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Chapter

S
hown here is the pain reliever acetamino-
phen in crystalline form, photographed
under a transmitted light microscope. While

acetaminophen relieves pain with few side effects,
it is toxic in large doses. One study found that only
30% of parents who gave acetaminophen to their
children could accurately calculate and measure
the correct dose.

One rule for calculating the dosage (mg) of
acetaminophen for children ages 1 to 12 years old
is D(t) � 750t�(t � 12), where t is age in years.
What is an expression for the rate of change of a
child’s dosage with respect to the child’s age? How
does the rate of change of the dosage relate to
the growth rate of children? This problem can be
solved with the information covered in Section 3.4.

Derivatives3
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Section 3.1 Derivative of a Function 99

Chapter 3 Overview

In Chapter 2, we learned how to find the slope of a tangent to a curve as the limit of the
slopes of secant lines. In Example 4 of Section 2.4, we derived a formula for the slope of
the tangent at an arbitrary point �a, 1�a� on the graph of the function f �x� � 1�x and
showed that it was �1�a2.

This seemingly unimportant result is more powerful than it might appear at first glance,
as it gives us a simple way to calculate the instantaneous rate of change of f at any point.
The study of rates of change of functions is called differential calculus, and the formula
�1�a2 was our first look at a derivative. The derivative was the 17th-century breakthrough
that enabled mathematicians to unlock the secrets of planetary motion and gravitational 
attraction—of objects changing position over time. We will learn many uses for deriva-
tives in Chapter 4, but first we will concentrate in this chapter on understanding what de-
rivatives are and how they work.

Derivative of a Function

Definition of Derivative
In Section 2.4, we defined the slope of a curve y � f �x� at the point where x � a to be

m � lim
h→0

�
f �a � h

h
� � f �a�
� .

When it exists, this limit is called the derivative of f at a. In this section, we investigate
the derivative as a function derived from f by considering the limit at each point of the do-
main of f.

3.1

What you’ll learn about

• Definition of Derivative

• Notation

• Relationships between the
Graphs of f and f�

• Graphing the Derivative from
Data

• One-sided Derivatives

. . . and why

The derivative gives the value of
the slope of the tangent line to a
curve at a point.

DEFINITION Derivative

The derivative of the function f with respect to the variable x is the function f �
whose value at x is 

f ��x� � lim
h→0

�
f �x � h

h
� � f �x�
� , (1)

provided the limit exists.

continued

The domain of f �, the set of points in the domain of f for which the limit exists, may be
smaller than the domain of f. If f ��x� exists, we say that f has a derivative (is differen-
tiable) at x. A function that is differentiable at every point of its domain is a differentiable
function.

EXAMPLE 1 Applying the Definition

Differentiate (that is, find the derivative of) f �x� � x3.
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100 Chapter 3 Derivatives

SOLUTION 

Applying the definition, we have

f ��x� � lim
h→0

�
f �x � h

h
� � f �x�
�

� lim
h→0

�
�x � h

h
�3 � x3

�

� lim
h→0

� lim
h→0
�
�3x2 � 3x

h
h � h2�h
�

� lim
h→0

�3x2 � 3xh � h2 � � 3x2. Now try Exercise 1.

The derivative of f �x� at a point where x � a is found by taking the limit as h→0 of
slopes of secant lines, as shown in Figure 3.1.

By relabeling the picture as in Figure 3.2, we arrive at a useful alternate formula for
calculating the derivative. This time, the limit is taken as x approaches a.

�x3 � 3x2h � 3xh2 � h3� � x3

����
h

�x � h�3

expanded

x3s cancelled,
h factored out

After we find the derivative of f at a point x � a using the alternate form, we can find
the derivative of f as a function by applying the resulting formula to an arbitrary x in the
domain of f.

EXAMPLE 2 Applying the Alternate Definition

Differentiate f �x� � �x� using the alternate definition.

SOLUTION

At the point  x � a,

f ��a� � lim
x→a

�
f �x

x
�

�

�

a
f �a�

�

� lim
x→a

�
�x�

x
�

�

�
a

a�
� Eq. 2 with f �x� �

� lim
x→a

�
�x�

x
�

�

�
a

a�
� • �

�

�

x�

x�

�

�

�

�

a�

a�
� Rationalize…

� lim
x→a

…the numerator.

� lim
x→a

�
�x� �

1

�a�
� We can now take the limit.

� �
2�

1

a�
� .

Applying this formula to an arbitrary x � 0 in the domain of f identifies the derivative as
the function f ��x� � 1��2�x�� with domain �0, 	�. Now try Exercise 5.

x � a
���
�x � a���x� � �a��

1x

 

x

y

f (a + h)

f (a)
P(a, f(a))

Q(a + h, f(a + h))

y = f(x)


x


y

a a + hO

Figure 3.1 The slope of the secant line 
PQ is

�
�
�y

x
� ��

f �a
�a

�

�

h
h
�
�
�

�

f
a
�a�

�

��
f �a � h

h
� � f �a�
� .

 

x

y

f(x)

f(a)
P(a, f(a))

Q(x, f (x))

y = f(x)


x


y

a xO

Figure 3.2 The slope of the secant line 
PQ is

�
�
�y

x
� � �

f �x
x
�

�

�

a
f �a�

� .

DEFINITION (ALTERNATE) Derivative at a Point

The derivative of the function f at the point  x � a is the limit

f ��a� � lim
x→a

�
f �x

x
�

�

�

a
f �a�

� , (2)

provided the limit exists.

Eq. 1 with f�x� � x3,
f�x � h� � �x � h�3
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Section 3.1 Derivative of a Function 101

Notation
There are many ways to denote the derivative of a function y � f �x�. Besides f ��x�, the
most common notations are these:

y� “y prime” Nice and brief, but does not name 
the independent variable.

“dy dx” or “the derivative Names both variables and 
of y with respect to x” uses d for derivative.

“df dx” or “the derivative 
Emphasizes the function’s name.

of f with respect to x”

f �x�
“d dx of f at x” or “the Emphasizes the idea that differentia-
derivative of f at x” tion is an operation performed on f.

Relationships between the Graphs of f and f �

When we have the explicit formula for f �x�, we can derive a formula for f ��x� using meth-
ods like those in Examples 1 and 2. We have already seen, however, that functions are en-
countered in other ways: graphically, for example, or in tables of data. 

Because we can think of the derivative at a point in graphical terms as slope, we can get
a good idea of what the graph of the function f � looks like by estimating the slopes at var-
ious points along the graph of f.

EXAMPLE 3 GRAPHING f � from f

Graph the derivative of the function f whose graph is shown in Figure 3.3a. Discuss the
behavior of f in terms of the signs and values of f �.

d
�
dx

df
�
dx

dy
�
dx

Why all the notation?

The “prime” notations y� and f� come
from notations that Newton used for 
derivatives. The d�dx notations are 
similar to those used by Leibniz. Each
has its advantages and disadvantages.

x

y

2

A

B
C

D

E
F

4

5

3

–1

1 2

(a)

3 5 6 7

y = f(x)

Slope 4

Slope 1

Slope 0

Slope 0

Slope –1

Slope –1

4 x

y'

2

1

3

A'

B'

C'

D'

(b)

E'

F'

4

–1

1 2 3 5 6 7

y' = f '(x)

(slope)

4

5

  

Figure 3.3 By plotting the slopes at points on the graph of y � f �x�, we obtain a graph of 
y� � f ��x�. The slope at point A of the graph of f in part (a) is the y-coordinate of point A� on the
graph of f � in part (b), and so on. (Example 3)

SOLUTION

First, we draw a pair of coordinate axes, marking the horizontal axis in x-units and the
vertical axis in slope units (Figure 3.3b). Next, we estimate the slope of the graph of
f at various points, plotting the corresponding slope values using the new axes. At 
A�0, f �0��, the graph of f has slope 4, so  f ��0� � 4.  At B, the graph of f has slope 1,
so f �� 1 at B�, and so on.

continued
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102 Chapter 3 Derivatives

We complete our estimate of the graph of f � by connecting the plotted points with a
smooth curve.

Although we do not have a formula for either f or f �, the graph of each reveals important
information about the behavior of the other. In particular, notice that f is decreasing
where f � is negative and increasing where f � is positive. Where f � is zero, the graph of
f has a horizontal tangent, changing from increasing to decreasing (point C ) or from 
decreasing to increasing (point F). Now try Exercise 23.

Reading the Graphs

Suppose that the function f in Figure 3.3a represents the depth y (in inches) of water
in a ditch alongside a dirt road as a function of time x (in days). How would you an-
swer the following questions?

1. What does the graph in Figure 3.3b represent? What units would you use along
the y�-axis?

2. Describe as carefully as you can what happened to the water in the ditch over
the course of the 7-day period.

3. Can you describe the weather during the 7 days? When was it the wettest?
When was it the driest?

4. How does the graph of the derivative help in finding when the weather was
wettest or driest?

5. Interpret the significance of point C in terms of the water in the ditch. How does
the significance of point C� reflect that in terms of rate of change?

6. It is tempting to say that it rains right up until the beginning of the second day,
but that overlooks a fact about rainwater that is important in flood control. 
Explain. 

Construct your own “real-world” scenario for the function in Example 3, and pose
a similar set of questions that could be answered by considering the two graphs in
Figure 3.3. 

EXPLORATION 1

x

y�

2

–2

2–2

y� = f �(x)

x

y

2

–2

2–2

y = f(x)

Figure 3.4 The graph of the derivative.
(Example 4)

Figure 3.5 The graph of f, constructed
from the graph of f � and two other 
conditions. (Example 4)

EXAMPLE 4 Graphing f from f �

Sketch the graph of a function f that has the following properties:

i. f �0� � 0;

ii. the graph of f �, the derivative of f, is as shown in Figure 3.4;

iii. f is continuous for all x.

SOLUTION

To satisfy property (i), we begin with a point at the origin. 

To satisfy property (ii), we consider what the graph of the derivative tells us about slopes.
To the left of  x � 1, the graph of f has a constant slope of �1; therefore we draw a line
with slope �1 to the left of  x � 1, making sure that it goes through the origin.

To the right of  x � 1, the graph of f has a constant slope of 2, so it must be a line with
slope 2. There are infinitely many such lines but only one—the one that meets the left
side of the graph at �1, �1�—will satisfy the continuity requirement. The resulting
graph is shown in Figure 3.5. Now try Exercise 27.
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Section 3.1 Derivative of a Function 103

Graphing the Derivative from Data
Discrete points plotted from sets of data do not yield a continuous curve, but we have seen
that the shape and pattern of the graphed points (called a scatter plot) can be meaningful
nonetheless. It is often possible to fit a curve to the points using regression techniques. If
the fit is good, we could use the curve to get a graph of the derivative visually, as in Exam-
ple 3. However, it is also possible to get a scatter plot of the derivative numerically, di-
rectly from the data, by computing the slopes between successive points, as in Example 5.

EXAMPLE 5 Estimating the Probability of Shared Birthdays

Suppose 30 people are in a room. What is the probability that two of them share the
same birthday? Ignore the year of birth.

SOLUTION

It may surprise you to learn that the probability of a shared birthday among 30 people is at
least 0.706, well above two-thirds! In fact, if we assume that no one day is more likely to
be a birthday than any other day, the probabilities shown in Table 3.1 are not hard to deter-
mine (see Exercise 45).

Table 3.1 Probabilities of 
Shared Birthdays

People in 
Room �x� Probability �y�

0 0
5 0.027

10 0.117
15 0.253
20 0.411
25 0.569
30 0.706
35 0.814
40 0.891
45 0.941
50 0.970
55 0.986
60 0.994
65 0.998
70 0.999

Table 3.2 Estimates of Slopes 
on the Probability Curve

Midpoint of Change 
Interval �x� �slope �y��x�

2.5 0.0054
7.5 0.0180

12.5 0.0272
17.5 0.0316
22.5 0.0316
27.5 0.0274
32.5 0.0216
37.5 0.0154
42.5 0.0100
47.5 0.0058
52.5 0.0032
57.5 0.0016
62.5 0.0008
67.5 0.0002

A scatter plot of the data in Table 3.1 is shown in Figure 3.6. 

Notice that the probabilities grow slowly at first, then faster, then much more slowly
past  x � 45.  At which x are they growing the fastest? To answer the question, we need
the graph of the derivative.

Using the data in Table 3.1, we compute the slopes between successive points on the proba-
bility plot. For example, from  x � 0  to  x � 5  the slope is

�
0.0

5
2
�

7 �

0
0

� � 0.0054.

We make a new table showing the slopes, beginning with slope 0.0054 on the interval
�0, 5� (Table 3.2). A logical x value to use to represent the interval is its midpoint 2.5.

continued

David H. Blackwell
(1919– )

By the age of 22,
David Blackwell had
earned a Ph.D. in 
Mathematics from the
University of Illinois. He
taught at Howard 
University, where his
research included sta-

tistics, Markov chains, and sequential
analysis. He then went on to teach and
continue his research at the University
of California at Berkeley. Dr. Blackwell
served as president of the American
Statistical Association and was the first
African American mathematician of the
National Academy of Sciences.

[–5, 75] by [–0.2, 1.1]

5

1

Figure 3.6 Scatter plot of the probabili-
ties �y� of shared birthdays among x peo-
ple, for x � 0, 5, 10, . . . , 70. (Example 5)

What’s happening at x � 1?

Notice that f in Figure 3.5 is defined at
x � 1, while f � is not. It is the continuity
of f that enables us to conclude that 
f �1� � �1. Looking at the graph of f, can
you see why f� could not possibly be
defined at x � 1? We will explore the
reason for this in Example 6.
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104 Chapter 3 Derivatives

A scatter plot of the derivative data in Table 3.2 is shown in Figure 3.7.

From the derivative plot, we can see that the rate of change peaks near x � 20.  You can
impress your friends with your “psychic powers” by predicting a shared birthday in a
room of just 25 people (since you will be right about 57% of the time), but the derivative
warns you to be cautious: a few less people can make quite a difference. On the other
hand, going from 40 people to 100 people will not improve your chances much at all.

Now try Exercise 29.

Generating shared birthday probabilities: If you know a little about probability, you
might try generating the probabilities in Table 3.1. Extending the Idea Exercise 45 at the
end of this section shows how to generate them on a calculator.

One-Sided Derivatives
A function y � f �x� is differentiable on a closed interval �a, b� if it has a derivative at
every interior point of the interval, and if the limits

lim
h→0�

�
f �a � h

h
� � f �a�
� [the right-hand derivative at a]

lim
h→0�

�
f �b � h

h
� � f �b�
� [the left-hand derivative at b]

exist at the endpoints. In the right-hand derivative, h is positive and a � h approaches a from
the right. In the left-hand derivative, h is negative and b � h approaches b from the left 
(Figure 3.8).

Right-hand and left-hand derivatives may be defined at any point of a function’s 
domain.

The usual relationship between one-sided and two-sided limits holds for derivatives.
Theorem 3, Section 2.1, allows us to conclude that a function has a (two-sided) derivative
at a point if and only if the function’s right-hand and left-hand derivatives are defined and
equal at that point. 

EXAMPLE 6 One-Sided Derivatives can Differ at a Point

Show that the following function has left-hand and right-hand derivatives at  x � 0, but
no derivative there (Figure 3.9).

x2, x � 0
y � {2x, x � 0

SOLUTION

We verify the existence of the left-hand derivative:

lim
h→0�

�
�0 � h

h
�2 � 02

� � lim
h→0�

�
h
h

2

� � 0.

We verify the existence of the right-hand derivative:

lim
h→0�

� lim
h→0�

�
2
h
h
� � 2.

Since the left-hand derivative equals zero and the right-hand derivative equals 2, the de-
rivatives are not equal at  x � 0.  The function does not have a derivative at 0.

Now try Exercise 31.

2�0 � h� � 02
��

h

x

y � f (x)

a a � h b � h b
h � 0 h � 0

Slope �

lim
 h 0–

f (b � h) � f (b)
———————

h
Slope �

lim
 h 0+

f (a � h) � f (a)
———————

h

x

y

2

1

1

–1

–1

Figure 3.8 Derivatives at endpoints are
one-sided limits.

Figure 3.7 A scatter plot of the deriva-
tive data in Table 3.2. (Example 5)

[–5, 75] by [–0.01, 0.04]

20 40 60

Figure 3.9 A function with different
one-sided derivatives at x � 0. 
(Example 6)
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Section 3.1 Derivative of a Function 105

In Exercises 1–4, evaluate the indicated limit algebraically.

1. lim
h→0

�
�2 � h

h
�2 � 4
� 4 2. lim

x→2�
�
x �

2
3

� 5/2

3. lim
y→0�

�1 4. lim
x→4

�
�

2x

x�

�

�

8

2
� 8

5. Find the slope of the line tangent to the parabola  y � x2 � 1 
at its vertex. 0

6. By considering the graph of f �x� � x3 � 3x2 � 2, find the
intervals on which f is increasing. (�	, 0] and [2, 	)

�y �
�
y

Quick Review 3.1 (For help, go to Sections 2.1 and 2.4.)

In Exercises 7–10, let

x � 2, x � 1
f �x� � { �x � 1�2, x � 1.

7. Find  limx→1� f �x� and  limx→1� f �x�.
8. Find  limh→0� f �1 � h�. 0

9. Does  limx→1 f �x� exist? Explain. No, the two one-sided limits 

10. Is f continuous? Explain. No, f is discontinuous at x � 1 because
the limit doesn’t exist there.

Section 3.1 Exercises

In Exercises 1–4, use the definition

f ��a� � lim
h→0
�
f (a � h

h
) � f (a)
�

to find the derivative of the given function at the indicated point.

1. f (x) � 1�x, a � 2 �1�4 2. f (x) � x2 � 4, a � 1 2

3. f (x) � 3 � x2, a � �1 2 4. f (x) � x3 � x, a � 0 1

In Exercises 5–8, use the definition

f �(a) � lim
x→a

�
f (x

x
) �

�

f
a
(a)

�

to find the derivative of the given function at the indicated point.

5. f (x) � 1�x, a � 2 �1�4 6. f (x) � x2 � 4, a � 1 2

7. f (x) � �x � 1�, a � 3 1�4 8. f (x) � 2x � 3, a � �1 2

9. Find  f ��x� if  f �x� � 3x � 12. f�(x) � 3

10. Find  dy�dx if  y � 7x. dy/dx � 7

11. Find �
d
d
x
� �x2�. 2x

12. Find f (x) if f (x) � 3x2. 6x

In Exercises 13–16, match the graph of the function with the graph of
the derivative shown here:

d
�
dx

13.

14.

15.

16.

17. If f �2� � 3  and f ��2� � 5, find an equation of (a) the tangent
line, and (b) the normal line to the graph of y � f �x� at the
point where x � 2.

y

O
x

y � f4(x)

y

O
x

y � f3(x)

x

y

O

y � f2(x)

x

y

O

y � f1(x)

y'

O
x

(a)

y'

O
x

(b)

y'

O
x

(c)

y'

O
x

(d)

lim
x→1

� f(x) � 0 ; lim
x→1

�  f(x) � 3

are different.

(b)

(a)

(d)

(c)

(a) y � 5x � 7

(b) y �� �
1
5

� x � �
1
5
7
�
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106 Chapter 3 Derivatives

18. Find the derivative of the function y � 2x2 � 13x � 5 and use it
to find an equation of the line tangent to the curve at x � 3.

19. Find the lines that are (a) tangent and (b) normal to the curve 
y � x3 at the point �1, 1�. (a) y � 3x � 2 (b) y � � �

1
3

� x � �
4
3

�

20. Find the lines that are (a) tangent and (b) normal to the curve
y � �x� at x � 4.

21. Daylight in Fairbanks The viewing window below shows the
number of hours of daylight in Fairbanks, Alaska, on each day
for a typical 365-day period from January 1 to December 31.
Answer the following questions by estimating slopes on the
graph in hours per day. For the purposes of estimation, assume
that each month has 30 days.

(a) On about what date is the amount of daylight increasing at
the fastest rate? What is that rate?

(b) Do there appear to be days on which the rate of change in
the amount of daylight is zero? If so, which ones? Yes. Jan. 1 and 

(c) On what dates is the rate of change in the number of daylight
hours positive? negative? Positive: Jan 1, through July 1

22. Graphing f � from f Given the graph of the function f below,
sketch a graph of the derivative of f.

23. The graphs in Figure 3.10a show the numbers of rabbits and
foxes in a small arctic population. They are plotted as functions
of time for 200 days. The number of rabbits increases at first, as
the rabbits reproduce. But the foxes prey on the rabbits and, as
the number of foxes increases, the rabbit population levels off
and then drops. Figure 3.10b shows the graph of the derivative
of the rabbit population. We made it by plotting slopes, as in
Example 3.

(a) What is the value of the derivative of the rabbit population in
Figure 3.10 when the number of rabbits is largest? smallest?

(b) What is the size of the rabbit population in Figure 3.10 when
its derivative is largest? smallest? 1700 and 1300

[–5, 5] by [–3, 3]

[0, 365] by [0, 24]

24. Shown below is the graph of  f �x� � x ln x � x.  From what you
know about the graphs of functions (i) through (v), pick out the
one that is the derivative of f for  x � 0. (ii)

i. y � sin x ii. y � ln x iii. y � �x�

iv. y � x2 v. y � 3x � 1

25. From what you know about the graphs of functions (i) through
(v), pick out the one that is its own derivative. (iv)

i. y � sin x ii. y � x iii. y � �x�

iv. y � ex v. y � x2

[–2, 6] by [–3, 3]

Number
of rabbits

Initial no. rabbits � 1000
Initial no. foxes � 40

Number
of foxes

(20, 1700)

0 50 100 150 200
0

1000

2000

Time (days)

(a)

(20, 40)

0 50 100 150 200
�100

�50

50

Time (days)
Derivative of the rabbit population

�100

0

(b)

Figure 3.10 Rabbits and foxes in an arctic predator-prey food
chain. Source: Differentiation by W. U. Walton et al., Project CALC,
Education Development Center, Inc., Newton, MA, 1975, p. 86.

20. (a) y � x � 1 (b) y ��4x � 18
1
�
4

Sometime around April 1. The rate then is approximately 1/6 hour per day.

July 1

Negative: July 1 through Dec. 31

0 and 0

18. dy/dx � 4x � 13, tangent line is y � �x � 13
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26. The graph of the function  y � f �x� shown here is made of line
segments joined end to end.

(a) Graph the function’s derivative.

(b) At what values of x between  x � �4  and  x � 6  is the
function not differentiable? x � 0, 1, 4

27. Graphing f from f � Sketch the graph of a continuous
function f with  f �0� � �1 and

1, x � �1
f ��x� � {�2, x � �1.

28. Graphing f from f � Sketch the graph of a continuous 
function f with  f �0� � 1 and

2, x � 2
f ��x� � {�1, x � 2.

In Exercises 29 and 30, use the data to answer the questions.

29. A Downhill Skier Table 3.3 gives the approximate distance
traveled by a downhill skier after t seconds for  0 � t � 10. Use
the method of Example 5 to sketch a graph of the derivative;
then answer the following questions:

(a) What does the derivative represent? The speed of the skier

(b) In what units would the derivative be measured?

