of all six trigonometric functions sin(x + E) _ sin(x _ E) = V73 cos x
4 4 ‘

48
. AP
given cos 8 = in QIV
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8. Find exact values for sin 8, cos 6, and tan 8 given

61
cos(28) = —%@; 6 in QL

Use a double-angle identity to evaluate
2 ¢0s°75° — 1.

©

10

Find exact values for sin(g) and cos(g) given

12 .
tan @ = E,Bm QL

11. The area of a triangle is
given geometrically as b
1 a
A = — base - height. The
2 (4

trigonometric formula for c
‘ . 1. .
the triangle’s area is A = Ebc sin e¢, where « is the

angle formed by the sides b and ¢, In a certain
triangle, b = 8, ¢ = 10, and & = 22.5°. Use the
formula for A given here and a half-angle identity to
find the area of the triangle in exact form.

12. The equation Ax* + Bxy + Cy* = 0 can be written
in an alternative form that makes it easier to graph.
This is done by eliminating the mixed xy-term using

the relation tan(20) = to find 8. We can then

find values for sin # and cos @, which are used in a
conversion formula. Find sin € and cos 6 for
176 + 5V/3xy + 2)® = 0, assuming 26 in QL.

13. Evaluate without the aid of calculators or tables.

a y= tan_‘(L) b, y= sin[sin_](l)]
V3 2

¢. y = arccos(cos 30°)

14, Evaluate the following. Use a calculator for part
(a), give exact answers for part (b), and find the
value of the expression in part (¢) without using a

calculator. Some may be undefined.
a, y =sin"'0.7528 b, y = arctan{tan 78.5°)

%)

Evaluate the expressions by drawing a right triangle
and labeling the sides,

56
. t -1 -
15 cos[ an (33)}

16. cot[cos‘ '(7{5—‘ +—13)J

17. Solve without the aid of a calculator (all solutions
are standard values). Clearly state (a) the principal
root, (b) all solutions in the interval [0, 247), and
(c) all real roots.

I. 8cosx = —4V?2

e y= sec‘][s

II. Visecx +2 =4

18. Solve each equation using a calculator and inverse
trig functions to find the principal root (not by
graphing). Then state (a) the principal root, (b} all
solutions in the interval [0, 247), and (c) all real roots.
R %sin(Zx) = % II. —3cos(2x) —08=0

. Use a graphing calculator to solve the equations in

the indicated interval. State answers in radians

rounded to the nearest ten-thousandth,

a 3cos(2y — 1) = sinx;x € [—m, 7]

b. 2Vx — | = 3cos’> x; x € [0, 27)

20. Solve the following equations for x € [0, 2#) using
a combination of identities and/or factoring. State
solutions in radians using the exact form where
possible.

a. 2 sin x sin(2x) + sin(2x) = 0

2_1

b. (cos x + sinx)

Solve each equation in [0, 277) by squaring both sides,
factoring, using identities, or by using any appropriate
method. Round nonstandard values to four decimal
places.

21, 3sin(2x) + cosx =0

2. w 3 5
.= — = |4+ ==
22 3811'1(21‘ )

23. The revenue for Otake’s Mower Repair is very
seasonal, with business in the summer months far
exceeding business in the winter months. Monthly
revenue for the company can be modeled by the

function R(x) = 7.5 cos(gx + 4—3—”) + 12.5, where

R(x) is the average revenue (in thousands of dollars)
for month x (x = 1 — Jan). (a) What is the average

revenue for September? (b} For what months of the

year is revenue at least $12,5007

24. The lowest temperature on
record for the even months
of the year are given in the

Month Low
(Jan —=1) Temp. (°F)

table for the city of Denver, 2 130
Colorado. The equation ——

y = 35223 sin(0.576x — |4+ "2
2.589) + 6 is a fairly g W50
accurate model for this 8 41
data. Use the equation to —] 0 3

estimate the record low :
temperatures for the odd 12 —25
numbered months,

Source: 2004 Statistical Abstract of the United Stales,
Table 379,

25. Write the product as a sum using a product-to-sum

identity: 2 cos(1979r¢)cos(4397).
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..::" CALCULATOR EXPLORATION AND DISCOVERY