(c) Can you guess an equation of the derivative by considering
its graph? Approximately D = 6.65t

30. A Whitewater River Bear Creek, a Georgia river known to
kayaking enthusiasts, drops more than 770 feet over one stretch
of 3.24 miles. By reading a contour map, one can estimate the

x

y

0

y � f(x)

1(–4, 0) 6

(0, 2) (6, 2)

(4, –2)(1, –2)

elevations �y� at various distances �x� downriver from the start
of the kayaking route (Table 3.4). 

(a) Sketch a graph of elevation �y� as a function of distance
downriver �x�.
(b) Use the technique of Example 5 to get an approximate graph
of the derivative, dy�dx.

(c) The average change in elevation over a given distance is
called a gradient. In this problem, what units of measure would
be appropriate for a gradient? Feet per mile

(d) In this problem, what units of measure would be appropriate
for the derivative? Feet per mile

(e) How would you identify the most dangerous section of the
river (ignoring rocks) by analyzing the graph in (a)? Explain.

(f) How would you identify the most dangerous section of the
river by analyzing the graph in (b)? Explain.

31. Using one-sided derivatives, show that the function

x2 � x, x � 1
f �x� � {3x � 2, x � 1

does not have a derivative at x � 1.

32. Using one-sided derivatives, show that the function 

x3, x � 1
f �x� � {3x, x � 1

does not have a derivative at  x � 1.

33. Writing to Learn Graph  y � sin x and y � cos x in the same
viewing window. Which function could be the derivative of the
other? Defend your answer in terms of the behavior of the
graphs. 

34. In Example 2 of this section we showed that the derivative of 
y � �x� is a function with domain  �0, 	�.  However, the
function  y � �x� itself has domain  �0, 	�, so it could have a
right-hand derivative at  x � 0.  Prove that it does not. 

35. Writing to Learn Use the concept of the derivative to define
what it might mean for two parabolas to be parallel. Construct
equations for two such parallel parabolas and graph them. Are the
parabolas “everywhere equidistant,” and if so, in what sense? 

Table 3.3 Skiing Distances

Time t Distance Traveled
(seconds) (feet)

0 0
1 3.3
2 13.3
3 29.9
4 53.2
5 83.2
6 119.8
7 163.0
8 212.9
9 269.5

10 332.7

Table 3.4 Elevations along Bear Creek

Distance Downriver River Elevation
(miles) (feet)

0.00 1577
0.56 1512
0.92 1448
1.19 1384
1.30 1319
1.39 1255
1.57 1191
1.74 1126
1.98 1062
2.18 998
2.41 933
2.64 869
3.24 805

Section 3.1 Derivative of a Function 107
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108 Chapter 3 Derivatives

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

36. True or False If f (x) � x2 � x, then f �(x) exists for every real
number x. Justify your answer. True. f�(x) � 2x � 1

37. True or False If the left-hand derivative and the right-hand
derivative of f exist at x � a, then f �(a) exists. Justify your
answer.

38. Multiple Choice Let f (x) � 4 � 3x. Which of the following
is equal to f �(�1)? C

(A) �7 (B) 7 (C) �3 (D) 3 (E) does not exist

39. Multiple Choice Let f (x) � 1 � 3x2. Which of the following
is equal to f �(1)? A

(A) �6 (B) �5 (C) 5 (D) 6 (E) does not exist

In Exercises 40 and 41, let

x2 � 1, x � 0
f �x� � {2x � 1, x 
 0.

40. Multiple Choice Which of the following is equal to the left-
hand derivative of f at x � 0? B

(A) �2 (B) 0 (C) 2 (D) 	 (E) �	

41. Multiple Choice Which of the following is equal to the right-
hand derivative of f at x � 0? C

(A) �2 (B) 0 (C) 2 (D) 	 (E) �	

Explorations

42.
x2, x � 1

Let f �x� � {2x, x � 1.

(a) Find f ��x� for  x � 1. 2x (b) Find f ��x� for  x � 1.

(c) Find  limx→1� f ��x�. 2 (d) Find  limx→1� f ��x�. 2

(e) Does  limx→1 f ��x� exist? Explain. Yes, the two one-sided 

(f) Use the definition to find the left-hand derivative of f
at  x � 1 if it exists. 2

(g) Use the definition to find the right-hand derivative of f
at x � 1 if it exists. Does not exist

(h) Does f ��1� exist? Explain. It does not exist because the right-

43. Group Activity Using graphing calculators, have each person
in your group do the following:

(a) pick two numbers a and b between 1 and 10; 

(b) graph the function  y � �x � a��x � b�;
(c) graph the derivative of your function (it will be a line with
slope 2);

(d) find the y-intercept of your derivative graph.

(e) Compare your answers and determine a simple way to predict
the y-intercept, given the values of a and b. Test your result.

Extending the Ideas
44. Find the unique value of k that makes the function

x3, x � 1
f �x� � {3x � k, x � 1

differentiable at x � 1. k � �2

45. Generating the Birthday Probabilities Example 5 of this
section concerns the probability that, in a group of n people,
at least two people will share a common birthday. You can
generate these probabilities on your calculator for values of n
from 1 to 365. 

Step 1: Set the values of N and P to zero:

Step 2: Type in this single, multi-step command:

Now each time you press the ENTER key, the command will
print a new value of N (the number of people in the room)
alongside P (the probability that at least two of them share a
common birthday):

If you have some experience with probability, try to answer the
following questions without looking at the table:

(a) If there are three people in the room, what is the probability
that they all have different birthdays? (Assume that there are 365
possible birthdays, all of them equally likely.) 0.992

(b) If there are three people in the room, what is the probability
that at least two of them share a common birthday? 0.008

(c) Explain how you can use the answer in part (b) to find the
probability of a shared birthday when there are four people 
in the room. (This is how the calculator statement in Step 2
generates the probabilities.)

(d) Is it reasonable to assume that all calendar dates are equally
likely birthdays? Explain your answer.

  
  .0082041659}
  .0163559125}
  .0271355737}
  .0404624836}
  .0562357031}

  {2 
{3  
{4  
{5  
{6  
{7  

{1  0}
.002739726}

N+1   N: 1–(1–P) (366
–N)/365   P: {N,P}

0   N:0   P
0False. Let f(x) � ⏐x⏐. The left hand derivative at x � 0 is �1 and 

the right hand derivative at x � 0 is 1. f �(0) does not exist.

2

limits exist and are the same.

hand derivative does not exist.

The y-intercept is b � a.

(c) If P is the answer to (b), then the probability of a shared birthday when
there are four people is 

1 � (1 � P) �
3
3
6
6
2
5

� 	 0.016.
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Differentiability

How f �(a) Might Fail to Exist
A function will not have a derivative at a point P�a, f �a�� where the slopes of the secant lines,

�
f �x

x
�

�

�

a
f �a�

� ,

fail to approach a limit as x approaches a. Figures 3.11–3.14 illustrate four different in-
stances where this occurs. For example, a function whose graph is otherwise smooth will
fail to have a derivative at a point where the graph has

1. a corner, where the one-sided derivatives differ; Example: f �x� � �x �

3.2

What you’ll learn about

• How f �(a) Might Fail to Exist

• Differentiability Implies Local
Linearity

• Derivatives on a Calculator

• Differentiability Implies 
Continuity

• Intermediate Value Theorem 
for Derivatives

. . . and why

Graphs of differentiable functions
can be approximated by their 
tangent lines at points where the
derivative exists.

[–3, 3] by [–2, 2] [–3, 3] by [–2, 2]

Figure 3.11 There is a “corner” at x � 0. Figure 3.12 There is a “cusp” at x � 0.

2. a cusp, where the slopes of the secant lines approach 	 from one side and �	 from
the other (an extreme case of a corner); Example: f �x� � x2�3

3. a vertical tangent, where the slopes of the secant lines approach either 	 or �	 from
both sides (in this example, 	); Example: f �x� � �3 x� 

4. a discontinuity (which will cause one or both of the one-sided derivatives to be non-
existent). Example: The Unit Step Function

In this example, the left-hand derivative fails to exist:

lim
h→0�

�
��1�

h
� �1�
� � lim

h→0�
�
�

h
2
� � 	.

�1, x � 0
U�x� � { 1, x 
 0

[–3, 3] by [–2, 2]

Figure 3.13 There is a vertical tangent
line at x � 0.

Figure 3.14 There is a discontinuity
at x � 0.

[–3, 3] by [–2, 2]

How rough can the graph of 
a continuous function be?

The graph of the absolute value function
fails to be differentiable at a single
point. If you graph y � sin�1 (sin (x)) on
your calculator, you will see a continu-
ous function with an infinite number of
points of nondifferentiability. But can a
continuous function fail to be differen-
tiable at every point?

The answer, surprisingly enough, is
yes, as Karl Weierstrass showed in 1872.
One of his formulas (there are many like
it) was

f �x� � �
∞

n�0
� �

2
3

� �
n

cos �9n�x�,

a formula that expresses f as an infinite
(but converging) sum of cosines with 
increasingly higher frequencies. By
adding wiggles to wiggles infinitely
many times, so to speak, the formula
produces a function whose graph is too
bumpy in the limit to have a tangent
anywhere!
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110 Chapter 3 Derivatives

Later in this section we will prove a theorem that states that a function must be contin-
uous at a to be differentiable at a. This theorem would provide a quick and easy verifica-
tion that U is not differentiable at x � 0.

EXAMPLE 1 Finding Where a Function is not Differentiable

Find all points in the domain of f �x� � �x � 2� � 3  where f is not differentiable. 

SOLUTION

Think graphically! The graph of this function is the same as that of  y � �x �, translated 2
units to the right and 3 units up. This puts the corner at the point �2, 3�, so this function is
not differentiable at  x � 2.

At every other point, the graph is (locally) a straight line and f has derivative �1 or �1
(again, just like y � �x �). Now try Exercise 1.

Most of the functions we encounter in calculus are differentiable wherever they are de-
fined, which means that they will not have corners, cusps, vertical tangent lines, or points
of discontinuity within their domains. Their graphs will be unbroken and smooth, with a
well-defined slope at each point. Polynomials are differentiable, as are rational functions,
trigonometric functions, exponential functions, and logarithmic functions. Composites of
differentiable functions are differentiable, and so are sums, products, integer powers, and
quotients of differentiable functions, where defined. We will see why all of this is true as
the chapter continues. 

Differentiability Implies Local Linearity
A good way to think of differentiable functions is that they are locally linear; that is, a
function that is differentiable at a closely resembles its own tangent line very close to a. In
the jargon of graphing calculators, differentiable curves will “straighten out” when we
zoom in on them at a point of differentiability. (See Figure 3.15.)

Zooming in to “See” Differentiability

Is either of these functions differentiable at  x � 0 ?

(a) f (x� � �x � � 1 (b) g(x� � �x�2��� 0�.0�0�0�1� � 0.99

1. We already know that f is not differentiable at  x � 0;  its graph has a corner there.
Graph f and zoom in at the point �0, 1� several times. Does the corner show signs
of straightening out? 

2. Now do the same thing with g. Does the graph of g show signs of straightening
out? We will learn a quick way to differentiate g in Section 3.6, but for now 
suffice it to say that it is differentiable at x � 0, and in fact has a horizontal 
tangent there. 

3. How many zooms does it take before the graph of g looks exactly like a hori-
zontal line? 

4. Now graph f and g together in a standard square viewing window. They appear
to be identical until you start zooming in. The differentiable function eventually
straightens out, while the nondifferentiable function remains impressively 
unchanged.

EXPLORATION 1

[–4, 4] by [–3, 3]

(a)

[1.7, 2.3] by [1.7, 2.1]

(b)

[1.93, 2.07] by [1.85, 1.95]

(c)

Figure 3.15 Three different views of the
differentiable function f �x� � x cos �3x�.
We have zoomed in here at the point 
�2, 1.9�.
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Section 3.2 Differentiability 111

Figure 3.16 The symmetric difference
quotient (slope m1) usually gives a better
approximation of the derivative for a given
value of h than does the regular difference
quotient (slope m2), which is why the
symmetric difference quotient is used in
the numerical derivative.

 

x

y
f(a + h) – f(a – h)

2h

tangent line

m1 =

a – h a a + h

f(a + h) – f(a)
h

m2 =
Derivatives on a Calculator
Many graphing utilities can approximate derivatives numerically with good accuracy at
most points of their domains.

For small values of h, the difference quotient

�
f �a � h

h
� � f �a�
�

is often a good numerical approximation of f ��a�. However, as suggested by Figure 3.16,
the same value of h will usually yield a better approximation if we use the symmetric 
difference quotient

,

which is what our graphing calculator uses to calculate NDER f �a�, the numerical 
derivative of f at a point a. The numerical derivative of f as a function is denoted by
NDER f �x�. Sometimes we will use NDER � f �x�, a� for NDER f �a� when we want to
emphasize both the function and the point.

Although the symmetric difference quotient is not the quotient used in the definition of
f ��a�, it can be proven that 

lim
h→0

equals f ��a� wherever f ��a� exists. 
You might think that an extremely small value of h would be required to give an accu-

rate approximation of f ��a�, but in most cases h � 0.001 is more than adequate. In fact,
your calculator probably assumes such a value for h unless you choose to specify other-
wise (consult your Owner’s Manual ). The numerical derivatives we compute in this book
will use h � 0.001; that is,

NDER f �a� � .

EXAMPLE 2 Computing a Numerical Derivative

Compute  NDER �x3, 2�, the numerical derivative of x3 at  x � 2.

SOLUTION

Using  h � 0.001,

NDER �x3, 2� � � 12.000001.

Now try Exercise 17.

In Example 1 of Section 3.1, we found the derivative of x3 to be 3x2, whose value 
at x � 2 is 3�2�2 � 12. The numerical derivative is accurate to 5 decimal places. Not bad
for the push of a button.

Example 2 gives dramatic evidence that NDER is very accurate when h � 0.001. Such
accuracy is usually the case, although it is also possible for NDER to produce some sur-
prisingly inaccurate results, as in Example 3.

EXAMPLE 3 Fooling the Symmetric Difference Quotient

Compute  NDER ��x �, 0�, the numerical derivative of �x � at x � 0.

continued

�2.001�3 � �1.999�3

���
0.002

f �a � 0.001� � f �a � 0.001�
���

0.002

f �a � h� � f �a � h�
���

2h

f �a � h� � f �a � h�
���

2h
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SOLUTION

We saw at the start of this section that �x � is not differentiable at x � 0  since its right-
hand and left-hand derivatives at  x � 0  are not the same. Nonetheless,

NDER ��x �, 0� � lim
h→0

� lim
h→0

� lim
h→0

�
2
0
h
�

� 0.

The symmetric difference quotient, which works symmetrically on either side of 0,
never detects the corner! Consequently, most graphing utilities will indicate (wrongly)
that  y � �x � is differentiable at  x � 0, with derivative 0.

Now try Exercise 23.

In light of Example 3, it is worth repeating here that NDER f �a� actually does approach
f ��a� when f ��a� exists, and in fact approximates it quite well (as in Example 2).

�h � � �h �
��

2h

�0 � h � � �0 � h �
��

2h

112 Chapter 3 Derivatives

Looking at the Symmetric Difference Quotient 
Analytically

Let f �x� � x2 and let  h � 0.01.

1. Find 
�
f �10 � h

h
� � f �10�
� .

How close is it to f ��10�?
2. Find 

f �10 � h� � f �10 � h�
��� .

2h

How close is it to  f ��10�?
3. Repeat this comparison for f �x� � x3.

EXPLORATION 2

An Alternative to NDER

Graphing

y �

is equivalent to graphing y � NDER f �x�
(useful if NDER is not readily available
on your calculator).

f (x � 0.001) � f (x � 0.001)
����

0.002

[–2, 4] by [–1, 3]

(a)

(b)

X

X = .1

10
5
3.3333
2.5
2
1.6667
1.4286

Y1

.1
.2
.3
.4
.5
.6
.7

Figure 3.17 (a) The graph of NDER 
ln �x� and (b) a table of values. What graph
could this be? (Example 4)

EXAMPLE 4 Graphing a Derivative Using NDER

Let  f �x� � ln x. Use NDER to graph  y � f ��x�.  Can you guess what function f ��x� is
by analyzing its graph?

SOLUTION

The graph is shown in Figure 3.17a. The shape of the graph suggests, and the table of
values in Figure 3.17b supports, the conjecture that this is the graph of  y � 1�x. We will
prove in Section 3.9 (using analytic methods) that this is indeed the case.

Now try Exercise 27.

Differentiability Implies Continuity
We began this section with a look at the typical ways that a function could fail to have a
derivative at a point. As one example, we indicated graphically that a discontinuity in the
graph of f would cause one or both of the one-sided derivatives to be nonexistent. It is
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Section 3.2 Differentiability 113

actually not difficult to give an analytic proof that continuity is an essential condition for
the derivative to exist, so we include that as a theorem here.

Proof Our task is to show that  limx→a f �x� � f �a�, or, equivalently, that

lim
x→a

� f �x� � f �a�� � 0.

Using the Limit Product Rule (and noting that x � a is not zero), we can write

lim
x→a

� f �x� � f �a�� � lim
x→a [ �x � a� �

f �x
x
�

�

�

a
f �a�

� ]
� lim

x→a
�x � a� • lim

x→a
�
f �x

x
�

�

�

a
f �a�

�

� 0 • f ��a�

� 0. ■

The converse of Theorem 1 is false, as we have already seen. A continuous function
might have a corner, a cusp, or a vertical tangent line, and hence not be differentiable at a
given point. 

Intermediate Value Theorem for Derivatives
Not every function can be a derivative. A derivative must have the intermediate value
property, as stated in the following theorem (the proof of which can be found in ad-
vanced texts).

THEOREM 1 Differentiability Implies Continuity

If f has a derivative at  x � a, then f is continuous at  x � a.

THEOREM 2 Intermediate Value Theorem for Derivatives

If a and b are any two points in an interval on which f is differentiable, then f � takes
on every value between f ��a� and f ��b�.

EXAMPLE 5 Applying Theorem 2

Does any function have the Unit Step Function (see Figure 3.14) as its derivative?

SOLUTION

No. Choose some a � 0 and some b � 0. Then  U�a� � �1  and  U�b� � 1, but U does
not take on any value between �1 and 1. Now try Exercise 37.

The question of when a function is a derivative of some function is one of the central
questions in all of calculus. The answer, found by Newton and Leibniz, would revolu-
tionize the world of mathematics. We will see what that answer is when we reach
Chapter 5.
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114 Chapter 3 Derivatives

Quick Review 3.2 (For help, go to Sections 1.2 and 2.1.)

In Exercises 1–5, tell whether the limit could be used to define f ��a�
(assuming that f is differentiable at a).

1. lim
h→0

�
f �a � h

h
� � f �a�
� Yes 2. lim

h→0
�
f �a � h

h
� � f �h�
� No

3. lim
x→a

�
f �x

x
�

�

�

a
f �a�

� Yes 4. lim
x→a

�
f �a

a
� �

�

f
x
�x�

� Yes

5. lim
h→0

No
f �a � h� � f �a � h�
���

h

6. Find the domain of the function  y � x4�3. All reals

7. Find the domain of the function  y � x3�4. [0, 	)

8. Find the range of the function  y � �x � 2 � � 3. [3, 	)

9. Find the slope of the line  y � 5 � 3.2�x � p�. 3.2

10. If f �x� � 5x, find 

.
f �3 � 0.001� � f �3 � 0.001�
���

0.002

Section 3.2 Exercises

In Exercises 1–4, compare the right-hand and left-hand derivatives 
to show that the function is not differentiable at the point P. Find all
points where f is not differentiable.

1. 2.

3. 4.

In Exercises 5–10, the graph of a function over a closed interval D is
given. At what domain points does the function appear to be

(a) differentiable? (b) continuous but not differentiable?

(c) neither continuous nor differentiable?

5. 6.

7. 8.
y � f (x)
D :  –2     x     3

x

y

0 1 2

1

2

–1–2

≤ ≤

3

3

y � f (x)
D:  –3     x     3

x

y

0 1 2

1

–1
–1–2

–2

≤ ≤

3–3

y � f (x)
D:  –2     x     3

x

y

0 1 2

1

2

–1
–1–2

–2

≤ ≤

3

y � f (x)
D:  –3     x     2

x

y

0 1 2

1

2

–1
–1–2–3

–2

≤ ≤

y � f(x)

x

y

1

1y � x

P(1, 1)
y �1–x

y � f (x)

x

y

0

1

1

y � 1
–
x

y � 2x � 1

P(1, 1)

x

y

y � 2x

0

P(1, 2)

y � 2

1 2

1

2

y � f (x)

x

y

y � x2

P(0, 0)

y � x

y � f (x)

9. 10.

In Exercises 11–16, the function fails to be differentiable at  x � 0. 
Tell whether the problem is a corner, a cusp, a vertical tangent, or a 
discontinuity.

11.
tan�1 x, x � 0

y � {1, x � 0
12. y � x4�5

13. y � x � �x�2� � 2 Corner 14. y � 3 � �3 x� Vertical tangent

15. y � 3x � 2�x � � 1 Corner 16. y � �3 �x��� Cusp

In Exercises 17–26, find the numerical derivative of the given func-
tion at the indicated point. Use h � 0.001. Is the function differen-
tiable at the indicated point?

17. f (x) � 4x � x2, x � 0 4, yes 18. f (x) � 4x � x2, x � 3 �2, yes

19. f (x) � 4x � x2, x � 1 2, yes 20. f (x) � x3 � 4x, x � 0

21. f (x) � x3 � 4x, x � �2 22. f (x) � x3 � 4x, x � 2

23. f (x) � x2�3, x � 0 24. f (x) � �x � 3 �, x � 3

25. f (x) � x2/5, x � 0 26. f (x) � x4/5, x � 0

Group Activity In Exercises 27–30, use NDER to graph the deriv-
ative of the function. If possible, identify the derivative function by
looking at the graph.

27. y � �cos x 28. y � 0.25x4

29. y � 30. y � �ln �cos x �

In Exercises 31–36, find all values of x for which the function is 
differentiable. 

31. f �x� � �
x2 �

x3

4
�

x
8
� 5

� 32. h�x� � �3 3�x��� 6� � 5

33. P�x� � sin ��x �� � 1 34. Q�x� � 3 cos ��x �� All reals

35.
�x � 1�2, x � 0

g�x� � {2x � 1, 0 � x � 3 All reals except x � 3
�4 � x�2, x 
 3

x �x �
�

2

y � f(x)
D:  –3     x     3

x

y

0 1–1

≤ ≤

2 3–2–3

2

4
y � f(x)
D:  –1     x     2

x

y

0 1 2

1

–1

≤ ≤

5

(a) All points in [�3, 2]  (b) None (c) None (a) All points in [�2, 3]  (b) None  (c) None

(a) All points in [�3, 3] except x � 0  (b) None  (c) x � 0

(a) All points in [�2, 3] except x � �1, 0, 2  
(b) x � �1  (c) x � 0, x � 2

(a) All points in [�1, 2] except x � 0
(b) x � 0  (c) None

(a) All points in [�3, 3] except x � �2, 2
(b) x � �2, x � 2  (c) None

Discontinuity

Cusp

�3.999999, yes

8.000001, yes

0, no

0, no

0, no

0, no

8.000001, yes

31. All reals except x � �1, 5

All reals except x � 2

33. All reals except x � 0
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45. Multiple Choice Which of the following is equal to the right-
hand derivative of f at  x � 0? C

(A) 2x (B) 2 (C) 0 (D) �	 (E) 	

Explorations
46. (a) Enter the expression “x � 0” into Y1 of your calculator using

“�” from the TEST menu. Graph Y1 in DOT MODE in the
window [�4.7, 4.7] by [�3.1, 3.1].

(b) Describe the graph in part (a).

(c) Enter the expression “x 
 0” into Y1 of your calculator using
“
” from the TEST menu. Graph Y1 in DOT MODE in the
window [�4.7, 4.7] by [�3.1, 3.1].

(d) Describe the graph in part (c).

47. Graphing Piecewise Functions on a Calculator Let

x2, x � 0
f �x� � {2x, x � 0.

(a) Enter the expression “(X2)(X�0)�(2X)(X�0)” into Y1 of
your calculator and draw its graph in the window [�4.7, 4.7] by
[�3, 5].

(b) Explain why the values of Y1 and f (x) are the same.

(c) Enter the numerical derivative of Y1 into Y2 of your
calculator and draw its graph in the same window. Turn off the
graph of Y1.

(d) Use TRACE to calculate NDER(Y1, x, �0.1), NDER(Y1, x, 0),
and NDER(Y1, x, 0.1). Compare with Section 3.1, Example 6.

Extending the Ideas
48. Oscillation There is another way that a function might fail to

be differentiable, and that is by oscillation. Let

x sin �
1
x

� , x � 0
f �x� � {0, x � 0.

(a) Show that f is continuous at x � 0.

(b) Show that

�
f �0 � h

h
� � f �0�
�� sin �

1
h

� .

(c) Explain why

lim
h→0

�
f �0 � h

h
� � f �0�
�

does not exist.

(d) Does f have either a left-hand or right-hand derivative 
at  x � 0?

(e) Now consider the function

x2 sin �
1
x

� , x � 0
g�x� � {0, x � 0.

Use the definition of the derivative to show that g is
differentiable at  x � 0  and that  g��0� � 0.

36. C�x� � x �x � All reals

37. Show that the function

0, �1 � x � 0
f �x� � {1, 0 � x � 1

is not the derivative of any function on the interval  �1 � x � 1.

38. Writing to Learn Recall that the numerical derivative
�NDER� can give meaningless values at points where a function
is not differentiable. In this exercise, we consider the numerical
derivatives of the functions 1�x and 1�x2 at  x � 0.

(a) Explain why neither function is differentiable at  x � 0.

(b) Find NDER at  x � 0  for each function. 

(c) By analyzing the definition of the symmetric difference
quotient, explain why NDER returns wrong responses that are 
so different from each other for these two functions.

39. Let f be the function defined as

3 � x, x � 1
f �x� � {ax2 � bx, x 
 1

where a and b are constants. 

(a) If the function is continuous for all x, what is the relationship
between a and b? (a) a � b � 2

(b) Find the unique values for a and b that will make f both
continuous and differentiable. a � �3 and b � 5

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

40. True or False If f has a derivative at  x � a, then f is
continuous at  x � a.  Justify your answer. True. See Theorem 1.

41. True or False If f is continuous at  x � a, then f has a
derivative at  x � a.  Justify your answer.

42. Multiple Choice Which of the following is true about the
graph of  f (x) � x4/5 at  x � 0? B

(A) It has a corner.

(B) It has a cusp.

(C) It has a vertical tangent.

(D) It has a discontinuity.

(E) f (0) does not exist.

43. Multiple Choice Let  f (x) � �3
x � 1�.  At which of the

following points is  f �(a) � NDER ( f, x, a)? A

(A) a � 1 (B) a � �1 (C) a � 2 (D) a � �2 (E) a � 0

In Exercises 44 and 45, let

2x � 1, x � 0
f �x� � {x2 � 1, x � 0.

44. Multiple Choice Which of the following is equal to the left-
hand derivative of f at  x � 0? B

(A) 2x (B) 2 (C) 0 (D) �	 (E) 	

The function f (x) does not
have the intermediate value
property. Choose some a in
(�1, 0) and b in (0, 1). Then
f (a) � 0 and f (b) � 1, but f
does not take on any value
between 0 and 1.

41. False. The function f (x) � |x| is continuous at x � 0 but is not differen-
tiable at x � 0.
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116 Chapter 3 Derivatives

Rules for Differentiation

Positive Integer Powers, Multiples, 
Sums, and Differences
The first rule of differentiation is that the derivative of every constant function is the zero
function.

3.3

What you’ll learn about

• Positive Integer Powers, Multiples,
Sums, and Differences

• Products and Quotients

• Negative Integer Powers of x

• Second and Higher Order 
Derivatives

. . . and why

These rules help us find 
derivatives of functions 
analytically more efficiently.

RULE 1 Derivative of a Constant Function

If f is the function with the constant value c, then 

�
d
d
x
f
� � �

d
d
x
��c) � 0.

Proof of Rule 1 If f �x� � c is a function with a constant value c, then 

lim
h→0

�
f �x � h

h
� � f �x�
�� lim

h→0
�
c �

h
c

� � lim
h→0

0 � 0. ■

The next rule is a first step toward a rule for differentiating any polynomial.

RULE 2 Power Rule for Positive Integer Powers of x

If n is a positive integer, then

�
d
d
x
��xn� � nxn�1.

Proof of Rule 2 If f �x� � xn, then f �x � h� � �x � h�n and the difference quotient
for f is

�
�x � h

h
�n � xn

� .

We can readily find the limit of this quotient as h→0 if we apply the algebraic identity

an � bn � �a � b��an�1 � an�2b � … � abn�2 � bn�1� n a positive integer

with a � x � h and b � x. For then �a � b� � h and the h’s in the numerator and denomi-
nator of the quotient cancel, giving

�
f �x � h

h
� � f �x�
�� �

�x � h
h
�n � xn

�

�

� �x � h�n�1 � �x � h�n�2x � … � �x � h�xn�2 � xn�1.

n terms, each with limit xn�1 as h→0

Hence,

�
d
d
x
��xn� � lim

h→0
�
f �x � h

h
� � f �x�
�� nxn�1. ■

h��x � h�n�1 � �x � h�n�2x � … � �x � h�xn�2 � xn�1�
������

h
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Section 3.3 Rules for Differentiation 117

The Power Rule says: To differentiate xn, multiply by n and subtract 1 from the expo-
nent. For example, the derivatives of x2, x3, and x4 are 2x1, 3x2, and 4x3, respectively.

RULE 3 The Constant Multiple Rule

If u is a differentiable function of x and c is a constant, then 

�
d
d
x
��cu� � c �

d
d
u
x
� .

RULE 4 The Sum and Difference Rule

If u and v are differentiable functions of x, then their sum and difference are differ-
entiable at every point where u and v are differentiable. At such points,

�
d
d
x
��u � v� � �

d
d
u
x
� � �

d
d

v
x
� .

Proof of Rule 3

�
d
d
x
��cu� � lim

h→0
�
cu�x � h

h
� � cu�x�
�

� c lim
h→0
�
u�x � h

h
� � u�x�
�

� c �
d
d
u
x
� ■

Rule 3 says that if a differentiable function is multiplied by a constant, then its 
derivative is multiplied by the same constant. Combined with Rule 2, it enables us to
find the derivative of any monomial quickly; for example, the derivative of 7x4 is
7�4x3� � 28x3. 

To find the derivatives of polynomials, we need to be able to differentiate sums and dif-
ferences of monomials. We can accomplish this by applying the Sum and Difference
Rule.

Proof of Rule 4
We use the difference quotient for f �x� � u�x� � v�x�.

�
d
d
x
��u�x� � v�x�� � lim

h→0

� lim
h→0 [�u�x � h

h
� � u�x�
���

v�x � h
h
� � v�x�
�]

� lim
h→0
�
u�x � h

h
� � u�x�
�� lim

h→0
�
v�x � h

h
� � v�x�
�

� �
d
d
u
x
� � �

d
dv

x
�

The proof of the rule for the difference of two functions is similar. ■

�u�x � h� � v�x � h�� � �u�x� � v�x��
�����

h

Denoting Functions by u and v

The functions we work with when we
need a differentiation formula are likely
to be denoted by letters like f and g.
When we apply the formula, we do not
want to find the formula using these
same letters in some other way. To
guard against this, we denote the 
functions in differentiation rules by 
letters like u and v that are not likely to
be already in use.
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118 Chapter 3 Derivatives

EXAMPLE 1 Differentiating a Polynomial

Find  �
d
d
p
t
� if  p � t3 � 6t2 � �

5
3

� t � 16.

SOLUTION

By Rule 4 we can differentiate the polynomial term-by-term, applying Rules 1 through 3
as we go.

�
d
d
p
t
� � �

d
d
t
��t3� � �

d
d
t
��6t2� � �

d
d
t
�( �

5
3

� t) � �
d
d
t
��16� Sum and Difference Rule

� 3t2 � 6 • 2t � �
5
3

� � 0 Constant and Power Rules

� 3t2 � 12t � �
5
3

� 
Now try Exercise 5.

EXAMPLE 2 Finding Horizontal Tangents

Does the curve  y � x4 � 2x2 � 2 have any horizontal tangents? If so, where?

SOLUTION

The horizontal tangents, if any, occur where the slope  dy�dx is zero. To find these
points, we

(a) calculate  dy�dx:

�
d
d

y
x
� � �

d
d
x
��x4 � 2x2 � 2� � 4x3 � 4x.

(b) solve the equation  dy�dx � 0  for  x:

4x3 � 4x � 0

4x�x2 � 1� � 0

x � 0, 1, �1.

The curve has horizontal tangents at  x � 0, 1, and �1.  The corresponding points on the
curve (found from the equation  y � x4 � 2x2 � 2)  are  �0, 2�, �1, 1�, and  ��1, 1�.  You
might wish to graph the curve to see where the horizontal tangents go.

Now try Exercise 7.

The derivative in Example 2 was easily factored, making an algebraic solution of the
equation dy�dx � 0 correspondingly simple. When a simple algebraic solution is not pos-
sible, the solutions to dy�dx � 0 can still be found to a high degree of accuracy by using
the SOLVE capability of your calculator. 

EXAMPLE 3 Using Calculus and Calculator

As can be seen in the viewing window ��10, 10� by ��10, 10�, the graph of  
y � 0.2x4 � 0.7x3 � 2x2 � 5x � 4 has three horizontal tangents (Figure 3.18). 
At what points do these horizontal tangents occur?

continued

[–10, 10] by [–10, 10]

Figure 3.18 The graph of

y � 0.2x4 � 0.7x3 � 2x2 � 5x � 4

has three horizontal tangents. (Example 3)
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Section 3.3 Rules for Differentiation 119

SOLUTION

First we find the derivative

�
d
d
y
x
� � 0.8x3 � 2.1x2 � 4x � 5.

Using the calculator solver, we find that  0.8x3 �2.1x2 � 4x � 5 � 0 when x 	 �1.862,
0.9484, and  3.539.  We use the calculator again to evaluate the original function at these
x-values and find the corresponding points to be approximately  ��1.862, �5.321�,
�0.9484, 6.508�, and  �3.539, �3.008�.

Now try Exercise 11.

Products and Quotients
While the derivative of the sum of two functions is the sum of their derivatives and the de-
rivative of the difference of two functions is the difference of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. 

For instance,

�
d
d
x
��x • x� � �

d
d
x
��x2� � 2x, while �

d
d
x
��x� • �

d
d
x
��x� � 1 • 1 � 1.

The derivative of a product is actually the sum of two products, as we now explain.

RULE 5 The Product Rule

The product of two differentiable functions u and v is differentiable, and

�
d
d
x
��uv� � u�

d
d

v
x
� � v�

d
d

u
x
� .

Proof of Rule 5 We begin, as usual, by applying the definition.

�
d
d
x
��uv� � lim

h→0

To change the fraction into an equivalent one that contains difference quotients for the de-
rivatives of u and v, we subtract and add u�x � h�v�x� in the numerator. Then,

�
d
d
x
��uv� � lim

h→0

� lim
h→0 [u�x � h��

v�x � h
h
� � v�x�
�� v�x��

u�x � h
h
� � u�x�
� ]

� lim
h→0

u�x � h� • lim
h→0
�
v�x � h

h
� � v�x�
�� v�x� • lim

h→0
�
u�x � h

h
� � u�x�
� .

As h approaches 0, u�x � h� approaches u�x� because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of dv�dx and du�dx, respectively, at x.
Therefore

�
d
d
x
��uv� � u�

d
d

v
x
� � v�

d
d

u
x
� . ■

Factor and
separate.

u�x � h�v�x � h� � u�x � h�v�x� � u�x � h�v�x� � u�x�v�x�
�������

h

u�x � h�v�x � h� � u�x�v�x�
����

h

On Rounding Calculator Values

Notice in Example 3 that we rounded
the x-values to four significant digits
when we presented the answers. The
calculator actually presented many
more digits, but there was no practical
reason for writing all of them. When we
used the calculator to compute the cor-
responding y-values, however, we used

the x-values stored in the calculator, not
the rounded values. We then rounded
the y-values to four significant digits
when we presented the ordered pairs.
Significant “round-off errors” can accu-
mulate in a problem if you use rounded
intermediate values for doing additional
computations, so avoid rounding until
the final answer.

You can remember the Product Rule
with the phrase “the first times the de-
rivative of the second plus the second
times the derivative of the first.”

Gottfried Wilhelm
Leibniz (1646–1716)

The method of limits
used in this book was
not discovered until
nearly a century after
Newton and Leibniz,
the discoverers of
calculus, had died.

To Leibniz, the key
idea was the differential, an infinitely
small quantity that was almost like zero,
but which—unlike zero—could be used in
the denominator of a fraction. Thus, Leib-
niz thought of the derivative dy �dx as the
quotient of two differentials, dy and dx.

The problem was explaining why
these differentials sometimes became
zero and sometimes did not! See 
Exercise 59.

Some 17th-century mathematicians
were confident that the calculus of
Newton and Leibniz would eventually be
found to be fatally flawed because of
these mysterious quantities. It was only
after later generations of mathemati-
cians had found better ways to prove
their results that the calculus of Newton
and Leibniz was accepted by the entire
scientific community.
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120 Chapter 3 Derivatives

EXAMPLE 4 Differentiating a Product

Find f ��x� if f �x� � �x2 � 1��x3 � 3�.

SOLUTION

From the Product Rule with  u � x2 � 1 and v � x3 � 3, we find

f ��x� � �
d
d
x
���x2 � 1��x3 � 3�� � �x2 � 1��3x2� � �x3 � 3��2x�

� 3x4 � 3x2 � 2x4 � 6x

� 5x4 � 3x2 � 6x. Now try Exercise 13.

We could also have done Example 4 by multiplying out the original expression and
then differentiating the resulting polynomial. That alternate strategy will not work, how-
ever, on a product like x2 sin x.

Just as the derivative of the product of two differentiable functions is not the product of
their derivatives, the derivative of a quotient of two functions is not the quotient of their
derivatives. What happens instead is this:

RULE 6 The Quotient Rule

At a point where  v � 0, the quotient  y � u�v of two differentiable functions is dif-
ferentiable, and

�
d
d
x
�( �

u
v

� ) �

v�
d
d
u
x
� � u�

d
d
v
x
�

�� .
v2

Proof of Rule 6

�
d
d
x
� ( �

u
v

� ) � lim
h→0

� lim
h→0

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of u and v, we subtract and add v�x�u�x� in the numerator. This allows us
to continue with

�
d
d
x
� ( �

u
v

� ) � lim
h→0

� lim
h→0

.

Taking the limits in both the numerator and denominator now gives us the Quotient 
Rule. ■

EXAMPLE 5 Supporting Computations Graphically

Differentiate  f (x) � �
x
x

2

2
�

�

1
1

� . Support graphically.

v�x��
u�x � h

h
� � u�x�
�� u�x��

v�x � h
h
� � v�x�
�

�����
v�x � h�v�x�

v�x�u�x � h� � v�x�u�x� � v�x�u�x� � u�x�v�x � h�
������

hv�x � h�v�x�

v�x�u�x � h� � u�x�v�x � h�
����

hv�x � h�v�x�

�
u
v�

�
x
x

�

�

h
h
�
�

� � �
u
v�

�
x
x
�
�

�

��
h

Using the Quotient Rule

Since order is important in subtraction, 
be sure to set up the numerator of the
Quotient Rule correctly:

v times the derivative of u

minus

u times the derivative of v.

You can remember the Quotient Rule
with the phrase “bottom times the de-
rivative of the top minus the top times
the derivative of the bottom, all over
the bottom squared.”

continued
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SOLUTION

We apply the Quotient Rule with u � x2 � 1  and  v � x2 � 1:

f ��x� �

�

� �
�x2

4
�

x
1�2� .

The graphs of  y1 � f ��x� calculated above and of  y2 � NDER f �x� are shown in 
Figure 3.19. The fact that they appear to be identical provides strong graphical support
that our calculations are indeed correct. Now try Exercise 19.

EXAMPLE 6 Working with Numerical Values

Let  y � uv be the product of the functions u and v. Find  y��2� if

u�2� � 3, u��2� � �4, v�2� � 1, and v��2� � 2.

SOLUTION

From the Product Rule, y� � �uv�� � uv� � vu�. In particular,

y��2� � u�2�v��2� � v�2�u��2�

� �3��2� � �1���4�

� 2. Now try Exercise 23.

Negative Integer Powers of x
The rule for differentiating negative powers of x is the same as Rule 2 for differentiating
positive powers of x, although our proof of Rule 2 does not work for negative values of n.
We can now extend the Power Rule to negative integer powers by a clever use of the Quo-
tient Rule.

2x3 � 2x � 2x3 � 2x
���

�x2 � 1�2

v(du �dx) � u(dv/dx)
���

v2

�x2 � 1� • 2x � �x2 � 1� • 2x
���

�x2 � 1�2

[–3, 3] by [–2, 2]

Figure 3.19 The graph of 

y � �
�x2

4
�

x
1�2�

and the graph of 

y � NDER (�xx2

2
�

�

1
1

�)
appear to be the same. (Example 5)

RULE 7 Power Rule for Negative Integer Powers of x

If n is a negative integer and  x � 0, then

�
d
d
x
��xn� � nxn�1.

Proof of Rule 7 If n is a negative integer, then n � �m, where m is a positive inte-
ger. Hence, xn � x�m � 1�xm, and

�
d
d
x
��x n� � �

d
d
x
�(�

x
1
m�) �

� �
0 �

x
m
2m

xm�1

�

� �mx�m�1

� nxn�1. ■

xm • �
d
d
x
��1� � 1 • �

d
d
x
��xm�

���
�xm�2
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122 Chapter 3 Derivatives

EXAMPLE 7 Using the Power Rule

Find an equation for the line tangent to the curve 

y � �
x2

2
�

x
3

�

at the point �1, 2�. Support your answer graphically.

SOLUTION

We could find the derivative by the Quotient Rule, but it is easier to first simplify the
function as a sum of two powers of x.

�
d
d

y
x
� � �

d
d
x
�(�

2
x
x

2

� � �
2
3
x
�)

� �
d
d
x
�( �

1
2

� x � �
3
2

� x�1)
� �

1
2

� � �
3
2

� x�2

The slope at  x � 1  is

�
d
d

y
x
� |

x�1
� [ �

1
2

� � �
3
2

� x�2]
x�1

� �
1
2

� � �
3
2

� � �1.

The line through �1, 2� with slope  m � �1  is

y � 2 � ��1��x � 1�

y � �x � 1 � 2

y � �x � 3.

We graph  y � �x2 � 3��2x and  y � �x � 3 (Figure 3.20), observing that the line ap-
pears to be tangent to the curve at �1, 2�. Thus, we have graphical support that our com-
putations are correct. Now try Exercise 27.

Second and Higher Order Derivatives
The derivative y� � dy�dx is called the first derivative of y with respect to x. The first deriva-
tive may itself be a differentiable function of x. If so, its derivative,

y� � �
d
d
y
x
�

� � �
d
d
x
�(�

d
d

y
x
�) � �

d
dx

2y
2� ,

is called the second derivative of y with respect to x. If y� (“y double-prime”) is differen-
tiable, its derivative,

y� � �
d
d
y
x
�

� � �
d
dx

3y
3� ,

is called the third derivative of y with respect to x. The names continue as you might ex-
pect they would, except that the multiple-prime notation begins to lose its usefulness after
about three primes. We use

y�n� � �
d
d
x
�y�n�1� “y super n”

to denote the nth derivative of y with respect to x. (We also use dny�dxn.) Do not confuse
y �n� with the nth power of y, which is yn.

[–6, 6] by [–4, 4]

Figure 3.20 The line y � �x � 3
appears to be tangent to the graph of 

y � �
x2

2
�

x
3

�

at the point �1, 2). (Example 7)

Technology Tip

HIGHER ORDER DERIVATIVES WITH
NDER
Some graphers will allow the nesting of
the NDER function,

NDER2 f � NDER�NDER f �, 

but such nesting, in general, is safe only
to the second derivative. Beyond that,
the error buildup in the algorithm makes
the results unreliable. 
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Section 3.3 Rules for Differentiation 123

EXAMPLE 8 Finding Higher Order Derivatives

Find the first four derivatives of  y � x3 � 5x2 � 2.

SOLUTION

The first four derivatives are:

First derivative: y� � 3x2 � 10x;

Second derivative: y� � 6x � 10;

Third derivative: y� � 6;

Fourth derivative: y�4� � 0.

This function has derivatives of all orders, the fourth and higher order derivatives all
being zero. Now try Exercise 33.

EXAMPLE 9 Finding Instantaneous Rate of Change

An orange farmer currently has 200 trees yielding an average of 15 bushels of oranges
per tree. She is expanding her farm at the rate of 15 trees per year, while improved hus-
bandry is improving her average annual yield by 1.2 bushels per tree. What is the cur-
rent (instantaneous) rate of increase of her total annual production of oranges?

SOLUTION

Let the functions t and y be defined as follows.

t(x) � the number of trees x years from now.

y(x) � yield per tree x years from now. 

Then p(x) � t(x)y(x) is the total production of oranges in year x. We know the following
values.

t(0) � 200, y(0) � 15

t�(0) � 15, y�(0) � 1.2

We need to find p�(0), where p � ty.

p�(0) � t(0)y�(0) � y(0)t�(0)

� (200)(1.2) � (15)(15)

� 465

The rate we seek is 465 bushels per year. Now try Exercise 51.

Quick Review 3.3 (For help, go to Sections 1.2 and 3.1.)

In Exercises 1–6, write the expression as a sum of powers of x.