Seeing the Beats as the Beats Go On

When two sound waves of slightly different frequencies are combined, the resultant wave varies periodically in amplitude
over time. These amplitude pulsations are called beats. In this Exploration and Discovery, we’ll look at ways to “see” the
beats more clearly on a graphing calculator, by representing sound waves very simplistically as Y = cos(mX) and

Y, = cos(nX) and noting a relationship between m, n, and the number of beats in [0, 24r]. Using a sum-to-product
formula, we can represent the resultant wave as a single term. For Y, = cos(12X) and Y, = cos(8X) the result is

12X + 8X 12X — 8X
Y3 = cos(12X) + cos(8X) = 2 cos( )cos( )

2 2
= 2 cos(10X)cos(2X)
The window used and resulting graph are Figure 7.60
shown in Figures 7.59 and 7.60, and it appears Figure 7.59 3
that “silence” occurs four times in this interval— (L1 MDOL v3zzeostloiices(Zi)
where the graph of the combined waves is tangent | ®min=8
to (hounces off of) the x-axis. This indicates a Amax=6. 2931833..
total of four beats, Note the number of beats is ﬁﬁ?}; 1_'35?3?963-" 0 2w
equal to the difference m — n: 12 — 8 = 4. Vmax=
Further experimentation will show this is not a Vesel=1
coincidence, and this enables us to construct two “res=1 W=3.1418927 ¥=2
additional functions that will frame these -3
pulsations and make them easier to see. Since
the maximum amplitude of the resulting Figure 7.62
wave i3 2, we use functions of the form Figure 7.61 3
k . Platl Flote Flots Y ¥=2costinr)cosizh)
2 cos(ax) to construct the frame, where & is '\$1 =.:,.:,E,Eé§:=:;:)
. . =Y 2=CG0S
the number of beats in the interval (im — n = £). |\WsB2cast18¥Icos o -
For Y, = cos{12X}and Y, = cos(8X), we have [ 2¥)
kK 12-8 . ) ~WyB2cos (2R
55 = 2 and the functions we use willbe [\WeBH-2c0s(2¥) . «»‘;_z
Y, = 2cos(2X) and Y5 = —2 cos(2X) as MY (BE3-1 15087 -

shown in Figure 7.61, The result is shown in
Figure 7.62, where the frame clearly shows the four beats or more precisely, the four moments of silence.
For each exercise, (a) express the sum Y, + Y as a product, (b) graph Y on a graphing calculator for x € [0, 27]

and identify the number of beats in this interval, and (c) determine what value of £ in =2 cos Ex would be used to
frame the resuliant Y g, then enter these as Y4 and Y5 to check the result.

Exercise 1: Y; = cos{14X); Y, = cos(8X) Exercise 2: Y| = cos(12X): Y, = cos(9X)
cos{14X}; Y, = cos(6X) Exercise 4: Y; = cos(11X); Y, = cos{10X)

Exercise 3: Y,

<Y STRENGTHENING CORE SKILLS

Trigonometric Equations and Inequalities

The ability to draw a quick graph of the trigonometric functions is a tremendous help in understanding equations and
inequalities. A basic sketch can help reveal the number of solutions in [0, 277) and the quadrant of each solution. For
nonstandard angles, the value given by the inverse function can then be used as a basis for stating the solution set for
all real numbers, We'll illustrate the process using a few simple examples, then generalize our observations (o solve
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more realistic applications. Consider the function f{x) = 2 sinx + 1, a sine wave with Figure 7.63
amplitude 2, and a vertical translation of + 1, To find intervals in [0, 29r) where f(x) > 2.5, we & - y=25
reason that fhas a maximum of 2(1) + 1 = 3 and a minimum of 2(—1) + 1 = ~1, since R =
—1 = sinx = 1. With no phasc shift and a standard period of 27, we can easily draw a quick

sketch of /by vertically translating x-intercepts and max/min points 1 unit up. After drawing the 4 RN S e

||||||||||
L

liney = 2.5 (see Figure 7.63), it appears there are two intersections in the interval, one in QI and
one in QIL More importantly, it is clear that f(x) > 2.5 berween these two solutions. Substituting
2.5 for f(x) in f(x) = 2 sinx + 1, we solve for sin x (o obtain sin x = 0,75, which we use to state
the solution in exact form: f(x) > 2.5 forx € (sin™' 0.75, = — sin™' 0.75). In approximate form the solution interval is
x € (0.85, 2.29). If the function involves a horizontal shift, the graphical analysis will reveal which intervals should be
chosen to salisfy the given inequality.