1. �x2 � 2��x�1 � 1� 2. (�x2 �

x
1

� )
�1

x � x�1

3. 3x2 � �
2
x

� � �
x
5
2� 4. �

3x4 �

2
2
x
x
2

3 � 4
�

5. �x�1 � 2��x�2 � 1� 6. �
x�1

x
�
�3

x�2

� x2 � x

7. Find the positive roots of the equation

2x3 �5x2 � 2x � 6 � 0

and evaluate the function y � 500x6 at each root. Round your
answers to the nearest integer, but only in the final step. 

x � x2 – 2x�1 – 2

3x2 – 2x�1 � 5x�2

�
3
2

�x2 � x � 2x �2

x�3 � x�1 � 2x�2 � 2

Root: x 	 1.173, 500x6 	 1305
Root: x 	 2.394, 500x6 	 94, 212
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124 Chapter 3 Derivatives

8. If f �x� � 7  for all real numbers x, find

(a) f �10�. 7 (b) f �0�. 7

(c) f �x � h�. 7 (d) lim
x→a

�
f �x

x
�

�

�

a
f �a�

� . 0

9. Find the derivatives of these functions with respect to x.

(a) f �x� � p 0 (b) f �x� � p2 0 (c) f �x� � p15 0

10. Find the derivatives of these functions with respect to x using
the definition of the derivative.

(a) f �x� � �
p

x
� (b) f �x� � �

p

x
� f�(x) � ��x�2

Section 3.3 Exercises

In Exercises 1–6, find  dy�dx.

1. y � �x2 � 3 dy/dx � �2x 2. y � �
x
3

3

� � x dy/dx � x2 � 1

3. y � 2x � 1 dy/dx � 2 4. y � x2 � x � 1 dy/dx � 2x � 1

5. y � �
x
3

3

� � �
x
2

2

� � x 6. y � 1 � x � x2 � x3

In Exercises 7–12, find the horizontal tangents of the curve.

7. y � x3 � 2x2 � x � 1 8. y � x3 � 4x2 � x � 2

9. y � x4 � 4x2 � 1 10. y � 4x3 � 6x2 � 1 At x � 0, 1

11. y � 5x3 � 3x5 12. y � x4 � 7x3 � 2x2 � 15

13. Let  y � �x � 1��x2 � 1�. Find dy�dx (a) by applying the
Product Rule, and (b) by multiplying the factors first and then
differentiating. (a) 3x2 � 2x � 1  (b) 3x2 � 2x � 1

14. Let  y � �x2 � 3��x.  Find dy�dx (a) by using the Quotient 
Rule, and (b) by first dividing the terms in the numerator by 
the denominator and then differentiating. 

In Exercises 15–22, find  dy�dx. Support your answer graphically.

15. (x3 � x � 1)(x4 � x2 � 1) 16. (x2 � 1)(x3 � 1)

17. y � �
2
3

x
x

�

�

5
2

�  ��
(3x

1
�

9
2)2� 18. y � �

x2 �

x
5

2
x � 1
� ��

x
5
2� � �

x
2
3�

19. y � �
x
3
4� 20. y � �1 � x��1 � x2��1

21. y � �
1 �

x2

x3� �
(
x
1

4

�

�

x
2
3
x
)2� 22. y ��

�
�
x
x

�

�

1
1
�
�
�
�
x
x

�

�

2
2

�
�

�

23. Suppose u and v are functions of x that are differentiable 
at x � 0, and that  u�0� � 5, u��0� � �3, v�0� � �1, v��0� � 2.
Find the values of the following derivatives at  x � 0.

(a) �
d
d
x
��uv� 13 (b) �

d
d
x
�( �

u
v

� ) �7

(c) �
d
d
x
�( �

u
v

� ) �
2
7
5
� (d) �

d
d
x
��7v � 2u� 20

24. Suppose u and v are functions of x that are differentiable 
at  x � 2  and that  u�2� � 3, u��2� � �4, v�2� � 1, and
v��2� � 2.  Find the values of the following derivatives 
at  x � 2.

(a) �
d
d
x
��uv� 2 (b) �

d
d
x
�( �

u
v

� ) �10

(c) �
d
d
x
�( �

u
v

� ) �
1
9
0
� (d) �

d
d
x
��3u � 2v � 2uv� �12

�x � 1��x 2 � x � 1�
���

x3

25. Which of the following numbers is the slope of the line tangent
to the curve  y � x2 � 5x at  x � 3? (iii)

i. 24 ii. �5�2 iii. 11 iv. 8

26. Which of the following numbers is the slope of the line 
3x � 2y � 12 � 0? (iii)

i. 6 ii. 3 iii. 3�2 iv. 2�3

In Exercises 27 and 28, find an equation for the line tangent to the
curve at the given point.

27. y � �
x3

2
�

x
1

�, x � 1 28. y � �
x4

x
�
2

2
�, x � �1

In Exercises 29–32, find dy�dx.

29. y � 4x�2 � 8x � 1 �8x�3 – 8

30. y � �
x
4

�4
� � �

x
3

�3
� � �

x
2

�2
� � x�1 � 3 �x�5 � x�4 – x�3 � x�2

31. y � �
�
�

x�
x�

�

�

1
1

� 32. y � 2�x� � �
�
1

x�
� � �

2x
1
3/2�

In Exercises 33–36, find the first four derivatives of the function.

33. y � x4 � x3 � 2x2 � x � 5 34. y � x2 � x � 3

35. y � x�1 � x2   36. y � �
x �

x
1

�

In Exercises 37–42, support your answer graphically.

37. Find an equation of the line perpendicular to the tangent to the
curve  y � x3 � 3x � 1  at the point �2, 3�.  y � ��

1
9

�x � �
2
9
9
�

38. Find the tangents to the curve  y � x3 � x at the points where
the slope is 4. What is the smallest slope of the curve? At what
value of x does the curve have this slope? See page 126.

39. Find the points on the curve  y � 2x3 � 3x2 � 12x � 20  where
the tangent is parallel to the x-axis. (�1, 27) and (2, 0)

40. Find the x- and y-intercepts of the line that is tangent to the
curve  y � x3 at the point ��2, �8�.  x-intercept � �4/3,

41. Find the tangents to Newton’s serpentine,

y � �
x2

4
�

x
1

� ,

at the origin and the point �1, 2�.
42. Find the tangent to the witch of Agnesi,

y � �
4 �

8
x2� ,

at the point �2, 1�.

1
�
�x�

f�(x) � �
�

1
�

dy/dx � x2 � x � 1 dy/dx � �1 � 2x � 3x2

At x � 1/3, 1

At x � 0, ��2�
At x � �1, 0, 1

8. At x � 	 0.131, 	 2.535
4 � �13�
��

3
4 � �13�
��

3
12. At x � 0, 	 0.198, 	 5.052

21 � �377�
��

8
21 � �377�
��

8

14. (a)�
x(2x) �

x
(
2
x2 � 3)
�� �

x2

x
�
2

3
� (b) 1 � �

x
3
2�

15. 7x6 � 10x4 � 4x3 � 6x2 � 2x � 1

5x4 � 3x2 � 2x

�
x2

(1
�

�

2x
x2

�

)2
1

�

�
(x2

1
�

2 �

3x
6
�

x2

2)2�

y � �
1
2

� x � �
1
2

� y � 2x � 5

y� � 4x3 � 3x2 � 4x � 1, y� � 12x2 � 6x � 4, y� �24x � 6, y(iv) � 24

y� � �x�2 � 2x,
y� � 2x�3 � 2, y� � �6x�4, y(iv) � 24x�5

y� � 2x � 1, y� � 2, y� � 0, y(iv) � 0

36. y� � ��
x
1
2�, y� � �

x
2
3�, y� � �

�
x4

6
�, y(iv) � �

2
x
4
5�

y-intercept � 16

At (0, 0): y � 4x
At (1, 2): y � 2

y � ��
1
2

�x � 2

1
��
�x�(�x� � 1)2
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43. Use the definition of derivative (given in Section 3.1,
Equation 1) to show that 

(a) �
d
d
x
��x� � 1.

(b) �
d
d
x
���u� � ��

d
d

u
x
� .

44. Use the Product Rule to show that 

�
d
d
x
� �c • f �x�� � c • �

d
d
x
� f �x�

for any constant c.

45. Devise a rule for �
d
d
x
�(�

f �
1
x�
� ) . ��

[
f
f(
�

x
(x
)]
)
2�

When we work with functions of a single variable in mathematics, we
often call the independent variable x and the dependent variable y.
Applied fields use many different letters, however. Here are some 
examples.

46. Cylinder Pressure If gas in a cylinder is maintained at a
constant temperature T, the pressure P is related to the volume V
by a formula of the form

P � �
V

n
�

RT
nb

� � �
a
V
n

2

2

� ,

in which a, b, n, and R are constants. Find dP�dV.

47. Free Fall When a rock falls from rest near the surface of the
earth, the distance it covers during the first few seconds is given
by the equation

s � 4.9t2.

In this equation, s is the distance in meters and t is the elapsed
time in seconds. Find ds�dt and d2s�dt2.

Group Activity In Exercises 48–52, work in groups of two or three
to solve the problems.

48. The Body’s Reaction to Medicine The reaction of the body
to a dose of medicine can often be represented by an equation of
the form

R � M2 ( �
C
2

� � �
M
3
� ) ,

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood
pressure, R is measured in millimeters of mercury. If the
reaction is a change in temperature, R is measured in degrees,
and so on.

Find dR�dM. This derivative, as a function of M, is called the
sensitivity of the body to medicine. In Chapter 4, we shall see
how to find the amount of medicine to which the body is most
sensitive. Source: Some Mathematical Models in Biology,
Revised Edition, December 1967, PB-202 364, p. 221;
distributed by N.T.I.S., U.S. Department of Commerce.

49. Writing to Learn Recall that the area A of a circle with
radius r is pr2 and that the circumference C is 2pr. Notice 
that dA�dr � C. Explain in terms of geometry why the
instantaneous rate of change of the area with respect to the
radius should equal the circumference. 

50. Writing to Learn Recall that the volume V of a sphere 
of radius r is  �4�3�pr 3 and that the surface area A is 4pr2.
Notice that  dV�dr � A. Explain in terms of geometry why 
the instantaneous rate of change of the volume with respect to
the radius should equal the surface area. 

51. Orchard Farming An apple farmer currently has 156 trees
yielding an average of 12 bushels of apples per tree. He is
expanding his farm at a rate of 13 trees per year, while improved
husbandry is improving his average annual yield by 1.5 bushels
per tree. What is the current (instantaneous) rate of increase of
his total annual production of apples? Answer in appropriate
units of measure.  390 bushels of annual production per year.

52. Picnic Pavilion Rental The members of the Blue Boar
society always divide the pavilion rental fee for their picnics
equally among the members. Currently there are 65 members
and the pavilion rents for $250. The pavilion cost is increasing at
a rate of $10 per year, while the Blue Boar membership is
increasing at a rate of 6 members per year. What is the current
(instantaneous) rate of change in each member’s share of the
pavilion rental fee? Answer in appropriate units of measure.

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

53. True or False �
d
d
x
�(p3) � 3p2. Justify your answer.

54. True or False The graph of f (x) � 1/x has no horizontal
tangents. Justify your answer.

�
d
d
M
R
� � CM � M 2

44. �
d
d
x
� (c � f(x)) � c � �

d
d
x
� f(x) � f(x) � �

d
d
x
� c

� c � �
d
d
x
� f(x) � 0 � c � �

d
d
x
� f(x)

��
(V

n
�

RT
nb)2� � �

2
V
an

3

2
�

�
d
d
s
t
� � 9.8t, �

d
dt

2

2
s

� � 9.8

53. False. p3 is a constant so d/dx (�3) � 0.

54. True. f �(x) � � 1�x2 is never zero so there are no horizontal tangents.

See page 126.

It is going down approximately 20 cents per
year. (rate 	 �0.201 dollars/year)
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55. Multiple Choice Let y � uv be the product of the functions u
and v. Find y�(1) if u(1) � 2, u�(1) � 3, v(1) � �1, and
v�(1) � 1. B

(A) �4 (B) �1 (C) 1 (D) 4 (E) 7

56. Multiple Choice Let f (x) � x � �
1
x

�. Find f �(x). D

(A) 1 � �
x
1
2� (B) 1 � �

x
1
2� (C) �

x
2
3�

(D) � �
x
2
3� (E) does not exist

57. Multiple Choice Which of the following is �
d
d
x
� 
�xx

�

� 1
1

��? E

(A) �
(x �

2
1)2� (B) 0 (C) ��

x2

x
�

2
1

�

(D) 2x � �
x
1
2� � 1 (E) ��

(x �

2
1)2�

58. Multiple Choice Assume f (x) � (x2 � 1)(x2 � 1). Which of
the following gives the number of horizontal tangents of f ? B

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Extending the Ideas
59. Leibniz’s Proof of the Product Rule Here’s how Leibniz

explained the Product Rule in a letter to his colleague John Wallis:

It is useful to consider quantities infinitely small such that when
their ratio is sought, they may not be considered zero, but which

are rejected as often as they occur with quantities incomparably
greater. Thus if we have  x � dx, dx is rejected. Similarly we
cannot have  xdx and  dxdx standing together, as  xdx is
incomparably greater than  dxdx. Hence if we are to differentiate
uv, we write

d�uv� � �u � du��v � dv� � uv

� uv � vdu � udv � dudv � uv

� vdu � udv.

Answer the following questions about Leibniz’s proof.

(a) What does Leibniz mean by a quantity being “rejected”?

(b) What happened to dudv in the last step of Leibniz’s proof?

(c) Divide both sides of Leibniz’s formula

d�uv� � vdu � udv

by the differential dx. What formula results?

(d) Why would the critics of Leibniz’s time have objected to
dividing both sides of the equation by dx?

(e) Leibniz had a similar simple (but not-so-clean) proof of the
Quotient Rule. Can you reconstruct it?

Quick Quiz for AP* Preparation: Sections 3.1–3.3

You may use a graphing calculator to solve the following 
problems.

1. Multiple Choice Let f (x) � �x�1�. Which of the following
statements about f are true? D

I. f is continuous at x � �1.

II. f is differentiable at x � �1.

III. f has a corner at x � �1.

(A) I only (B) II only (C) III only

(D) I and III only (E) I and II only

2. Multiple Choice If the line normal to the graph of f at the
point (1, 2) passes through the point (�1, 1), then which of the
following gives the value of  f ��1� � ? A

(A) �2 (B) 2 (C) �1�2 (D) 1�2 (E) 3

3. Multiple Choice Find dy�dx if y � �
4
2
x
x

�

�

3
1

�. C

(A) �
(4x

1
�

0
3)2� (B) ��

(4x
1
�

0
3)2� (C) �

(2x
1
�

0
1)2�

(D) ��
(2x

1
�

0
1)2� (E) 2

4. Free Response Let f (x) � x4 � 4x2.

(a) Find all the points where f has horizontal tangents.

(b) Find an equation of the tangent line at x � 1. y � �4x � 1

(c) Find an equation of the normal line at x � 1. y � x �
13
�
4

1
�
4

At x � 0, ��2�

43. (a) Let f(x) � x.

lim
h→0 

�
f(x � h

h
) � f(x)
�� lim

h→0 
�
(x � h

h
) � x
�

� lim
h→0 

�
h
h

� � lim
h→0 

(1) � 1

(b) Note that u � u(x) is a function of x.

lim
h→0 

� lim
h→0 
��

u(x �

h
h)� u(x)
��

��lim
h→0

�
u(x � h

h
) � u(x)
�� ��

d
d
u
x
�

�u(x � h) � [ �u(x)]
���

h

Answers to Section 3.3 Exercises

38. Slope is 4 at x � �1:
tangent at x � �1: y � 4x � 2
tangent at x � 1: y � 4x � 2
Smallest slope is 1 and occurs at x � 0.
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What you’ll learn about

• Instantaneous Rates of Change

• Motion along a Line

• Sensitivity to Change

• Derivatives in Economics

. . . and why

Derivatives give the rates at
which things change in the world.

Velocity and Other Rates of Change

Instantaneous Rates of Change
In this section we examine some applications in which derivatives as functions are used to
represent the rates at which things change in the world around us. It is natural to think of
change as change with respect to time, but other variables can be treated in the same way.
For example, a physician may want to know how change in dosage affects the body’s re-
sponse to a drug. An economist may want to study how the cost of producing steel varies
with the number of tons produced. 

If we interpret the difference quotient

�
f �x � h

h
� � f �x�
�

as the average rate of change of the function f over the interval from x to x � h, we can inter-
pret its limit as h approaches 0 to be the rate at which f is changing at the point x.

3.4

It is conventional to use the word instantaneous even when x does not represent time.
The word, however, is frequently omitted in practice. When we say rate of change, we
mean instantaneous rate of change.

EXAMPLE 1 Enlarging Circles

(a) Find the rate of change of the area A of a circle with respect to its radius r.

(b) Evaluate the rate of change of A at  r � 5  and at  r � 10. 

(c) If r is measured in inches and A is measured in square inches, what units would be
appropriate for  dA�dr?

SOLUTION

The area of a circle is related to its radius by the equation  A �pr2.

(a) The (instantaneous) rate of change of A with respect to r is 

�
d
d
A
r
� � �

d
d
r
��pr2� � p • 2r � 2pr.

(b) At  r � 5, the rate is 10p (about 31.4). At  r � 10, the rate is 20p (about 62.8).

Notice that the rate of change gets bigger as r gets bigger. As can be seen in Figure 3.21,
the same change in radius brings about a bigger change in area as the circles grow radi-
ally away from the center. 

(c) The appropriate units for  dA�dr are square inches (of area) per inch (of radius).
Now try Exercise 1.

DEFINITION Instantaneous Rate of Change

The (instantaneous) rate of change of f with respect to x at a is the derivative

f ��a� � lim
h→0

�
f �a � h

h
� � f �a�
� ,

provided the limit exists.
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Motion along a Line
Suppose that an object is moving along a coordinate line (say an s-axis) so that we know
its position s on that line as a function of time t:

s � f �t�.

The displacement of the object over the time interval from t to  t � Dt is 


s � f �t � 
t� � f �t�

(Figure 3.23) and the average velocity of the object over that time interval is

vav � �
d
t
i
r
s
a
p
v
la
e
c
l
e
t
m
im

e
e
nt

� � �
�
�

s
t

� ��
f �t � �

�
t�
t

� f �t�
� .

To find the object’s velocity at the exact instant t, we take the limit of the average velocity
over the interval from t to  t � Dt as Dt shrinks to zero. The limit is the derivative of f
with respect to t.

Figure 3.22 Which is the more appro-
priate model for the growth of rings in a
tree—the circles here or those in 
Figure 3.21? (Exploration 1)

Figure 3.23 The positions of an object
moving along a coordinate line at time t
and shortly later at time t � 
t.

s

Position at time t …

s = f(t)

and at time t � Δt

s � Δs = f (t � Δt)

Growth Rings on a Tree

The phenomenon observed in Example 1, that the rate of change in area of a circle
with respect to its radius gets larger as the radius gets larger, is reflected in nature in
many ways. When trees grow, they add layers of wood directly under the inner bark
during the growing season, then form a darker, protective layer for protection during
the winter. This results in concentric rings that can be seen in a cross-sectional slice
of the trunk. The age of the tree can be determined by counting the rings.

1. Look at the concentric rings in Figure 3.21 and Figure 3.22. Which is a better
model for the pattern of growth rings in a tree? Is it likely that a tree could find
the nutrients and light necessary to increase its amount of growth every year?

2. Considering how trees grow, explain why the change in area of the rings re-
mains relatively constant from year to year.

3. If the change in area is constant, and if 

�
d
d
A
r
� ��

c
c
h
h
a
a
n
n
g
g
e
e
in
in

ra
a
d
re
iu
a
s

�� 2pr ,

explain why the change in radius must get smaller as r gets bigger.

EXPLORATION 1

DEFINITION Instantaneous Velocity

The (instantaneous) velocity is the derivative of the position function s � f (t)
with respect to time. At time t the velocity is

v�t � � �
d
d
s
t
� � lim

�t→0
�
f �t � �

�
t�
t

� f �t�
� .

Figure 3.21 The same change in radius
brings about a larger change in area as the
circles grow radially away from the center.
(Example 1, Exploration 1)
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EXAMPLE 2 Finding the Velocity of a Race Car

Figure 3.24 shows the time-to-distance graph of a 1996 Riley & Scott Mk III-Olds WSC
race car. The slope of the secant PQ is the average velocity for the 3-second interval
from  t � 2  to  t � 5 sec, in this case, about 100 ft �sec or 68 mph. The slope of the tan-
gent at P is the speedometer reading at  t � 2 sec, about 57 ft �sec or 39 mph. The accel-
eration for the period shown is a nearly constant 28.5 ft�sec during each second, which is
about 0.89g where g is the acceleration due to gravity. The race car’s top speed is an esti-
mated 190 mph. Source: Road and Track, March 1997.

Figure 3.24 The time-to-distance graph for Example 2. Now try Exercise 7.
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Besides telling how fast an object is moving, velocity tells the direction of motion.
When the object is moving forward (when s is increasing), the velocity is positive; when
the object is moving backward (when s is decreasing), the velocity is negative.

If we drive to a friend’s house and back at 30 mph, the speedometer will show 30 on the
way over but will not show �30 on the way back, even though our distance from home is
decreasing. The speedometer always shows speed, which is the absolute value of velocity.
Speed measures the rate of motion regardless of direction. 

Figure 3.25 A student’s velocity graph
from data recorded by a motion detector.
(Example 3)

[–4, 36] by [–7.5, 7.5]

EXAMPLE 3 Reading a Velocity Graph

A student walks around in front of a motion detector that records her velocity at 
1-second intervals for 36 seconds. She stores the data in her graphing calculator and
uses it to generate the time-velocity graph shown in Figure 3.25. Describe her motion
as a function of time by reading the velocity graph. When is her speed a maximum?

SOLUTION

The student moves forward for the first 14 seconds, moves backward for the next 
12 seconds, stands still for 6 seconds, and then moves forward again. She achieves her
maximum speed at  t 	 20, while moving backward. Now try Exercise 9.

DEFINITION Speed

Speed is the absolute value of velocity.

Speed � �v(t)� � ��
d
d
s
t
� �
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130 Chapter 3 Derivatives

Free-fall Constants (Earth)

English units: g � 32 �
se

f
c
t

2� , s � �
1
2

� (32)t2 � 16t2 (s in feet)

Metric units: g � 9.8 �
se
m
c2� , s � �

1
2

� (9.8)t2 � 4.9t2 (s in meters)

The rate at which a body’s velocity changes is called the body’s acceleration. The acceler-
ation measures how quickly the body picks up or loses speed.

The earliest questions that motivated the discovery of calculus were concerned with 
velocity and acceleration, particularly the motion of freely falling bodies under the force
of gravity. (See Examples 1 and 2 in Section 2.1.) The mathematical description of this
type of motion captured the imagination of many great scientists, including Aristotle,
Galileo, and Newton. Experimental and theoretical investigations revealed that the dis-
tance a body released from rest falls freely is proportional to the square of the amount of
time it has fallen. We express this by saying that

s � �
1
2

� gt2,

where s is distance, g is the acceleration due to Earth’s gravity, and t is time. The value of
g in the equation depends on the units used to measure s and t. With t in seconds (the usual
unit), we have the following values:

The abbreviation ft�sec2 is read “feet per second squared” or “feet per second per sec-
ond,” and m�sec2 is read “meters per second squared.”

EXAMPLE 4 Modeling Vertical Motion

A dynamite blast propels a heavy rock straight up with a launch velocity of 160 ft �sec
(about 109 mph) (Figure 3.26a). It reaches a height of s � 160t � 16t2 ft  after t seconds.

(a) How high does the rock go?

(b) What is the velocity and speed of the rock when it is 256 ft above the ground on the
way up? on the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground? 

SOLUTION

In the coordinate system we have chosen, s measures height from the ground up, so 
velocity is positive on the way up and negative on the way down. 

continued

DEFINITION Acceleration

Acceleration is the derivative of velocity with respect to time. If a body’s velocity
at time t is  v(t) � ds�dt, then the body’s acceleration at time t is

a (t) � �
d
d
v
t
� � �

d
dt

2

2
s

� .
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(a) The instant when the rock is at its highest point is the one instant during the flight
when the velocity is 0. At any time t, the velocity is

v � �
d
d
s
t
� � �

d
d
t
��160t � 16t2 � � 160 � 32t ft�sec.

The velocity is zero when  160 � 32t � 0, or at  t � 5 sec.

The maximum height is the height of the rock at  t � 5 sec.  That is,

smax � s�5� � 160�5� � 16�5�2 � 400 ft.

See Figure 3.26b.

(b) To find the velocity when the height is 256 ft, we determine the two values of t for
which  s�t� � 256 ft. 

s�t� � 160t � 16t2 � 256

16t2 � 160t � 256 � 0

16�t2 � 10t � 16� � 0

�t � 2��t � 8� � 0

t � 2 sec or t � 8 sec

The velocity of the rock at each of these times is

v�2� � 160 � 32�2� � 96 ft�sec,

v�8� � 160 � 32�8� � �96 ft�sec. 

At both instants, the speed of the rock is 96 ft �sec. 

(c) At any time during its flight after the explosion, the rock’s acceleration is

a � �
d
d
v
t
� � �

d
d
t

� �160 � 32t� � �32 ft�sec2.

The acceleration is always downward. When the rock is rising, it is slowing down;
when it is falling, it is speeding up.

(d) The rock hits the ground at the positive time for which  s � 0.  The equation
160t � 16t2 � 0 has two solutions: t � 0  and  t � 10.  The blast initiated the flight of
the rock from ground level at  t � 0.  The rock returned to the ground 10 seconds later. 

Now try Exercise 13.

EXAMPLE 5 Studying Particle Motion

A particle moves along a line so that its position at any time t 
 0 is given by the func-
tion s(t) � t2 � 4t � 3, where s is measured in meters and t is measured in seconds.

(a) Find the displacement of the particle during the first 2 seconds.

(b) Find the average velocity of the particle during the first 4 seconds.

(c) Find the instantaneous velocity of the particle when t � 4.

(d) Find the acceleration of the particle when t � 4.

(e) Describe the motion of the particle. At what values of t does the particle change 
directions?

(f) Use parametric graphing to view the motion of the particle on the horizontal line y � 2.
continued

Figure 3.26 (a) The rock in Example 4.
(b) The graphs of s and v as functions of
time t, showing that s is largest when 
v � ds�dt � 0. (The graph of s is not the
path of the rock; it is a plot of height as a
function of time.) (Example 4)

(a)

s

s � 0

256

smax

t � ?

v � 0
H

ei
gh

t (
ft

)

ds—
dt � 160 – 32tv �

t
0

400

5 10

(b)

160

–160

s � 160t – 16t2

s, v
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132 Chapter 3 Derivatives

SOLUTION

(a) The displacement is given by s(2) � s(0) � (�1) � 3 � �4. This value means that
the particle is 4 units left of where it started.
(b) The average velocity we seek is 

�
s(4

4
) �

�

s
0
(0)

� � �
3 �

4
3

� � 0 m/sec.

(c) The velocity v(t) at any time t is v(t) � ds/dt � 2t � 4. So v(4) � 4 m/sec

(d) The acceleration a(t) at any time t is a(t) � dv/dt � 2 m /sec2. So a(4) � 2.

(e) The graphs of s(t) � t2 � 4t � 3 for t � 0 and its derivative v(t) � 2t � 4 shown in
Figure 3.27 will help us analyze the motion.

For 0 � t � 2, v(t) � 0, so the particle is moving to the left. Notice that s(t) is decreas-
ing. The particle starts (t � 0) at  s � 3  and moves left, arriving at the origin 
t � 1 when s � 0. The particle continues moving to the left until it reaches the point
s � �1 at t � 2.

At t � 2, v � 0, so the particle is at rest.

For t 	 2, v(t) 	 0, so the particle is moving to the right. Notice that s(t) is increasing.
In this interval, the particle starts at  s � �1, moving to the right through the origin
and continuing to the right for the rest of time.

The particle changes direction at t � 2 when v � 0.

(f) Enter X1T�T2�4T�3, Y1T � 2 in parametric mode and graph in the window 
[�5, 5 ] by [�2, 4 ] with Tmin � 0, Tmax � 10 (it really should be 
), and 
Xscl�Yscl�1. (Figure 3.28) By using TRACE you can follow the path of the particle.
You will learn more ways to visualize motion in Explorations 2 and 3.

Now try Exercise 19.

Figure 3.27 The graphs of 
s(t) � t2 � 4t � 3, t � 0 (blue) and its 
derivative v(t) � 2t � 4, t � 0 (red). 
(Example 5)

Figure 3.28 The graph of X1T �
T2 � 4T � 3, Y1T � 2 in parametric
mode. (Example 5)
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–4

s(t)
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Y=2

X1T=T2-4T+3 Y1T=2

T=0
X=3

[�5, 5] by [�2, 4]
Modeling Horizontal Motion

The position (x-coordinate) of a particle moving on the horizontal line  y � 2  is
given by  x�t� � 4t3 � 16t2 � 15t for  t � 0.

1. Graph the parametric equations  x1�t� � 4t3 � 16t2 � 15t, y1�t� � 2 in ��4, 6�
by ��3, 5�. Use TRACE to support that the particle starts at the point �0, 2�,
moves to the right, then to the left, and finally to the right. At what times does
the particle reverse direction?

2. Graph the parametric equations  x2�t� � x1�t�, y2�t� � t in the same viewing
window. Explain how this graph shows the back and forth motion of the particle.
Use this graph to find when the particle reverses direction.

3. Graph the parametric equations  x3�t� � t, y3�t� � x1�t� in the same viewing
window. Explain how this graph shows the back and forth motion of the particle.
Use this graph to find when the particle reverses direction.

4. Use the methods in parts 1, 2, and 3 to represent and describe the velocity of the
particle.

EXPLORATION 2
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Sensitivity to Change
When a small change in x produces a large change in the value of a function f �x�, we say
that the function is relatively sensitive to changes in x. The derivative f ��x� is a measure
of this sensitivity. 

EXAMPLE 6 Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas 
and other plants, provided the first scientific explanation of hybridization. His careful
records showed that if p (a number between 0 and 1) is the relative frequency of the
gene for smooth skin in peas  (dominant) and �1 � p� is the relative frequency of the
gene for wrinkled skin in peas (recessive), then the proportion of smooth-skinned peas
in the next generation will be 

y � 2p�1 � p� � p2 � 2p � p2.

Compare the graphs of y and dy/dp to determine what values of y are more sensitive to
a change in p. The graph of y versus p in Figure 3.29a suggests that the value of y is
more sensitive to a change in p when p is small than it is to a change in p when p is
large. Indeed, this is borne out by the derivative graph in Figure 3.29b, which shows
that  dy�dp is close to 2 when p is near 0 and close to 0 when p is near 1. 

Now try Exercise 25.

Derivatives in Economics
Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

Figure 3.29 (a) The graph of 
y � 2p � p2 describing the proportion of
smooth-skinned peas. (b) The graph of
dy�dp. (Example 6)

p

y

0 1

y � 2p � p2

1

(a)

dy/dp

p
0 1

 � 2 � 2p

2

(b)

dy
—
dp

Seeing Motion on a Graphing Calculator

The graphs in Figure 3.26b give us plenty of information about the flight of the
rock in Example 4, but neither graph shows the path of the rock in flight. We can
simulate the moving rock by graphing the parametric equations

x1�t� � 3�t � 5� � 3.1�t 
 5�, y1�t� � 160t � 16t2

in dot mode.

This will show the upward flight of the rock along the vertical line x � 3, and the
downward flight of the rock along the line  x � 3.1.

1. To see the flight of the rock from beginning to end, what should we use for tMin
and tMax in our graphing window?

2. Set  xMin � 0, xMax � 6, and  yMin � �10. Use the results from Example 4
to determine an appropriate value for yMax. (You will want the entire flight of
the rock to fit within the vertical range of the screen.)

3. Set tStep initially at 0.1. (A higher number will make the simulation move
faster. A lower number will slow it down.)

4. Can you explain why the grapher actually slows down when the rock would
slow down, and speeds up when the rock would speed up?

EXPLORATION 3
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In a manufacturing operation, the cost of production c�x� is a function of x, the number
of units produced. The marginal cost of production is the rate of change of cost with re-
spect to the level of production, so it is dc�dx.

Suppose c�x� represents the dollars needed to produce x tons of steel in one week. It
costs more to produce x � h tons per week, and the cost difference divided by h is the 
average cost of producing each additional ton.

�

The limit of this ratio as h→0 is the marginal cost of producing more steel per week
when the current production is x tons (Figure 3.30). 

�
d
d
c
x
� � lim

h→0
�
c�x � h

h
� � c�x�
�� marginal cost of production

Sometimes the marginal cost of production is loosely defined to be the extra cost of pro-
ducing one more unit,

�
�
�c

x
� ��

c�x � 1
1
� � c�x�
� ,

which is approximated by the value of dc�dx at x. This approximation is acceptable if the
slope of c does not change quickly near x, for then the difference quotient is close to its limit
dc�dx even if �x � 1 (Figure 3.31). The approximation works best for large values of x.

EXAMPLE 7 Marginal Cost and Marginal Revenue

Suppose it costs 

c�x� � x3 � 6x2 � 15x

dollars to produce x radiators when 8 to 10 radiators are produced, and that 

r �x� � x3 � 3x2 � 12x

gives the dollar revenue from selling x radiators. Your shop currently produces 
10 radiators a day. Find the marginal cost and marginal revenue.

SOLUTION

The marginal cost of producing one more radiator a day when 10 are being produced 
is c��10�.

c��x� � �
d
d
x
��x3 � 6x2 � 15x� � 3x2 � 12x � 15

c��10� � 3�100� � 12�10� � 15 � 195 dollars

The marginal revenue is

r��x� � �
d
d
x
��x3 � 3x2 � 12x� � 3x2 � 6x � 12,

so,
r��10� � 3�100� � 6�10� � 12 � 252 dollars.

Now try Exercises 27 and 28.

{the average cost of each of the
additional h tons produced

c�x � h� � c�x�
��

h

Figure 3.30 Weekly steel production:
c�x� is the cost of producing x tons per
week. The cost of producing an additional
h tons per week is c�x � h� � c�x�.

x

y (dollars)

0
(tons/week)

Slope �
marginal cost

x x � h

y � c(x)

Figure 3.31 Because dc�dx is the slope
of the tangent at x, the marginal cost dc�dx
approximates the extra cost 
c of produc-
ing 
x � 1 more unit.

x

y

0 x

y � c(x)

�x � 1

�c
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⎧
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⎩

dc—
dx
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Section 3.4 Exercises

1. (a) Write the volume V of a cube as a function of the side length s.

(b) Find the (instantaneous) rate of change of the volume V with
respect to a side s. �

d
d
V
s
� � 3s2

(c) Evaluate the rate of change of V at s � 1 and s � 5. 3, 75

(d) If s is measured in inches and V is measured in cubic inches,
what units would be appropriate for dV�ds? in3 /in.

2. (a) Write the area A of a circle as a function of the
circumference C.

(b) Find the (instantaneous) rate of change of the area A with
respect to the circumference C. �

d
d
C
A
� � �

2
C
�
�

(c) Evaluate the rate of change of A at C � p and C � 6p. 1/2, 3

(d) If C is measured in inches and A is measured in square
inches, what units would be appropriate for dA�dC? in2 /in.

3. (a) Write the area A of an equilateral triangle as a function of the
side length s.

(b) Find the (instantaneous) rate of change of the area A with
respect to a side s.

(c) Evaluate the rate of change of A at s � 2 and s � 10. 

(d) If s is measured in inches and A is measured in square
inches, what units would be appropriate for dA�ds? in2 /in.

4. A square of side length s is inscribed in a circle of radius r.

(a) Write the area A of the square as a function of the radius r of
the circle. A � 2r2

(b) Find the (instantaneous) rate of change of the area A with
respect to the radius r of the circle. �

d
d
A
r
� � 4r

(c) Evaluate the rate of change of A at r � 1 and r � 8. 4, 32

(d) If r is measured in inches and A is measured in square
inches, what units would be appropriate for dA�dr? in2 /in.

Group Activity In Exercises 5 and 6, the coordinates s of a mov-
ing body for various values of t are given. (a) Plot s versus t on coor-
dinate paper, and sketch a smooth curve through the given points. 

(b) Assuming that this smooth curve represents the motion of the
body, estimate the velocity at t � 1.0, t � 2.5, and  t � 3.5.

5.

6.

7. Group Activity Fruit Flies (Example 2, Section 2.4
continued) Populations starting out in closed environments grow
slowly at first, when there are relatively few members, then more
rapidly as the number of reproducing individuals increases and
resources are still abundant, then slowly again as the population
reaches the carrying capacity of the environment.

(a) Use the graphical technique of Section 3.1, Example 3,
to graph the derivative of the fruit fly population introduced in
Section 2.4. The graph of the population is reproduced below.
What units should be used on the horizontal and vertical axes for
the derivative’s graph?

(b) During what days does the population seem to be increasing
fastest? slowest?
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350

50

Time (days)

N
um

be
r 

of
 f

lie
s

10

t (sec)⏐ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
s (ft) ⏐ 3.5 �4 �8.5 �10 �8.5 �4 3.5 14 27.5

t (sec)⏐ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
s (ft) ⏐ 12.5 26 36.5 44 48.5 50 48.5 44 36.5

Quick Review 3.4 (For help, go to Sections 1.2, 3.1, and 3.3.)

In Exercises 1–10, answer the questions about the graph of the quad-
ratic function  y � f �x� � �16x2 � 160x � 256 by analyzing the
equation algebraically. Then support your answers graphically.

1. Does the graph open upward or downward? Downward

2. What is the y-intercept? y-intercept � �256

3. What are the x-intercepts? x-intercepts � 2, 8

4. What is the range of the function? (�	, 144]

5. What point is the vertex of the parabola? (5, 144)

6. At what x-values does f �x� � 80? x � 3, 7

7. For what x-value does  dy�dx � 100? x � �
1
8
5
�

8. On what interval is  dy�dx � 0? (�	, 5)

9. Find  lim
h→0

�
f �3 � h

h
� � f �3�
� . 64

10. Find  d2y�dx2 at x � 7. �32

V � s3

�3�, 5�3�

A � �
4
C
�

2
�

3. (a) A ��
�
4
3�

�s2 (b) �
d
d
A
s
� � �

�
2
3�

�s

5128_Ch03_pp098-184.qxd  1/13/06  9:12 AM  Page 135



136 Chapter 3 Derivatives

8. Draining a Tank The number of gallons of water in a 
tank t minutes after the tank has started to drain is Q�t� �
200�30 � t�2.  How fast is the water running out at the end of
10 min? What is the average rate at which the water flows out
during the first 10 min?

9. Particle Motion The accompanying figure shows the velocity
v � f �t� of a particle moving on a coordinate line.

(a) When does the particle move forward? move backward?
speed up? slow down?

(b) When is the particle’s acceleration positive? negative? 
zero?

(c) When does the particle move at its greatest speed?

(d) When does the particle stand still for more than an instant?

10. Particle Motion A particle P moves on the number line
shown in part (a) of the accompanying figure. Part (b) shows 
the position of P as a function of time t.

(a) When is P moving to the left? moving to the right? standing
still?

(b) Graph the particle’s velocity and speed (where defined).

11. Particle Motion The accompanying figure shows the velocity 
v � ds�dt � f �t� (m�sec) of a body moving along a coordinate
line.

v � f (t)

t (sec)

v (m/sec)

0 2 4

3

–3

6 8 10

s � f (t)

t (sec)

s (cm)

0 1 2

2

–2

3 4 5 6

–4
(6, �4)

(b)

s (cm)
0

(a)

P

v � f(t)

t (sec)

v

0 1 2 3 4 5 6 7 8 9

(a) When does the body reverse direction? At t � 2 and t � 7

(b) When (approximately) is the body moving at a constant
speed? Between t � 3 and t � 6

(c) Graph the body’s speed for  0 � t � 10.

(d) Graph the acceleration, where defined.

12. Thoroughbred Racing A racehorse is running a 10-furlong
race. (A furlong is 220 yards, although we will use furlongs and
seconds as our units in this exercise.) As the horse passes each
furlong marker �F�, a steward records the time elapsed �t� since
the beginning of the race, as shown in the table below:

(a) How long does it take the horse to finish the race?

(b) What is the average speed of the horse over the first 
5 furlongs? �

7
5
3
� 	 0.068 furlongs/sec

(c) What is the approximate speed of the horse as it passes 
the 3-furlong marker? �

1
1
3
� 	 0.077 furlongs/sec

(d) During which portion of the race is the horse running the
fastest? During the last furlong (between the 9th and 10th furlong 

(e) During which portion of the race is the horse accelerating the
fastest? During the first furlong (between markers 0 and 1)

13. Lunar Projectile Motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m�sec (about 
86 km�h) reaches a height of  s � 24t � 0.8t2 meters in t
seconds.

(a) Find the rock’s velocity and acceleration as functions of
time. (The acceleration in this case is the acceleration of gravity
on the moon.)

(b) How long did it take the rock to reach its highest point?

(c) How high did the rock go? 180 meters

(d) When did the rock reach half its maximum height? About 

(e) How long was the rock aloft? 30 seconds

14. Free Fall The equations for free fall near the surfaces of Mars
and Jupiter (s in meters, t in seconds) are: Mars, s � 1.86t2;
Jupiter, s � 11.44 t2.  How long would it take a rock falling
from rest to reach a velocity of 16.6 m�sec (about 60 km�h) 
on each planet? Mars: t 	 4.462 sec; Jupiter: t 	 0.726 sec

15. Projectile Motion On Earth, in the absence of air, the rock in
Exercise 13 would reach a height of  s � 24t � 4.9t2 meters in
t seconds. How high would the rock go? About 29.388 meters

16. Speeding Bullet A bullet fired straight up from the moon’s
surface would reach a height of  s � 832t � 2.6t2 ft after 
t sec. On Earth, in the absence of air, its height would be  
s � 832t � 16t2 ft after t sec. How long would it take the 
bullet to get back down in each case? Moon: 320 seconds

17. Parametric Graphing Devise a grapher simulation of 
the problem situation in Exercise 16. Use it to support the
answers obtained analytically.

F ⏐ 0 1 2 3 4 5 6 7 8 9 10
t ⏐ 0 20 33 46 59 73 86 100 112 124 135

8. At the end of 10 minutes: 8000 gallons/minute
Average over first 10 minutes: 10,000 gallons/minute

See page 140.

See page 140.

135 seconds

markers)

vel(t) � 24 – 1.6t m/sec,
accel(t) � �1.6 m/sec2

15 seconds

4.393 seconds

Earth: 52 seconds
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20. Particle Motion A particle moves along a line so that its
position at any time t 
 0 is given by the function s(t) � 
�t3 � 7t2 � 14t � 8 where s is measured in meters and t is
measured in seconds.

(a) Find the instantaneous velocity at any time t.

(b) Find the acceleration of the particle at any time t.

(c) When is the particle at rest? t 	 1.451, 3.215

(d) Describe the motion of the particle. At what values of t does
the particle change directions?

21. Particle Motion A particle moves along a line so that its
position at any time t 
 0 is given by the function s (t) � 
(t � 2)2(t � 4) where s is measured in meters and t is measured
in seconds.

(a) Find the instantaneous velocity at any time t.

(b) Find the acceleration of the particle at any time t.

(c) When is the particle at rest? t � 2, 10/3

(d) Describe the motion of the particle. At what values of t does
the particle change directions?

22. Particle Motion A particle moves along a line so that its
position at any time t 
 0 is given by the function s (t) � 
t3 � 6t2 � 8t � 2 where s is measured in meters and t is
measured in seconds.

(a) Find the instantaneous velocity at any time t.

(b) Find the acceleration of the particle at any time t.

(c) When is the particle at rest? t 	 0.845, 3.155

(d) Describe the motion of the particle. At what values of t does
the particle change directions?

23. Particle Motion The position of a body at time t sec is  
s � t3 � 6t2 � 9t m.  Find the body’s acceleration each 
time the velocity is zero. At t � 1; �6 m/sec2  At t � 3: 6 m/sec2

24. Finding Speed A body’s velocity at time t sec is  
v � 2t3 � 9t2 � 12t � 5 m �sec.  Find the body’s speed 
each time the acceleration is zero. At t � 1: 0 m/sec;

25. Draining a Tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank
t hours after the valve is opened is given by the formula

y � 6(1 � �
1
t
2
� )

2

m.

(a) Find the rate dy�dt �m�h� at which the water level is
changing at time t.

(b) When is the fluid level in the tank falling fastest? slowest?
What are the values of dy�dt at these times?

(c) Graph y and dy�dt together and discuss the behavior of y
in relation to the signs and values of dy�dt.

18. Launching a Rocket When a model rocket is launched,
the propellant burns for a few seconds, accelerating the rocket
upward. After burnout, the rocket coasts upward for a while 
and then begins to fall. A small explosive charge pops out a
parachute shortly after the rocket starts downward. The
parachute slows the rocket to keep it from breaking when it
lands. This graph shows velocity data from the flight.

Use the graph to answer the following.

(a) How fast was the rocket climbing when the engine stopped?

(b) For how many seconds did the engine burn? 2 seconds

(c) When did the rocket reach its highest point? What was its
velocity then? After 8 seconds, and its velocity was 0 ft/sec then

(d) When did the parachute pop out? How fast was the rocket
falling then? After about 11 seconds; it was falling 90 ft/sec then.

(e) How long did the rocket fall before the parachute opened?

(f) When was the rocket’s acceleration greatest? When was the
acceleration constant? Just before the engine stopped; from t = 2 

19. Particle Motion A particle moves along a line so that its
position at any time  t 
  0 is given by the function

s�t� � t2 � 3t � 2,

where s is measured in meters and t is measured in seconds.