The basic ideas remain the same regardless of the complexity of the equation, and we illustrate by studying the

) | 2 T
function R(d) = 750 .‘-In( 365 d >
supremely accurate graph, just a sketch that will guide us to the solution using the inverse functions and the correct

+ 950 and the inequality R{d) > 1250. Remember—our current goal is not a

c
quadrants, Perhaps that greatest challenge is recalling that when B # 1, the horizontal shift is B but other than this a

fairly accurate sketch can quickly be obtained.

Tlustration 1> Given R(d) = 750 sin(%d - —’23) + 950, find intervals in [0, 365] where R(d) > 1250.

Solution * This is a sine wave with a period of 365 (days), an amplitude of 750, shifted ~3 = 91.25 units to the right

and 950 units up. The maximum value will be 1700 and the minimum value will be 200. For Figure 7.64
convenignce, scale the axes from 0 to 360 (as though the period were 360 days), and plot the .
x-intercepts and maximum/minimum values for a standard sine wave with amplitude 750 (by
scaling the axes). Then shift these points about 90 units in the positive direction (to the right), and
950 units up, again using a scale that makes this convenient (see Figure 7.64), This sketch along
with the graph of y = 1250 is sufficient to show that solutions to R(d) = 1250 occur early in the
second quarter and late in the third quarter, with solutions to R(d) > 1250 occurring between

2
these solutions. For R{d) = 750 sin(—ﬂ-—d - E) + 950, we substitute 1250 for R{d) and isolate the sine function,

365 2
. {27 - . . . _ - 365
obtaining Sln(%d -~ g) = lJ.f.l. which leads to exact form solutions of d = (sm 0.4 + %)(ﬁ) and
o \( 365 _ i . , .
d=17—sin" 04 + 5 )\ 5 J- Inapproximate form the solution interval is x € [115, 250].
2/\ 2w

Practice with these ideas by finding solutions to the following inequalities in the intervals specified.
Exercise 1: f(x}) = 3sinx + 2, f{x) > 3.7:x € [0, 27)

Exercise 2: g(x) = 4 sin(x - %) -~ liglx) = -2, x €0, 2m)

Exercise 3: i(x) = 125 sin(%x = —g) + 175 h(x) = 150, x € [0, 12)

2
Exercise 4: f(x) = 15,750 sin(%x - %) + 19,250 f(x) > 25.250; x € [0, 360)
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¥ CUMULATIVE REVIEW CHAPTERS 1-7

1. Find f(8) for all six trig
functions, given
P(—13, 84} is on the 60°
terminal side with 8 in

QIL

2. Find the lengths of the
missing sides. R

3. Verify thatx = 2 + V3
isa zero of g(x) = x* — 4x + 1.

4. Determine the domain of /{x) = V9 — x* Answer
in interval notation.

5. Standing 5 mi (26,400 ft) from the base of Mount
Logan (Yukon) the angle of elevation to the summit
is 36° 56'. How much taller is Mount McKinley
(Alaska} which stands at 20,320 ft high?

6. Use the Guidelines for Graphing Polynomial
Functions to sketch the graph of
fix) =2 + 3% — 4.

7. Use the Guidelines for Graphing Rational Functions

-1

—4

8. The Petronas Towers in Malaysia are two of the 1allest
structures in the world. The top of the roof reaches
1483 ft above the street below and the stainless steel
pinnacles extend an additional 241 {t into the air (see
figure). Find the viewing angle & for the pinnacles
from a distance of 1000 ft (the angle formed from the
base of the antennae to its top).

Exercise 2

x
to sketch the graph of A(x) = =
x

1483 ft E

1000 ft

9. A wheel with radius 45 cm is turning at 5
revolutions per second, Find the linear velocity of a
point on the rim in kilometers per hour, rounded to
the nearest hundredth.

10. Solve forx: 2(x — 37 + 1 = 55,
|
11. Solve for x: —3‘.1: — El +5=-10

12. Earth has a radius of 3960 mi. Tokyo, Japan, is
located at 35.4° N latitude, very near the 139° E
latitude line. Adelaide, Australia, is at 34.6° §
latitude, and also very near 139° E latitude. How
many miles separate the two cities?

13. Since 1970, sulphur dioxide emissions in the United
States have been decreasing at a nearly lincar rate. In
1970, about 31 million tons were emitled into the
atmosphere. In 2000, the amount had decreased to
approximately 16 million tons. {a) Find a linear
equation that models sulphur dioxide emissions.

(b) Discuss the meaning of the slope ratio in this
context. {c} Use the equation model to estimate the

emissions in 1985 and 2010,
Source: 2004 Stalistical Abstract of the United States,
Table 360.

14, List the three Pythagorean identities and three

identities equivalent to cos(29).

15. For f(x) = 325 cos(%x - %) + 168, what values

of x in [0, 27) satisfy f(x) > 330.5?

16. Write as a single logarithmic expression in simplest
form: log(x? — 9) + log(x + 1) - log(x* — 2x — 3).
After doing some market research, the manager of a
sporting goods store finds that when a four-pack of
premium tennis balls are priced at §9 per pack,

20 packs per day are sold. For each decrease of $0.25,
1 additional pack per day will be sold. Find the price
at which four-packs of tennis balls should be sold in
order to maximize the store’s revenue on this item.

18. Wrile the equation of the Exerclse 18
function whose graph is y
given, in terms of a sine¢ ;""'-\ 7\
function. /r \ FL

|

17

19. Verify that the following is an .
o . cosx+ | oS X I o
identity: T = .

tan“x secx — 1 \ \ /

i
(

20, Given the zeroes of
F(x) = x* — 185" + 32arex = tdandx = +V2,
estimate the following:

a. the domain of the function

b. intervals where f{x} > 0and f{x) < 0
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21. Use the triangle shown to find the exact value

of sin(28).

11

22. Use the triangle shown to find the exact value

of sin{la + B).

68

23. The amount of waste product released by a

25,

manufacturing company varies according to its
production schedule, which is much heavier during
the summer months and lighter in the winter. Waste
product amount reaches a maximum of 32.5 tons in
the month of July, and falls to a minimum of

21.7 tons in January (¢ = 1). (a} Use this
information to build a sinusoidal equation that
models the amount of waste produced each month.
(b} During what months of the year does output
exceed 30 tons?

At what interest rate will $2500 grow to $3500 if it’s

left on deposit for 6 yr and interest is compounded
continuously?

Identify each geometric formula;
a.y=mh b, y = LWH

1
d. y = —bh

c. y=2ar >

26.

27,

28.

29,

30.

7-90

Exercises 26 through 30 require the use of a graphing
calcnlator.

Use the @ and TABLE features of a calculator to
support the validity of the identity 2 cos(1.7x) =
sec(0.9x) cos(0.8x) + sec(0.9x) cos(2.6x). Then
convert all functions to sines and cosines, rewrite the
identity, and verify this new identity using a sum-to-
product identity.

On a graphing calculator, the graph of
) = 1.5x" — 0.9x — 2.4

* 057 — 08 +x— 16
continuous. However, Descartes’ rule of signs tells
us the denominator must have at least one real zero.
Since the graph does not appear to have any vertical
asymptotes, (a) what does this tell you about r(x)?
(b} Use the TABLE feature of a calculator with
AThbl = 0.1 to help determine the x-coordinate of
this discontinuity.

appears to be

Solve the following equation graphically. Round
your answer to two decimal places.

-1

Cos x = tanx

Use the intersection-of-graphs method to solve the
inequality sin x = cos x, for x € [0, 27). Answer
using exact values,

The range of a certain projectile is modeled by the
function H{6)

625
T 8in @ cos @, where 8 is the

angle at launch and #{(#) is in feet. (a) Rewrite the
function using a double angle formula, (b) determine
the maximum range of the projectile, and

(c) determine the launch angle that results in this
maximum range.
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EXAMPLE 1

Solution

Check

In calculus, as in college algebra, we often encounter expressions that are difficult to
use in their given form, and so attempt to write the expression in an alternative form
more suitable to the task at hand, Often, we see algebra and trigonometry working
together to achieve this goal.

Simplifying Expressions Using a Trigonometric Substitution
For instance, it is difficult to apply certain concepts from calculus to the equation

X . . . . .

y= —x2 and we attempt to rewrite the expression using a trig substitution and a
9 —_

Pythagorean identity. When doing so, we're careful to ensure the substitution used rep-

resents a one-to-one function, and that it maintains the integrity of the domain.