(a) Find the displacement during the first 5 seconds. 10 m

(b) Find the average velocity during the first 5 seconds. 2 m/sec

(c) Find the instantaneous velocity when  t � 4. 5 m/sec

(d) Find the acceleration of the particle when  t � 4. 2 m/sec2

(e) At what values of t does the particle change direction?

(f) Where is the particle when s is a minimum? At s � ��
1
4

�   m

0 2 4 6 8 10 12
–100

Time after launch (sec)

–50
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50

100
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V
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)

190 ft/sec

to t = 11 while the rocket was in free fall

About 3 seconds

At t � �
3
2

� sec

v(t) � �3t2 � 14t � 14

a(t) � �6t � 14

20. (d) The particle starts at the point s � 8 and moves left until it stops at 
s � �0.631 at t � 1.451, then it moves right to the point s � 2.213 at t �

3.215,) where it stops again, and finally continues left from there on.

v(t) � 3t2 � 16t � 20 � (t � 2)(3t � 10)

a(t) � 6t � 16

v(t) � 3t2 � 12t � 8

a(t) � 6t � 12

at t � 2:1 m/sec

21. (d) The particle starts at the point s � �16 when t � 0 and moves right
until it stops at s � 0 when t � 2, then it moves left to the point s � �1.185
when t � 10/3 where it stops again, and finally continues right from there on.

22. (d) The particle starts at the point s � 2 when t � 0 and moves right until
it stops at s � 5.079 at t � 0.845, then it moves left to the point s � �1.079 at
t � 3.155 where it stops again, and finally continues right from there on.

�
d
d
y
t
� � �

1
t
2
� � 1

25. (b) Fastest: at t � 0  slowest: at t � 12; at t � 0: �
d
d
y
t
� � �1;

at t = 12: �
d
d
y
t
� � 0
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26. Moving Truck The graph here shows the position s of a truck
traveling on a highway. The truck starts at  t � 0 and returns 
15 hours later at  t � 15.

(a) Use the technique described in Section 3.1, Example 3, to
graph the truck’s velocity  v � ds�dt for  0 � t � 15.  Then
repeat the process, with the velocity curve, to graph the truck’s
acceleration dv�dt.

(b) Suppose  s � 15t2 � t3.  Graph  ds�dt and  d2s�dt2, and
compare your graphs with those in part (a).

27. Marginal Cost Suppose that the dollar cost of producing x
washing machines is  c�x� � 2000 � 100x � 0.1x2.

(a) Find the average cost of producing 100 washing machines.

(b) Find the marginal cost when 100 machines are produced.

(c) Show that the marginal cost when 100 washing machines are
produced is approximately the cost of producing one more
washing machine after the first 100 have been made, by
calculating the latter cost directly. $79.90 for the 101st machine

28. Marginal Revenue Suppose the weekly revenue in dollars
from selling x custom-made office desks is

r �x� � 2000(1 � �
x �

1
1

� ) .

(a) Draw the graph of r. What values of x make sense in this
problem situation?

(b) Find the marginal revenue when x desks are sold. �
(x

2
�

00
1
0
)2�

(c) Use the function r��x� to estimate the increase in revenue
that will result from increasing sales from 5 desks a week 
to 6 desks a week. Approximately $55.56

(d) Writing to Learn Find the limit of  r��x� as  x→	 .
How would you interpret this number?

29. Finding Profit The monthly profit (in thousands of dollars) 
of a software company is given by 

P�x� ��
1 � 50

1
•

0
25�0.1x� ,

where x is the number of software packages sold.

(a) Graph P�x�.
(b) What values of x make sense in the problem situation?

0

100

200Po
si

tio
n,

 s
 (

km
)

300

400

500

5 10 15
Elapsed time, t (h)

(c) Use NDER to graph P��x�. For what values of x is P
relatively sensitive to changes in x?

(d) What is the profit when the marginal profit is greatest?

(e) What is the marginal profit when 50 units are sold? 
100 units, 125 units, 150 units, 175 units, and 300 units?

(f) What is  limx→	 P�x�?  What is the maximum profit
possible? See page 140.

(g) Writing to Learn Is there a practical explanation to 
the maximum profit answer? Explain your reasoning.

30. In Step 1 of Exploration 2, at what time is the particle at the
point �5, 2�? At t 	 2.83

31. Group Activity The graphs in Figure 3.32 show as functions
of time t the position s, velocity  v � ds�dt, and acceleration
a � d2s�dt 2 of a body moving along a coordinate line. Which
graph is which? Give reasons for your answers.

t

y

0

A

B

C

t

y

0

A B

C

Figure 3.32 The graphs for Exercise 31.

Figure 3.33 The graphs for Exercise 32.

$110 per machine

$80 per machine

28. (d) The limit is 0. This means that as x gets large, one reaches a point
where very little extra revenue can be expected from selling more desks.

x 
 0 (whole numbers)

See page 140.

See page 140.

See page 140.

32. Group Activity The graphs in Figure 3.33 show as functions
of time t the position s, the velocity  v � ds�dt, and the
acceleration  a � d2s�dt2 of a body moving along a coordinate
line. Which graph is which? Give reasons for your answers.
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33. Pisa by Parachute (continuation of Exercise 18) A few
years ago, Mike McCarthy parachuted 179 ft from the top of the
Tower of Pisa. Make a rough sketch to show the shape of the
graph of his downward velocity during the jump.

34. Inflating a Balloon The volume  V � �4�3�pr 3 of a
spherical balloon changes with the radius.

(a) At what rate does the volume change with respect to the
radius when  r � 2 ft? 16� cubic feet of volume per foot of radius

(b) By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft? By about 11.092 cubic feet

35. Volcanic Lava Fountains Although the November 1959
Kilauea Iki eruption on the island of Hawaii began with a line
of fountains along the wall of the crater, activity was later
confined to a single vent in the crater’s floor, which at one point
shot lava 1900 ft straight into the air (a world record). What was
the lava’s exit velocity in feet per second? in miles per hour?
[Hint: If v0 is the exit velocity of a particle of lava, its height t
seconds later will be s � v0 t � 16t2 feet. Begin by finding the
time at which ds�dt � 0.  Neglect air resistance.]

36. Writing to Learn Suppose you are looking at a graph of
velocity as a function of time. How can you estimate the
acceleration at a given point in time? By estimating the slope of 

37. Particle Motion The position (x-coordinate) of a particle moving
on the line  y � 2 is given by  x�t� � 2t3 � 13t2 � 22t � 5  where t
is time in seconds.

(a) Describe the motion of the particle for  t 
 0. See page 140.

(b) When does the particle speed up? slow down?

(c) When does the particle change direction? At t 	 1.153 sec 

(d) When is the particle at rest? At t 	 1.153 sec and t 	 3.180 

(e) Describe the velocity and speed of the particle. See page 140.

(f) When is the particle at the point �5, 2�? At about 0.745 sec,

38. Falling Objects The multiflash photograph in Figure 3.34
shows two balls falling from rest. The vertical rulers are marked
in centimeters. Use the equation  s � 490t2 (the free-fall
equation for s in centimeters and t in seconds) to answer the
following questions.

(a) How long did it take the balls to fall the first 160 cm? What
was their average velocity for the period? 4/7 of a second. Average 

(b) How fast were the balls falling when they reached the 160-
cm mark? What was their acceleration then? Velocity �

(c) About how fast was the light flashing (flashes per second)?

39. Writing to Learn Explain how the Sum and Difference Rule
(Rule 4 in Section 3.3) can be used to derive a formula for
marginal profit in terms of marginal revenue and marginal cost. 

Standardized Test Questions
You may use a graphing calculator to solve the following
problems.

40. True or False The speed of a particle at t � a is given by the
value of the velocity at t � a. Justify your answer. False. 

41. True or False The acceleration of a particle is the second
derivative of the position function. Justify your answer.

42. Multiple Choice Find the instantaneous rate of change of
f (x) � x2 � 2�x � 4 at x � �1. C

(A) �7 (B) �4 (C) 0 (D) 4 (E) 7

43. Multiple Choice Find the instantaneous rate of change of the
volume of a cube with respect to a side length x. D

(A) x (B) 3x (C) 6x (D) 3x2 (E) x3

In Exercises 44 and 45, a particle moves along a line so that its
position at any time t 
 0 is given by s(t) � 2 � 7t � t2.

44. Multiple Choice At which of the following times is the
particle moving to the left? E

(A) t � 0 (B) t � 1 (C) t � 2 (D) t � 7�2 (E) t � 4

45. Multiple Choice When is the particle at rest? C

(A) t � 1 (B) t � 2 (C) t � 7�2 (D) t � 4 (E) t � 5

Explorations
46. Bacterium Population When a bactericide was added to a

nutrient broth in which bacteria were growing, the bacterium
population continued to grow for a while but then stopped
growing and began to decline. The size of the population at 
time t (hours) was  b�t� � 106 � 104t � 103t2.  Find the 
growth rates at  t � 0, t � 5, and  t � 10  hours. See page 140.

Figure 3.34 Two balls falling from rest. (Exercise 38)

35. Exit velocity 	 348.712 ft/sec 	 237.758 mi/h

the velocity graph at that point.

See page 140.

It is the absolute value of the velocity.

and t 	 3.180 sec

sec “instantaneously”

1.626 sec, 4.129 sec

37. (b) Speeds up: [1.153, 2.167] and [3,180, ∞] slows down:
[0, 1.153] and [2.167, 3.180]

velocity � 280 cm/sec

560 cm/sec; acceleration � 980 cm/sec2

About 28 flashes per second

41. True. The acceleration is the first derivative of the velocity which, in turn,
is the second derivative of the position function.
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47. Finding f from f � Let f ��x� � 3x2.

(a) Compute the derivatives of  g�x� � x3, h�x� � x3 � 2, and
t �x� � x3 � 3. g�(x) � h�(x) � t�(x) � 3x2

(b) Graph the numerical derivatives of g, h, and t.

(c) Describe a family of functions, f �x�, that have the property
that f ��x� � 3x2. f (x) must be of the form f (x) � x3 � c, where c is 

(d) Is there a function f such that f ��x� � 3x2  and f �0� � 0?
If so, what is it? Yes. f (x) � x3

(e) Is there a function f such that f ��x� � 3x2 and f �0� � 3?
If so, what is it? Yes. f (x) � x3 � 3

48. Airplane Takeoff Suppose that the distance an aircraft travels
along a runway before takeoff is given by  D � �10�9�t2, where
D is measured in meters from the starting point and t is measured

in seconds from the time the brakes are released. If the aircraft
will become airborne when its speed reaches 200 km�h, how
long will it take to become airborne, and what distance will it
have traveled by that time? It will take 25 seconds, and the aircraft 

Extending the Ideas
49. Even and Odd Functions

(a) Show that if f is a differentiable even function, then f � is an
odd function.

(b) Show that if f is a differentiable odd function, then f � is an
even function.

50. Extended Product Rule Derive a formula for the derivative
of the product fgh of three differentiable functions.

9. (a) Move forward: 0 � t � 1 and 5 � t � 7 
move backward: 1 � t � 5
speed up: 1 � t � 2 and 5 � t � 6 
slow down: 0 � t � 1, 3 � t � 5, and 6 � t � 7

(b) Positive: 3 � t � 6 
negative: 0 � t � 2 and 6 � t � 7 
zero: 2 � t � 3 and 7 � t � 9

(c) At t � 0 and 2 � t � 3 

(d) 7 � t � 9

29. (d) The maximum occurs when x 	 106.44. Since x must be an integer,
P(106) 	 4.924 thousand dollars or $4924.

(e) $13 per package sold, $165 per package sold, $118 per package
sold, $31 per package sold, $6 per package sold, P�(300) 	 0 (on
the order of 10�6, or $0.001 per package sold)

(f ) The limit is 10. Maximum possible profit is $10,000 monthly.
(g) Yes. In order to sell more and more packages, the company might

need to lower the price to a point where they won’t make any addi-
tional profit.

37. (a) It begins at the point (�5, 2) moving in the positive direction. After a
little more than one second, it has moved a bit past (6, 2) and it turns
back in the negative direction for approximately 2 seconds. At the end
of that time, it is near (�2, 2) and it turns back again in the positive di-
rection. After that, it continues moving in the positive direction indefi-
nitely, speeding up as it goes.

37. (e) The velocity starts out positive but decreasing, it becomes negative,
then starts to increase, and becomes positive again and continues to 
increase.

39. Since profit � revenue � cost, using Rule 4 (the “difference rule”), and
taking derivatives, we see that marginal profit
= marginal revenue – marginal cost.

46. At t � 0: 10,000 bacteria/hour
At t � 5: 0 bacteria/hour
At t � 10: �10,000 bacteria/hour

a constant.

will have traveled approximately 694.444 meters.

49. (a) Assume that f is even. Then,

f �(�x) � lim
h→0 

� lim
h→0 
�
f (x � h

h
) � f (x)
�,

and substituting k � �h,

� lim
k→0  

�
f(x �

�

k)
k
� f(x)
�

��lim
k→0 
�
f (x � k

k
) � f (x)
�� �f�(x)

So, f � is an odd function.
(b) Assume that f is odd. Then,

f�(�x) � lim
h→0 
�
f (�x � h

h
) �f (�x)
�

� lim
h→0 
�
�f(x �

h
h) � f(x)
�,

and substituting k � �h,

� lim
k→0 
�
�f (x �

�

k
k
) � f (x)
�

� lim
k→0 
�
f (x � k

k
) � f (x)
�� f�(x)

So, f � is an even function.

f (�x � h) � f (�x)
���

h

d
d
x
� fgh � �

d
d
x
f
�gh � f�

d
d
x
g
�h � fg�

d
d
h
x
�

10. (a) Left: 2 � t � 3, 5 � t � 6
Right: 0 � t � 1
Standing still: 1 � t � 2, 3 � t � 5
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Derivatives of Trigonometric Functions

Derivative of the Sine Function
Trigonometric functions are important because so many of the phenomena we want infor-
mation about are periodic (heart rhythms, earthquakes, tides, weather). It is known that
continuous periodic functions can always be expressed in terms of sines and cosines, so
the derivatives of sines and cosines play a key role in describing periodic change. This sec-
tion introduces the derivatives of the six basic trigonometric functions. 

Making a Conjecture with NDER

In the window ��2p, 2p� by ��4, 4�, graph  y1 � sin x and  y2 � NDER �sin x�
(Figure 3.35).

1. When the graph of  y1 � sin x is increasing, what is true about the graph of  
y2 � NDER �sin x�?

2. When the graph of  y1 � sin x is decreasing, what is true about the graph of  
y2 � NDER �sin x�?

3. When the graph of  y1 � sin x stops increasing and starts decreasing, what is
true about the graph of  y2 � NDER �sin x�?

4. At the places where  NDER �sin x� � �1, what appears to be the slope of the
graph of  y1 � sin x?

5. Make a conjecture about what function the derivative of sine might be. Test your
conjecture by graphing your function and  NDER �sin x� in the same viewing
window. 

6. Now let  y1 � cos x and  y2 � NDER �cos x�. Answer questions (1) through (5)
without looking at the graph of  NDER �cos x� until you are ready to test your
conjecture about what function the derivative of cosine might be. 

3.5

What you’ll learn about

• Derivative of the Sine Function

• Derivative of the Cosine 
Function

• Simple Harmonic Motion

• Jerk

• Derivatives of the Other Basic
Trigonometric Functions

. . . and why

The derivatives of sines and 
cosines play a key role in 
describing periodic change.

EXPLORATION 1

Figure 3.35 Sine and its derivative.
What is the derivative? (Exploration 1)

[–2�, 2�] by [–4, 4]

Figure 3.36 (a) Graphical and (b) tabular support that lim
h→0

� 1.
sin (h)
�

h

[–3, 3] by [–2, 2]

(a)

(b)

X
–.03
–.02
–.01
0
.01
.02
.03

.99985

.99993

.99998
ERROR
.99998
.99993
.99985

Y1

Y1 = sin (X)/X

If you conjectured that the derivative of the sine function is the cosine function, then
you are right. We will confirm this analytically, but first we appeal to technology one more
time to evaluate two limits needed in the proof (see Figure 3.36 below and Figure 3.37 on
the next page):
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Confirm Analytically
(Also, see Section 2.1, Exercise 75.) Now, let  y � sin x. Then

�
d
d
y
x
� � lim

h→0
�
sin�x � h

h
� � sin x
�

� lim
h→0

Angle sum identity

� lim
h→0

� lim
h→0

sin x • lim
h→0

�
�cos h

h
� 1�
� � lim

h→0
cos x • lim

h→0
�
sin

h
h

�

� sin x • 0 � cos x • 1

� cos x.

In short, the derivative of the sine is the cosine.

�sin x��cos h � 1� � cos x sin h
����

h

sin x cos h � cos x sin h � sin x
����

h

�
d
d
x
�sin x � cos x

Now that we know that the sine function is differentiable, we know that sine and its de-
rivative obey all the rules for differentiation. We also know that sin x is continuous. The
same holds for the other trigonometric functions in this section. Each one is differentiable
at every point in its domain, so each one is continuous at every point in its domain, and the
differentiation rules apply for each one. 

Derivative of the Cosine Function
If you conjectured in Exploration 1 that the derivative of the cosine function is the 
negative of the sine function, you were correct. You can confirm this analytically in 
Exercise 24.

�
d
d
x
�cos x � �sin x

Figure 3.37 (a) Graphical and (b) tabular support that lim
h→0 

�
cos (

h
h)�1
� � 0.

[–3, 3] by [–2, 2]

(a)

(b)

X
–.03
–.02
–.01
0
.01
.02
.03

  .015
  .01
  .005
ERROR
–.005
–.01
–.015

Y1

Y1 = (cos(X)–1)/X
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EXAMPLE 1 Revisiting the Differentiation Rules

Find the derivatives of  (a) y � x2 sin x and  (b) u � cos x��1 � sin x�.

SOLUTION

(a) �
d
d

y
x
� � x2 • �

d
d
x
��sin x� � sin x • �

d
d
x
��x2� Product Rule

� x2 cos x � 2x sin x

(b) �
d
d
u
x
� � Quotient Rule

�

�

� �
�1

1
�

�

s
s
i
i
n
n

x
x
�2� sin2 x � cos2 x � 1

� �
1 �

1
sin x
� Now try Exercises 5 and 9.

Simple Harmonic Motion
The motion of a weight bobbing up and down on the end of a spring is an example of 
simple harmonic motion. Example 2 describes a case in which there are no opposing
forces like friction or buoyancy to slow down the motion.

EXAMPLE 2 The Motion of a Weight on a Spring

A weight hanging from a spring (Figure 3.38) is stretched 5 units beyond its rest posi-
tion  �s � 0� and released at time  t � 0  to bob up and down. Its position at any later
time t is 

s � 5 cos t.

What are its velocity and acceleration at time t? Describe its motion.

SOLUTION We have:

Position: s � 5 cos t;

Velocity: v � �
d
d
s
t
� � �

d
d
t
��5 cos t� � �5 sin t;

Acceleration: a � �
d
d
v
t
� � �

d
d
t
���5 sin t� � �5 cos t.

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between  s � �5  and s � 5  on the
s-axis. The amplitude of the motion is 5. The period of the motion is 2p.

2. The velocity  v � �5 sin t attains its greatest magnitude, 5, when cos t � 0, as the
graphs show in Figure 3.39. Hence the speed of the weight, �v � � 5 �sin t �, is great-
est when  cos t � 0, that is, when s � 0  (the rest position). The speed of the weight
is zero when sin t � 0.  This occurs when  s � 5 cos t � �5, at the endpoints of the
interval of motion. 

3. The acceleration value is always the exact opposite of the position value. When the
weight is above the rest position, gravity is pulling it back down; when the weight is
below the rest position, the spring is pulling it back up. 

�sin x � sin2 x � cos2 x
���

�1 � sin x�2

�1 � sin x���sin x� � cos x �0 � cos x�
�����

�1 � sin x�2

�1 � sin x� • �
d
d
x
��cos x� � cos x • �

d
d
x
��1 � sin x�

�����
�1 � sin x�2

Radian Measure in Calculus

In case you have been wondering why
calculus uses radian measure when the
rest of the world seems to measure an-
gles in degrees, you are now ready to
understand the answer. The derivative
of sin x is cos x only if x is measured in
radians! If you look at the analytic con-
firmation, you will note that the deriva-
tive comes down to 

cos x times lim
h→0

�
sin

h

h
� .

We saw that 

lim
h→0

�
sin

h

h
� � 1

in Figure 3.36, but only because the
graph in Figure 3.36 is in radian mode.

If you look at the limit of the same
function in degree mode you will get a
very different limit (and hence a differ-
ent derivative for sine). See Exercise 50.

Figure 3.38 The weighted spring in 
Example 2.

Rest
position

s

–5

Position at
t � 0

0

5

Figure 3.39 Graphs of the position and
velocity of the weight in Example 2.

t

s, v

0

s � 5 cos tv � –5 sin t

	–
2

5

–5

	 3	—
2

2	 5	—
2

continued
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144 Chapter 3 Derivatives

4. The acceleration, a � �5 cos t, is zero only at the rest position where  cos t � 0  
and the force of gravity and the force from the spring offset each other. When the
weight is anywhere else, the two forces are unequal and acceleration is nonzero. 
The acceleration is greatest in magnitude at the points farthest from the rest position,
where  cos t � �1. Now try Exercise 11.

Jerk
A sudden change in acceleration is called a “jerk.” When a ride in a car or a bus is jerky, it
is not that the accelerations involved are necessarily large but that the changes in acceler-
ation are abrupt. Jerk is what spills your soft drink. The derivative responsible for jerk is
the third derivative of position.

DEFINITION Jerk

Jerk is the derivative of acceleration. If a body’s position at time t is s(t), the body’s
jerk at time t is 

j(t) � �
d
d
a
t
� � �

d
dt

3

3
s

� .

Recent tests have shown that motion sickness comes from accelerations whose changes
in magnitude or direction take us by surprise. Keeping an eye on the road helps us to see
the changes coming. A driver is less likely to become sick than a passenger who is reading
in the back seat. 

EXAMPLE 3 A Couple of Jerks

(a) The jerk caused by the constant acceleration of gravity �g � �32 ft�sec2 � is zero:

j � �
d
d
t
��g� � 0.

This explains why we don’t experience motion sickness while just sitting around.

(b) The jerk of the simple harmonic motion in Example 2 is

j � �
d
d
a
t
� � �

d
d
t
���5 cos t�

� 5 sin t.

It has its greatest magnitude when  sin t � �1.  This does not occur at the extremes of the
displacement, but at the rest position, where the acceleration changes direction and sign.

Now try Exercise 19.

Derivatives of the Other Basic Trigonometric Functions
Because sin x and cos x are differentiable functions of x, the related functions 

tan x � �
c
s
o
in
s

x
x

� , sec x � �
co

1
s x
� ,

cot x � �
c
s
o
in
s

x
x

� , csc x � �
sin

1
x

�

are differentiable at every value of x for which they are defined. Their derivatives 
(Exercises 25 and 26) are given by the following formulas.
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EXAMPLE 4 Finding Tangent and Normal Lines

Find equations for the lines that are tangent and normal to the graph of 

f �x� � �
tan

x
x

�

at  x � 2.  Support graphically. 