Simplifying Algebraic Expresslons Using Trigonometry
Simplify y = Wx__;;using the substitution x = 3 sin ¢ for —% <A< %, then
verify that the result is equivalent to the original function.

Isin@

y = = substitute 3 sin ! for x
V9 — (3 sin 0)°
3sind B 3sinf
V9 — 9 5in*0 \/‘J(l — §in°0)
__3sing
\/9 cos®#
_3siné
3cos @
= tan @ f

Using the notation for inverse functions, we can rewrite y = tan 6 as a function of
x and use a calculator to compare it with the original function. Forx = 3 sin 0 we

1

obtaing- = sinfor & = sin_ (i) Substituting sin“(i) for @ in y = tan 8 gives

3 3
y= tan[sin_ 1(%)] With the calculator in radian b Vi ("1
"x MEREAE
@D, enter Y, = m and Y, = tan [sin"(?)] :E:g :EZEES :E:Eﬁs
“2.8 -1.732 | “1.737
on the ©¥% 7 screen. Using TbiStart = —3 (due to | ﬁ_-| 3}525 %Egg
“a="2.4

the domain), the resulting table seems to indicate
that the functions are indeed equivalent (see the figure).

Now try Exercises 1 through 6

Trigonometric Identitles and Equations

While the tools of calculus are very powerful, it is the application of rudimentary con-
cepts that makes them work. Earlier, we saw how basic algebra skills were needed to sim-
plify expressions that resulted from applications of calculus. Here we illustrate the use of
basic trigonometric skills combined with basic algebra skills to achieve the same end.

743
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EXAMPLE 2 Finding Maximum and Minlmum Values
Using the tools of calculus, it can be shown that the maximum and/or minimum

1+
values of f(8) = ch;tﬂ will occur at the zero(s) of the function
csc 8(—csc’8) — (1 + cotd)(—csc 6 cot §)
f(6) = »

csc@

Simplify the right-hand side and use the result to find the location of any maximum
or minimum values that occut in the interval [0, 247).

Solution Begin by simplifying the numerator.
csc 8(—csc?0) — (—csc 8 cot # — csc § cot®d)

6) = distribut
(o) csc’f s
—csc’@ + csc @ cot § + csc 8 cot®f o
= 2 simplify
csc @
csc B(cot’8 + cot @ — csc?)
= z factor, commute terms
csc g
_(csczﬁ—l)+cot9-csc20_cote—1 |
- csc @ T cscé I
‘This shows that £(8) = O when cot 8 = 1, or when 0 = % + wk,k € Z. In the
interval [0, 27), this gives @ = % and -Szt The function fhas a maximum value
5
of V2 at %, with 2 minimum value of — /2 at Tﬂ-

Now try Exercises 7 through 10

Connectlons to Calculus Exercises

For the functions given, (a) use the substitution indicated to find an equivalent function of 8, (b) rewrite the
resulting function in terms of x using an inverse trig function, and (c) use the TABLE feature of a graphing
calculator to verify the two functions are equivalent for x # 0.

V169 + w o V144 — 2 : T
1L.y= P 13tan9,8€(—5.5) 2. y= -, %= 12811‘19,96(—5‘,5)

Rewrite the following expressions using the substitution indicated.
x* 4 V81 — x* 8
3 —=—=——ix=4sinfd 5 —F—=x=73tanf —x=9snf 6, ———x=2sech
V16 - £ V9 + 22 x (x* — 4}
Using the tools of calculus, it can be shown that for each function f(x) given, the zeroes of f(x) give the location

of any maximum and/or minimum values, Find the location of these values in the interval [0, 2m), using trig
identities as needed to solve {(x) = 0. Verify solutions using a graphing calculator.

7. flx) = %; 9. f(x) = 2sinxcosx;
sec (—sinx) — (1 + cos x)sec x tan x f(x) = 2 sin x(~sin x) + 2 cos x cos x
f) = sectx
8. flx) = sin x tan x; 10. f(x) = %;
f{x) = sin x sec’x + tanx cos x £) = (2 + sinx)(—sinx) — cos x cos x

(2 + sinx)?