SOLUTION

Solve Numerically Since we will be using a calculator approximation for f �2� any-
way, this is a good place to use NDER. 

We compute  �tan 2��2  on the calculator and store it as k. The slope of the tangent line
at �2, k� is 

NDER (�
tan

x
x

� , 2) ,

which we compute and store as m. The equation of the tangent line is 
y � k � m�x � 2�, or

y � mx � k � 2m.

Only after we have found  m and  k � 2m do we round the coefficients, giving the 
tangent line as 

y � 3.43x � 7.96.

The equation of the normal line is 

y � k � � �
m
1

� �x � 2�, or 

y � � �
m
1

� x � k � �
m
2

� .

Again we wait until the end to round the coefficients, giving the normal line as

y � �0.291x � 0.51.

Support Graphically Figure 3.40, showing the original function and the two lines,
supports our computations. Now try Exercise 23.

EXAMPLE 5 A Trigonometric Second Derivative

Find y� if y � sec x.

SOLUTION y � sec x

y� � sec x tan x

y� � �
d
d
x
��sec x tan x�

� sec x�
d
d
x
��tan x� � tan x�

d
d
x
��sec x�

� sec x �sec2 x� � tan x �sec x tan x�

� sec3 x � sec x tan2 x Now try Exercise 36.

�
d
d
x
� tan x � sec2 x, �

d
d
x
�sec x � sec x tan x

�
d
d
x
�cot x � �csc2 x, �

d
d
x
�csc x � �csc x cot x

X=2

[–3�/2, 3�/2] by [–3, 3]

Y=–1.09252

y1 = tan (x) / x
y2 = 3.43x – 7.96
y3 = –0.291x – 0.51

Figure 3.40 Graphical support for 
Example 4.
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Quick Review 3.5

1. Convert 135 degrees to radians. 3��4 � 2.356

2. Convert 1.7 radians to degrees. (306/�)° � 97.403°

3. Find the exact value of  sin �p�3� without a calculator. �3��2

4. State the domain and the range of the cosine function.

5. State the domain and the range of the tangent function. 

6. If  sin a � �1, what is cos a? 0

7. If  tan a � �1, what are two possible values of  sin a? �1/�2�

8. Verify the identity:

�
1 �

h
cos h
� � �

h�1
s
�

in2

co
h
s h�

� .

9. Find an equation of the line tangent to the curve 
y � 2x3 � 7x2 � 10 at the point �3, 1�. y � 12x � 35

10. A particle moves along a line with velocity v � 2t3 � 7t2 � 10
for time  t � 0.  Find the acceleration of the particle at t � 3.

(For help, go to Sections 1.6, 3.1, and 3.4.)

Section 3.5 Exercises

In Exercises 1–10, find  dy�dx. Use your grapher to support your
analysis if you are unsure of your answer. 

1. y � 1 � x � cos x 1 � sin x 2. y � 2 sin x � tan x

3. y � �
1
x

� � 5 sin x ��
x
1
2� � 5 cos x 4. y � x sec x

5. y � 4 � x2 sin x 6. y � 3x � x tan x

7. y � �
co

4
s x
� 4 sec x tan x 8. y � �

1 �

x
cos x
�

9. y � �
1 �

co
c
t
o
x
t x

�  See page 147. 10. y � �
1 �

cos
si

x
n x

� ��
1 �

1
sin x
�

In Exercises 11 and 12, a weight hanging from a spring (see Figure
3.38) bobs up and down with position function s � f (t) (s in meters,
t in seconds). What are its velocity and acceleration at time t?
Describe its motion.

11. s � 5 sin t 12. s � 7 cos t

In Exercises 13–16, a body is moving in simple harmonic motion
with position function s � f (t) (s in meters, t in seconds).

(a) Find the body’s velocity, speed, and acceleration at time t.

(b) Find the body’s velocity, speed, and acceleration at time  
t � p�4.

(c) Describe the motion of the body.

13. s � 2 � 3 sin t 14. s � 1 � 4 cos t

15. s � 2 sin t � 3 cos t 16. s � cos t � 3 sin t

In Exercises 17–20, a body is moving in simple harmonic motion
with position function s � f (t) (s in meters, t in seconds). Find the
jerk at time t.

17. s � 2 cos t 2 sin t 18. s � 1 � 2 cos t 2 sin t

19. s � sin t � cos t �cos t � sin t 20. s � 2 � 2 sin t �2 cos t

21. Find equations for the lines that are tangent and normal to the
graph of  y � sin x � 3 at x � p. tangent: y � �x � � � 3,

22. Find equations for the lines that are tangent and normal to the
graph of y � sec x at x � p/4. tangent: y � 1.414x � 0.303,

23. Find equations for the lines that are tangent and normal to the
graph of y � x2 sin x at x � 3. tangent: y � �8.063x � 25.460,

24. Use the definition of the derivative to prove that 
�d�dx� �cos x� � �sin x. (You will need the limits found at the
beginning of this section.)

25. Assuming that  �d�dx� �sin x� � cos x and  �d�dx� �cos x� �
�sin x, prove each of the following.

(a) �
d
d
x
� tan x � sec2 x (b) �

d
d
x
�sec x � sec x tan x

26. Assuming that  �d�dx� �sin x� � cos x and  �d�dx� �cos x� �
�sin x, prove each of the following.

(a) �
d
d
x
�cot x � �csc2 x (b) �

d
d
x
�csc x � �csc x cot x

27. Show that the graphs of  y � sec x and  y � cos x have
horizontal tangents at  x � 0. See page 147.

28. Show that the graphs of  y � tan x and  y � cot x have no
horizontal tangents. See page 147.

29. Find equations for the lines that are tangent and normal to the
curve  y � �2� cos x at the point �p�4, 1�. See page 147.

30. Find the points on the curve  y � tan x, �p�2 � x � p�2,
where the tangent is parallel to the line  y � 2x. See page 147.

In Exercises 31 and 32, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

31. 32.

Group Activity In Exercises 33 and 34, a body is moving in
simple harmonic motion with position  s � f �t� (s in meters, t in
seconds). 

(a) Find the body’s velocity, speed, acceleration, and jerk at time t.

(b) Find the body’s velocity, speed, acceleration, and jerk at time
t � p�4 sec.

(c) Describe the motion of the body.

x

y

0

y � 1 � √2 csc x � cot x

, 4

1 2�–
4

4

3

�– 4P





Q

_

�–
2

y � 4 � cot x � 2csc x

x

y

0

, 2

1

1 2

�–
2





2 P

Q

4. Domain: all reals; range: [�1, 1]
5. Domain: x � k �

�

2
�, where k is an odd integer; range: all reals

8. Multiply by �
1
1

�

�

c
c
o
o
s
s

h
h

� and use 1 � cos2 h � sin2 h.

12

2 cos x � sec2 x

x sec x tan x � sec x

5. �x2 cos x � 2x sin x

3 � x sec2 x � tan x

�
1 �

(1
co

�

s x
co

�

s x
x
)
s
2
in x

�

normal: y � x � � � 3

normal: y � �0.707x � 1.970

normal: y � 0.124x � 0.898

(a) y � �x � �
�

2
� � 2

(b) y � 4 ��3�

(a) y � �4x � � � 4
(b) y � 2
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33. s � 2 � 2 sin t 34. s � sin t � cos t

35. Find  y� if  y � csc x. 36. Find  y� if  y � u tan u.

37. Writing to Learn Is there a value of b that will make

x � b, x � 0
g�x� � {cos x, x 
 0

continuous at  x � 0?  differentiable at  x � 0?  Give reasons for
your answers.

38. Find  �
d
d
x

9

9

9

9

9

9��cos x�. sin x 39. Find  �
d
d
x

7

7

2

2

5

5� �sin x�. cos x

40. Local Linearity This is the graph of the function  y � sin x
close to the origin. Since  sin x is differentiable, this graph
resembles a line. Find an equation for this line. y � x

41. (Continuation of Exercise 40) For values of x close to 0,
the linear equation found in Exercise 40 gives a good
approximation of  sin x.

(a) Use this fact to estimate sin �0.12�. 0.12

(b) Find sin �0.12� with a calculator. How close is the
approximation in part (a)? sin (0.12) 	 0.1197122 

42. Use the identity  sin 2x � 2 sin x cos x to find the derivative 
of sin 2x. Then use the identity  cos 2x � cos2 x � sin2 x
to express that derivative in terms of cos 2x.

43. Use the identity  cos 2x � cos x cos x � sin x sin x to find the
derivative of  cos 2x.  Express the derivative in terms of sin 2x. 

Standardized Test Questions
You may use a graphing calculator to solve the following
problems.

In Exercises 44 and 45, a spring is bobbing up and down on the end
of a spring according to s(t) � �3 sin t.

44. True or False The spring is traveling upward at t � 3p�4.
Justify your answer. True. The derivative is positive at t � 3��4.

45. True or False The velocity and speed of the particle are the
same at t � p�4. Justify your answer. False. The velocity is 

46. Multiple Choice Which of the following is an equation of
the tangent line to   y � sin x� cos x at x � p? A

(A) y � �x � p � 1 (B) y � �x � p � 1

(C) y � �x � p � 1 (D) y � �x � p � 1

(E) y � x � p � 1

47. Multiple Choice Which of the following is an equation of the
normal line to y � sin x � cos x at x � p? B

(A) y � �x � p � 1 (B) y � x � p � 1 (C) y � x � p � 1

(D) y � x � p � 1 (E) y � x � p � 1

48. Multiple Choice Find y� if  y � x sin x. C

(A) �x sin x (B) x cos x � sin x (C) �x sin x � 2 cos x

(D) x sin x (E) �sin x � cos x

49. Multiple Choice A body is moving in simple harmonic
motion with position s � 3 � sin t. At which of the following
times is the velocity zero? C

(A) t � 0 (B) t � p�4 (C) t � p�2

(D) t � p (E) none of these

Exploration
50. Radians vs. Degrees What happens to the derivatives of sin x

and  cos x if  x is measured in degrees instead of radians? To
find out, take the following steps.

(a) With your grapher in degree mode, graph 

f �h� � �
sin

h
h

�

and estimate  limh→0 f �h�.  Compare your estimate with p�180.
Is there any reason to believe the limit should be p�180?

(b) With your grapher in degree mode, estimate

lim
h→0

�
cos h

h
� 1
� .

(c) Now go back to the derivation of the formula for the
derivative of sin x in the text and carry out the steps of the
derivation using degree-mode limits. What formula do you
obtain for the derivative?

(d) Derive the formula for the derivative of cos x using degree-
mode limits.

(e) The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. What are
the second and third degree-mode derivatives of sin x and cos x?

Extending the Ideas
51. Use analytic methods to show that 

lim
h→0

�
cos h

h
� 1
� � 0.

[Hint: Multiply numerator and denominator by �cos h �1�.]
52. Find A and B in  y � A sin x � B cos x so that  y� � y � sin x.

9. ��
(1 �

csc
c

2

ot
x

x)2� � ��
(sin x �

1
cos x)2�

27. d/dx (sec x) � sec x tan x, which is 0 at x � 0, so the slope of the tangent 
line is 0.
d/dx (cos x) � �sin x, which is 0 at x � 0, so the slope of the tangent line 
is 0.

28. d/dx (tan x) � sec2 x, which is never 0.
d/dx (cot x) � �csc2 x, which is never 0.

29. Tangent: y � �x � �
�

4
� � 1

normal: y � x � 1 � �
�

4
�

35. y� � csc3 x � csc x cot2 x 36. y� � �
2 �

co
2
s
�
2�

tan�
� ��

2cos�

c
�

os3
2
�

� sin �
�

The approximation is within 0.0003 of the actual value.

negative and the speed is positive at t � ��4.

A � �1/2, B � 0

30. 
��
�

4
�, �1�, 
�

�

4
�, 1�
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Chain Rule

Derivative of a Composite Function
We now know how to differentiate sinx and x2 � 4, but how do we differentiate a compos-
ite like sin �x2 � 4�? The answer is with the Chain Rule, which is probably the most widely
used differentiation rule in mathematics. This section describes the rule and how to use it.

EXAMPLE 1 Relating Derivatives

The function  y � 6x � 10 � 2�3x � 5� is the composite of the functions  y � 2u and
u � 3x � 5.  How are the derivatives of these three functions related?

SOLUTION

We have

�
d
d

y
x
� � 6, �

d
d

u
y
� � 2, �

d
d

u
x
� � 3.

Since 6 � 2 • 3,

�
d
d

y
x
� � �

d
d

u
y
� • �

d
d

u
x
� .

Now try Exercise 1.

Is it an accident that  dy�dx � dy�du • du�dx?
If we think of the derivative as a rate of change, our intuition allows us to see that this

relationship is reasonable. For y � f �u� and u � g�x�, if y changes twice as fast as u and u
changes three times as fast as x, then we expect y to change six times as fast as x. This is
much like the effect of a multiple gear train (Figure 3.41).

Let us try again on another function.

EXAMPLE 2 Relating Derivatives

The polynomial  y � 9x4 � 6x2 � 1 � �3x2 � 1�2 is the composite of  y � u2 and  
u � 3x2 � 1.  Calculating derivatives, we see that

�
d
d

u
y
� • �

d
d

u
x
� � 2u • 6x

� 2�3x2 � 1� • 6x

� 36x3 � 12x.

Also,

�
d
d

y
x
� � �

d
d
x
��9x4 � 6x2 � 1�

� 36x3 � 12x.

Once again,

�
d
d

u
y
� • �

d
d

u
x
� � �

d
d

y
x
� .

Now try Exercise 5.

The derivative of the composite function f �g�x�� at x is the derivative of f at g�x� times
the derivative of g at x (Figure 3.42). This is known as the Chain Rule.

3.6

What you’ll learn about

• Derivative of a Composite 
Function

• “Outside-Inside” Rule

• Repeated Use of the Chain Rule

• Slopes of Parametrized Curves

• Power Chain Rule

. . . and why

The Chain Rule is the most widely
used differentiation rule in 
mathematics.

Figure 3.41 When gear A makes x turns,
gear B makes u turns, and gear C makes y
turns. By comparing circumferences or
counting teeth, we see that y � u�2 and 
u � 3x, so y � 3x�2. Thus dy�du � 1�2,
du�dx � 3, and dy�dx � 3�2 �
�dy�du)�du�dx).

3

A: x turnsB: u turnsC: y turns

2

1
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It would be tempting to try to prove the Chain Rule by writing

�
�
�

y
x
� � �

�
�

u
y
� • �

�
�

u
x
�

(a true statement about fractions with nonzero denominators) and taking the limit as
�x→0. This is essentially what is happening, and it would work as a proof if we knew
that Du, the change in u, was nonzero; but we do not know this. A small change in x could
conceivably produce no change in u. An air-tight proof of the Chain Rule can be con-
structed through a different approach, but we will omit it here. 

EXAMPLE 3 Applying the Chain Rule

An object moves along the x-axis so that its position at any time  t 
 0 is given by
x�t� � cos �t2 � 1�. Find the velocity of the object as a function of t.

SOLUTION

We know that the velocity is  dx�dt.  In this instance, x is a composite function:
x � cos �u� and  u � t2 � 1.  We have

�
d
d
u
x
� � �sin �u� x � cos (u )

�
d
d
u
t
� � 2t. u � t2 � 1

By the Chain Rule,

�
d
d
x
t
� � �

d
d
u
x
� • �

d
d
u
t
�

� �sin �u� • 2t

� �sin �t2 � 1� • 2t

� �2t sin �t2 � 1�. Now try Exercise 9.

y � f(u) � f(g(x))

Rate of change
at x is g'(x)

u � g(x)x

Rate of change
at g(x) is f '(g(x))

Rate of change at
x is f '(g(x)) • g'(x)

Composite f ˚ g

g f

RULE 8 The Chain Rule

If f is differentiable at the point  u � g�x�, and g is differentiable at x, then the
composite function  � f � g��x� � f �g�x�� is differentiable at x, and

� f � g���x� � f ��g�x�� • g��x�.

In Leibniz notation, if  y � f �u� and  u � g�x�, then

�
d
d

y
x
� � �

d
d

u
y
� • �

d
d

u
x
� ,

where  dy�du is evaluated at  u � g�x�.

Figure 3.42 Rates of change multiply:
the derivative of f � g at x is the derivative
of f at the point g�x) times the derivative 
of g at x.
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150 Chapter 3 Derivatives

“Outside-Inside” Rule
It sometimes helps to think about the Chain Rule this way: If y � f �g�x��, then

�
d
d

y
x
� � f ��g�x�� • g��x�.

In words, differentiate the “outside” function f and evaluate it at the “inside” function g�x�
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 4 Differentiating from the Outside in

Differentiate  sin �x2 � x� with respect to x.

SOLUTION  

�
d
d
x
�sin �x2 � x� � cos �x2 � x� • �2x � 1�

inside inside derivative of
left alone the inside

Now try Exercise 13.

Repeated Use of the Chain Rule
We sometimes have to use the Chain Rule two or more times to find a derivative. Here is
an example:

EXAMPLE 5 A Three-Link “Chain”

Find the derivative of  g�t� � tan�5 � sin 2t�.

SOLUTION

Notice here that tan is a function of  5 � sin 2t, while sin is a function of 2t, which is 
itself a function of t. Therefore, by the Chain Rule,

g��t� � �
d
d
t

��tan �5 � sin 2t��

� sec2 �5 � sin 2t� • �
d
d
t

��5 � sin 2t�

� sec2 �5 � sin 2t� • �0 � cos 2t • �
d
d
t

��2t��

� sec2 �5 � sin 2t� • ��cos 2t� • 2

� �2 �cos 2t� sec2 �5 � sin 2t�.

Now try Exercise 23.

Slopes of Parametrized Curves
A parametrized curve �x�t�, y�t�� is differentiable at t if x and y are differentiable at t. At a
point on a differentiable parametrized curve where y is also a differentiable function of x,
the derivatives dy�dt, dx�dt, and dy�dx are related by the Chain Rule:

�
d
d
y
t
� � �

d
d

y
x
� • �

d
d
x
t
� .

If dx�dt � 0, we may divide both sides of this equation by dx�dt to solve for dy�dx.

Derivative of 5 � sin u
with u � 2t

Derivative of tan u
with u � 5 � sin 2t
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EXAMPLE 6 Differentiating with a Parameter

Find the line tangent to the right-hand hyperbola branch defined parametrically by

x � sec t, y � tan t, ��
p

2
� � t � �

p

2
�

at the point ��2�, 1�, where  t � p�4  (Figure 3.43).

SOLUTION

All three of the derivatives in Equation 3 exist and  dx�dt � sec t tan t � 0  at the indi-
cated point. Therefore, Equation 3 applies and

�
d
d

y
x
� � �

d
d

x
y�
�
d
d
t
t

�

� �
se

s
c
e
t
c
t

2

a
t
n t

�

� �
s
ta
e
n
c

t
t

�

� csc t.

Setting  t � p�4  gives

�
d
d

y
x
� |

t�p�4
� csc �p�4� � �2�.

The equation of the tangent line is

y � 1 � �2��x � �2��

y � �2�x � 2 � 1

y � �2�x � 1. Now try Exercise 41.

Power Chain Rule
If f is a differentiable function of u, and u is a differentiable function of x, then substituting
y � f �u� into the Chain Rule formula

�
d
d

y
x
� � �

d
d

u
y
� • �

d
d

u
x
�

leads to the formula

�
d
d
x
� f �u� � f ��u��

d
d

u
x
� .

Here’s an example of how it works: If n is an integer and f �u� � un, the Power Rules
(Rules 2 and 7) tell us that f ��u� � nun�1. If u is a differentiable function of x, then we can
use the Chain Rule to extend this to the Power Chain Rule:

�
d
d
x
�un � nun�1 �

d
d

u
x
� .    �

d

d

u
��un� � nun�1

Finding dy/dx Parametrically

If all three derivatives exist and  dx�dt � 0,

�
d
d

y
x
� � �

d
d
x
y�
�
d
d
t
t

� . (3)

x

y

0

� t � 	–
2

1

1

t �
(1

 –
2, 1)

x � sec t,  y � tan t,

2

2

	–
2

–

	–
4

Figure 3.43 The hyperbola branch in
Example 6. Equation 3 applies for every
point on the graph except �1, 0). Can you
state why Equation 3 fails at �1, 0)?
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152 Chapter 3 Derivatives

EXAMPLE 7 Finding Slope

(a) Find the slope of the line tangent to the curve  y � sin5 x at the point where  
x � p�3. 

(b) Show that the slope of every line tangent to the curve  y � 1��1 � 2x�3 is positive.

SOLUTION

(a) �
d
d

y
x
� � 5 sin4 x • �

d
d
x
�sin x    Power Chain Rule with u � sin x, n � 5

� 5 sin4 x cos x

The tangent line has slope 

�
d
d

y
x
� |

x�p�3
� 5(�

�
2
3�
� )4( �

1
2

� ) � �
4
3
5
2
� .

(b) �
d
d

y
x
� � �

d
d
x
��1 � 2x��3

� �3�1 � 2x��4 • �
d
d
x
��1 � 2x�

� �3�1 � 2x��4 • ��2�

� �
�1 �

6
2x�4�

At any point �x, y� on the curve, x � 1�2  and the slope of the tangent line is 

�
d
d

y
x
� � �

�1 �

6
2x�4� ,

the quotient of two positive numbers. Now try Exercise 53.

EXAMPLE 8 Radians Versus Degrees

It is important to remember that the formulas for the derivatives of both sin x and cos x
were obtained under the assumption that x is measured in radians, not degrees. The
Chain Rule gives us new insight into the difference between the two. Since  180° � p
radians, x° � px�180 radians.  By the Chain Rule,

�
d
d
x
�sin �x°� � �

d
d
x
�sin (�

1
p

8
x
0

�) � �
1
p

80
�cos (�

1
p

8
x
0

�) � �
1
p

80
�cos �x°�.

See Figure 3.44. 

The factor  p�180, annoying in the first derivative, would compound with repeated dif-
ferentiation. We see at a glance the compelling reason for the use of radian measure.

Power Chain Rule with 
u � (1 � 2x), n � �3

Figure 3.44 sin �x°) oscillates only p�180 times as often as sin x oscillates. Its maximum slope
is p�180. (Example 8)

x

y

1

180y � sin x

y � sin (x°) � sin 
 	x___
 180
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Quick Review 3.6

In Exercises 1–5, let f �x� � sin x, g�x� � x2 � 1, and h�x� � 7x.
Write a simplified expression for the composite function.

1. f �g�x�� sin (x2 � 1) 2. f �g �h�x��� sin (49x2 � 1)

3. �g � h��x� 49x2 � 1 4. �h � g��x� 7x2 � 7

5. f (�
g
h

�
�
x
x
�
�

� ) sin �
x2

7
�

x
1

�

In Exercises 6–10, let f �x� � cos x, g�x� � �x��� 2�, and  
h�x� � 3x2.  Write the given function as a composite of two or more
of f, g, and h. For example, cos 3x2 is f �h �x��.

6. �co�s�x��� 2� g(f(x)) 7. �3� c�o�s2� x� �� 2� g(h(f(x)))

8. 3 cos x � 6 h(g(f(x))) 9. cos 27x4 f (h(h(x)))

10. cos �2� �� 3�x�2� f (g(h(x)))

In Exercises 1–8, use the given substitution and the Chain Rule to
find dy�dx.

1. y � sin (3x � 1), u � 3x � 1 2. y � sin (7 � 5x), u � 7 � 5x

3. y � cos (�3�x), u � �3x� 4. y � tan (2x � x3), u � 2x � x3

5. y � (�1 �

sin
co

x
s x

� )
2

, u � �
1 �

sin
co

x
s x

� �
(1 �

2 s
c
in
os

x
x)2�

6. y � 5 cot ( �
2
x

� ), u � �
2
x

� 7. y � cos (sin x), u � sin x

8. y � sec (tan x), u � tan x

In Exercises 9–12, an object moves along the x-axis so that its posi-
tion at any time t 
 0 is given by x(t) � s(t). Find the velocity of the
object as a function of t.

9. s � cos (�
p

2
� � 3t ) 10. s � t cos �p � 4t�

11. s � �
3
4
p
� sin 3t � �

5
4
p
� cos 5t �

�

4
� cos 3t � �

�

4
� sin 5t

12. s � sin (�
3
2
p
� t ) � cos (�

7
4
p
� t ) �

3
2
�
� cos �

3
2
�t
� � �

7
4
�
� sin �

7
4
�t
�

In Exercises 13–24, find dy�dx. If you are unsure of your answer, use
NDER to support your computation.

13. y � �x � �x���2 14. y � �csc x � cot x��1

15. y � sin�5 x � cos3 x 16. y � x3�2x � 5�4

17. y � sin3 x tan 4x 18. y � 4�se�c�x��� t�an� x�

19. y � �
�2�x

3

��� 1�
� �3(2x � 1)�3/2 20. y � �

�1�
x

�� x�2�
�  (1 � x2)�3/2

21. y � sin2 �3x � 2� 22. y � �1 � cos 2x�2

23. y � �1 � cos2 7x�3 24. y � �ta�n� 5�x�
In Exercises 25–28 find dr�du.

25. r � tan �2 � u� �sec2 (2 � �) 26. r � sec 2u tan 2u

27. r � �u� s�in� u� 28. r � 2u�se�c�u�

In Exercises 29–32, find y�.

29. y � tan x 2 sec2 x tan x 30. y � cot x 2 csc2 x cot x

31. y � cot �3x � 1� 32. y � 9 tan �x�3�

In Exercises 33–38, find the value of � f � g�� at the given value of x.

33. f �u� � u5 � 1, u � g�x� � �x�, x � 1 5/2

34. f �u� � 1 � �
1
u

� , u � g�x� � �
1 �

1
x

� , x � �1 1

35. f �u� � cot �
p

10
u
� , u � g�x� � 5�x�, x � 1 ���4

36. f �u� � u � �
cos

1
2 u
� , u � g�x� � px, x � �

1
4

� 5�

37. f �u� � �
u2

2
�

u
1

� , u � g�x� � 10x2 � x � 1, x � 0 0

38. f �u� � (�uu �

�

1
1

� )
2

, u � g�x� � �
x
1
2� � 1, x � �1 �8

What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule
says you should. Try it with the functions in Exercises 39 and 40.

39. Find  dy�dx if  y � cos �6x � 2� by writing y as a composite
with

(a) y � cos u and u � 6x � 2. �6 sin (6x � 2)

(b) y � cos 2u and u � 3x � 1. �6 sin (6x � 2)

40. Find  dy�dx if  y � sin �x2 � 1� by writing y as a composite
with 

(a) y � sin �u � 1� and u � x2. 2x cos (x2 � 1)

(b) y � sin u and u � x2 � 1. 2x cos (x2 � 1)

In Exercises 41–48, find the equation of the line tangent to the curve
at the point defined by the given value of t.

41. x � 2 cos t, y � 2 sin t, t � p�4 y � �x � 2�2�

42. x � sin 2pt, y � cos 2pt, t � �1�6 y � �3�x � 2

43. x � sec2 t � 1, y � tan t, t � �p�4 y � ��
1
2

�x � �
1
2

�

44. x � sec t, y � tan t, t � p�6 y � 2x � �3�

45. x � t, y � �t�, t � 1�4 y � x � �
1
4

�

46. x � 2t2 � 3, y � t4, t � �1 y � x � 4

47. x � t � sin t, y � 1 � cos t, t � p�3 y � �3�x � 2 � �
�
�

3�
�

48. x � cos t, y � 1 � sin t, t � p�2 y � 2

Section 3.6 Exercises

(For help, go to Sections 1.2 and 1.6.)

3 cos (3x � 1)

3. ��3� sin (�3�x)

�5 cos (7 � 5x)

4. (2 � 3x2) sec2 (2x – x3)

�sin (sin x) cos x

sec (tan x) tan (tan x) sec2 x

4t sin (� �4t) � cos (� � 4t)

�sec �� (� tan � � 2)

15. �5 sin�6 x cos x � 3 cos2 x sin x 18. 2 sec x �sec x �� tan x�
17. 4 sin3 x sec2 4x � 3 sin2 x cos x tan 4x 21. 6 sin (3x � 2) cos (3x � 2) � 3 sin (6x � 4)

22. �4 (1 � cos 2x) sin 2x
23. �42(1 � cos2 7x)2 cos 7x sin 7x 31. 18 csc2 (3x � 1) cot (3x �1)

26. 2 sec3 2� � 2 sec 2� tan2 2�

�
csc x

cs
�

c x
cot x

�

2 sec2 �
3
x

� tan �
3
x

�

�
5
2

� (tan 5x)�1/2 sec2 5x

�
� c

2
o
�
s �

�

�

sin
si
��
n �

�

6. �
1
x
0
2� csc2 
�

2
x

�� 9. 3 sin 
�
�

2
� � 3t� 13. �2(x � �x�)�3
1 � �1

�
2�x�

16. 8x3(2x � 5)3 � 3x2(2x � 5)4

�x2(2x � 5)3(14x � 15)
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49. Let  x � t2 � t, and let  y � sin t.

(a) Find  dy�dx as a function of t. �
2
c
t
o
�

s t
1

�

(b) Find  �
d
d
t

�( �
d
d

y
x
� ) as a function of t.

(c) Find  �
d
d
x
�( �

d
d

y
x
� ) as a function of t.

Use the Chain Rule and your answer from part (b).

(d) Which of the expressions in parts (b) and (c) is  d2y�dx2?

50. A circle of radius 2 and center �0, 0� can be parametrized by the
equations  x � 2 cos t and  y � 2 sin t.  Show that for any value
of t, the line tangent to the circle at �2 cos t, 2 sin t� is
perpendicular to the radius. See page 156.

51. Let  s � cos u.  Evaluate  ds�dt when  u � 3p�2  and  du�dt � 5.

52. Let  y � x2 � 7x � 5.  Evaluate  dy�dt when  x � 1  and
dx�dt � 1�3. 3

53. What is the largest value possible for the slope of the curve  
y � sin �x�2�? �

1
2

�

54. Write an equation for the tangent to the curve  y � sin mx
at the origin. y � mx

55. Find the lines that are tangent and normal to the curve 
y � 2 tan �px�4� at x � 1.  Support your answer graphically.

56. Working with Numerical Values Suppose that functions
f and g and their derivatives have the following values at  
x � 2  and  x � 3.

Evaluate the derivatives with respect to x of the following
combinations at the given value of x.

(a) 2 f �x� at x � 2 2/3 (b) f �x� � g�x� at x � 3

(c) f �x� • g�x� at x � 3 (d) f �x��g�x� at x � 2 37/6

(e) f �g�x�� at x � 2 �1 (f) �f ��x�� at x � 2 1/(12�2�)

(g) 1�g2�x� at x � 3 5/32 (h) �f�2��x�� �� g�2��x�� at x � 2

57. Extension of Example 8 Show that �
d
d
x
� cos (x°) is

��
1
p

80
� sin (x°).

x  f �x� g�x� f ��x� g��x�
2  8 2 1�3 �3
3  3 �4 2p 5

(2 cos t, 2 sin t )

58. Working with Numerical Values Suppose that the functions
f and g and their derivatives with respect to x have the following
values at  x � 0  and x � 1.

Evaluate the derivatives with respect to x of the following
combinations at the given value of x.

(a) 5f �x� � g�x�, x � 1 1 (b) f �x�g3�x�, x � 0 6

(c) �
g�x

f
�
�x

�

�
1

� , x � 1 1 (d) f �g�x��, x � 0 �1/9

(e) g� f �x��, x � 0 �40/3 (f) �g�x� � f �x���2, x � 1 �6

(g) f �x � g�x��, x � 0 �4/9

59. Orthogonal Curves Two curves are said to cross at right
angles if their tangents are perpendicular at the crossing point.
The technical word for “crossing at right angles” is orthogonal.
Show that the curves  y � sin 2x and y � �sin �x�2� are
orthogonal at the origin. Draw both graphs and both tangents in
a square viewing window.

60. Writing to Learn Explain why the Chain Rule formula

�
d
dy

x
� � �

d
d

u
y
� • �

d
d

u
x
�

is not simply the well-known rule for multiplying fractions. 

61. Running Machinery Too Fast Suppose that a piston is moving
straight up and down and that its position at time t seconds is

s � A cos �2pbt�,
with A and b positive. The value of A is the amplitude of the
motion, and b is the frequency (number of times the piston
moves up and down each second). What effect does doubling the
frequency have on the piston’s velocity, acceleration, and jerk?
(Once you find out, you will know why machinery breaks when
you run it too fast.)

x  f �x� g�x� f ��x� g��x�
0  1 1 5 1�3
1  3 �4 �1�3 �8�3

Figure 3.45 The internal forces in the engine get so large that they
tear the engine apart when the velocity is too great.

�
d
d
t

���
d
d
y
x
�� � �

(2t � 1)(sin t) � 2 cos t
���

(2t � 1)2

d
d
x
� ��

d
d
y
x
�� � �

(2t � 1)(sin t) � 2 cos t
���

(2t � 1)3

part (c)

5

55. Tangent: y � �x � � � 2; Normal: y � ��
�

1
�x � �

�

1
� � 2

2� � 5

15 � 8�

�5/(3�17� )

60. Because the symbols �
d
d
y
x
�, �

d
d
u
y
�, and �

d
d
u
x
� are not fractions. The individual

symbols dy, du, and dx do not have numerical values.
61. The amplitude of the velocity is doubled.

The amplitude of the acceleration is quadrupled.
The amplitude of the jerk is multiplied by 8.
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62. Group Activity Temperatures in Fairbanks, Alaska.
The graph in Figure 3.46 shows the average Fahrenheit
temperature in Fairbanks, Alaska, during a typical 365-day year.
The equation that approximates the temperature on day x is

y � 37 sin [�
3
2
6
p

5
� �x � 101� ] � 25.

(a) On what day is the temperature increasing the fastest?

(b) About how many degrees per day is the temperature
increasing when it is increasing at its fastest?
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L. In symbols, with u being temperature and k the proportion-
ality constant,

�
d
d

L
u
� � kL.

Assuming this to be the case, show that the rate at which the pe-
riod changes with respect to temperature is kT�2. See page 156.

68. Writing to Learn Chain Rule Suppose that f �x� � x2 and
g�x� � �x �.  Then the composites 

� f � g��x� � �x �2 � x2 and �g � f ��x� � �x2� � x2

are both differentiable at  x � 0  even though g itself is not 
differentiable at  x � 0.  Does this contradict the Chain Rule? 
Explain.

69. Tangents Suppose that  u � g�x� is differentiable at  x � 1 and
that  y � f �u� is differentiable at  u � g�1�.  If the graph of  
y � f �g�x�� has a horizontal tangent at  x � 1, can we conclude
anything about the tangent to the graph of g at  x � 1  or the tangent
to the graph of f at  u � g�1�?  Give reasons for your answer.

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

70. True or False �
d
d
x
� (sin x) � cos x, if x is measured in 

degrees or radians. Justify your answer. False. See example 8.

71. True or False The slope of the normal line to the curve 
x � 3 cos t, y � 3 sin t at t � p�4 is �1. Justify your answer.

72. Multiple Choice Which of the following is dy�dx if 
y � tan (4x)? E

(A) 4 sec (4x) tan (4x) (B) sec (4x) tan (4x) (C) 4 cot (4x)

(D) sec2(4x) (E) 4 sec2(4x)

73. Multiple Choice Which of the following is dy�dx if 
y � cos2 (x3 � x2)? C

(A) �2(3x2 � 2x)

(B) �(3x2 � 2x) cos (x3 � x2) sin (x3 � x2)

(C) �2(3x2 � 2x) cos (x3 � x2) sin (x3 � x2)

(D) 2(3x2 � 2x) cos (x3 � x2) sin (x3 � x2)

(E) 2(3x2 � 2x)

In Exercises 74 and 75, use the curve defined by the parametric equa-
tions x � t � cos t, y � �1 � sin t.

74. Multiple Choice Which of the following is an equation of the
tangent line to the curve at t � 0? A

(A) y � x (B) y � �x (C) y � x � 2

(D) y � x � 2 (E) y � �x � 2

75. Multiple Choice At which of the following values of t is
dy�dx � 0? B

(A) t � p�4 (B) t � p�2 (C) t � 3p�4

(D) t � p (E) t � 2p

Figure 3.46 Normal mean air temperatures at Fairbanks, Alaska,
plotted as data points, and the approximating sine function 
(Exercise 62).

63. Particle Motion The position of a particle moving along a
coordinate line is  s � �1� �� 4�t�, with s in meters and t in
seconds. Find the particle’s velocity and acceleration at t � 6 sec.

64. Constant Acceleration Suppose the velocity of a falling body
is  v � k�s� m�sec (k a constant) at the instant the body has fallen
s meters from its starting point. Show that the body’s acceleration
is constant. See page 156.

65. Falling Meteorite The velocity of a heavy meteorite entering
the earth’s atmosphere is inversely proportional to �s� when it is
s kilometers from the earth’s center. Show that the meteorite’s
acceleration is inversely proportional to s2. See page 156.

66. Particle Acceleration A particle moves along the x-axis with
velocity  dx�dt � f �x�.  Show that the particle’s acceleration is
f �x� f ��x�. See page 156.

67. Temperature and the Period of a Pendulum For
oscillations of small amplitude (short swings), we may safely
model the relationship between the period T and the length L of
a simple pendulum with the equation

T � 2p
�
L
g

��,

where g is the constant acceleration of gravity at the pendulum’s
location. If we measure g in centimeters per second squared, we
measure L in centimeters and T in seconds. If the pendulum is
made of metal, its length will vary with temperature, either
increasing or decreasing at a rate that is roughly proportional to

On the 101st day (April 11th)

About 0.637 degrees per day

71. False. It is �1.

See page 156.
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156 Chapter 3 Derivatives

Quick Quiz for AP* Preparation: Sections 3.4 –3.6

You should solve the following problems without using a
graphing calculator.

1. Multiple Choice Which of the following gives 
dy/dx for y � sin4(3x)? B

(A) 4 sin3 (3x) cos (3x) (B) 12 sin3 (3x) cos (3x)

(C) 12 sin (3x) cos (3x) (D) 12 sin3 (3x)

(E) �12 sin3 (3x) cos (3x)

2. Multiple Choice Which of the following gives y� for 
y � cos x � tan x? A

(A) �cos x � 2 sec2 x tan x (B) cos x � 2 sec2 x tan x

(C) �sin x � sec2 x (D) �cos x � sec2 x tan x

(E) cos x � sec2 x tan x

3. Multiple Choice Which of the following gives dy/dx for the
parametric curve x � 3 sin t, y � 2 cos t? C

(A) ��
3
2

� cot t (B) �
3
2

� cot t (C) ��
2
3

� tan t (D) �
2
3

� tan t (E) tan t

4. Free Response A particle moves along a line so that its
position at any time t 
 0 is given by s(t) � �t2 � t � 2, where
s is measured in meters and t is measured in seconds.

(a) What is the initial position of the particle? s(0) � 2m

(b) Find the velocity of the particle at any time t. v(t) � s�(t) �

(c) When is the particle moving to the right?

(d) Find the acceleration of the particle at any time t.

(e) Find the speed of the particle at the moment when s(t) � 0.

Explorations
76. The Derivative of sin 2x Graph the function  y � 2 cos 2x

for  �2 � x � 3.5.  Then, on the same screen, graph

y �

for  h � 1.0, 0.5, and 0.2.  Experiment with other values of 
h, including negative values. What do you see happening as
h→0? Explain this behavior.

77. The Derivative of cos (x2) Graph  y � �2x sin �x2 � for  
�2 � x � 3.  Then, on screen, graph

y �

for  h � 1.0, 0.7, and  0.3.  Experiment with other values 
of h. What do you see happening as h →0? Explain this
behavior.

cos ��x � h�2 � � cos �x2�
���

h

sin 2�x � h� � sin 2x
���

h

Extending the Ideas
78. Absolute Value Functions Let u be a differentiable function

of x.

(a) Show that �
d
d
x
� �u� � u��

�

u
u�
� .

(b) Use part (a) to find the derivatives of f �x� � �x2 � 9� and
g�x� � �x � sin x.

79. Geometric and Arithmetic Mean The geometric mean 
of u and v is  G � �u�v� and the arithmetic mean is 
A � �u � v� �2.  Show that if  u � x, v � x � c, c a real
number, then

�
d
d
G
x
� � �

G
A

� .

50. Since the radius goes through (0, 0) and (2 cos t, 2 sin t), it has slope

given by tan t. But �
d
d
y
x
� � �

d
d
y
x
/
/
d
d
t
t

� � ��
c
s
o
in
s

t
t

� � �cot t, which is the

negative reciprocal of tan t. This means that the radius and the tan-

gent are perpendicular.

64. Acceleration � �
d
d
v
t
� � �

d
d
v
s
� �

d
d
s
t
� � �

d
d
v
s
�v

� �
2�

k
s�

� (k�s�) � �
k
2

2
�

65. Given: v � �
�
k

s�
�

acceleration: � �
d
d
v
t
� � �

d
d
v
s
� �

d
d
s
t
� � �

d
d
s
v
�v

� �
2
�

s3
k
/2� �

�
k

s�
� � ��

2
k
s

2

2�

66. Acceleration � �
d
d
v
t
� � �

df
d
(
t
x)
�

� ��d d
f (
x
x)

����
d
d
x
t
��

�f �(x)f(x)

67. �
d
d
T
u
� � �

d
d
T
L
� �

d
d
L
u
�

� �
�

�

gL�
� kL � k� 
�

L
g

�� � �
k
2
T
�

63. Velocity � �
2
5

� m/sec

acceleration � ��
1
4
25
� m/sec2

�2t � 1 m/s

(c) The particle moves to the right when v(t) � 0; that is, when 0 � t � 1/2.
(d) a(t) � v�(t) ��2 m/s2

(e) s(t) ��(t � 1)(t � 2), so s(t) � 0 when t � 2. The speed at that moment is
⏐v(2)⏐�⏐�3⏐ � 3 m/s. 

Answers to Section 3.6 Exercises
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Section 3.7 Implicit Differentiation 157

Implicit Differentiation

Implicitly Defined Functions
The graph of the equation x3 � y3 � 9xy � 0 (Figure 3.47) has a well-defined slope at
nearly every point because it is the union of the graphs of the functions y � f1�x�,
y � f2�x�, and y � f3�x�, which are differentiable except at O and A. But how do we find
the slope when we cannot conveniently solve the equation to find the functions? The an-
swer is to treat y as a differentiable function of x and differentiate both sides of the equa-
tion with respect to x, using the differentiation rules for sums, products, and quotients, and
the Chain Rule. Then solve for dy�dx in terms of x and y together to obtain a formula that
calculates the slope at any point �x, y� on the graph from the values of x and y.

The process by which we find dy�dx is
called implicit differentiation. The phrase
derives from the fact that the equation

x3 � y3 � 9xy � 0

defines the functions f1, f2, and f3 implic-
itly (i.e., hidden inside the equation), with-
out giving us explicit formulas to work
with.

3.7

What you’ll learn about

• Implicitly Defined Functions

• Lenses, Tangents, and Normal
Lines

• Derivatives of Higher Order

• Rational Powers of Differentiable
Functions

. . . and why

Implicit differentiation allows us
to find derivatives of functions
that are not defined or written 
explicitly as a function of a single
variable.

x

y

O 5

5

A
x3 � y3 � 9xy � 0

y � f1(x)

y � f2(x)

(x0, y1)

(x0, y2)

x0

y � f3(x)(x0, y3)

Figure 3.48 The derivative found in 
Example 1 gives the slope for the tangent
lines at both P and Q, because it is a func-
tion of y.

x

y

2

1

–2

–1
1 2 3 5 6 7 8

–––
P(4, 2)

Q(4, –2)

Slope =  =1
2y1

––1
4

–––Slope =  =1
2y2

4

– ––1
4

EXAMPLE 1 Differentiating Implicitly

Find  dy�dx if  y2 � x.

SOLUTION

To find  dy�dx, we simply differentiate both sides of the equation  y2 � x with respect
to x, treating y as a differentiable function of x and applying the Chain Rule:

y2 � x

2y�
d
d

y
x
� � 1 �

d

d

x
�(y2) = �

d

d

y
�(y2) • �

d

d

y

x
�

�
d
d

y
x
� � �

2
1
y
� .

Now try Exercise 3.

In the previous example we differentiated with respect to x, and yet the derivative we
obtained appeared as a function of y. Not only is this acceptable, it is actually quite useful.
Figure 3.48, for example, shows that the curve has two different tangent lines when x � 4:
one at the point �4, 2� and the other at the point �4, �2�. Since the formula for dy�dx de-
pends on y, our single formula gives the slope in both cases. 

Implicit differentiation will frequently yield a derivative that is expressed in terms of
both x and y, as in Example 2.

Figure 3.47 The graph of x3 � y3 � 9xy � 0 
(called a folium). Although not the graph of a
function, it is the union of the graphs of three
separate functions. This particular curve dates to
Descartes in 1638.

5128_Ch03_pp098-184.qxd  1/13/06  9:13 AM  Page 157



EXAMPLE 2 Finding Slope on a Circle

Find the slope of the circle  x2 � y2 � 25 at the point �3, �4�.

SOLUTION

The circle is not the graph of a single function of x, but it is the union of the graphs of
two differentiable functions, y1 � �2�5� �� x�2� and  y2 � ��2�5� �� x�2� (Figure 3.49).
The point �3, �4� lies on the graph of y2, so it is possible to find the slope by calculating
explicitly:

�
d
d
y
x
2� |x�3

� ��
2�2�

�

5�
2

��
x

x�2�
� |x�3

� ��
2�2�

�

5�
6

�� 9�
� � �

3
4

� .

But we can also find this slope more easily by differentiating both sides of the equation
of the circle implicitly with respect to x:

�
d
d
x
��x2 � y2� � �

d
d
x
��25�

2x � 2y �
d
d

y
x
� � 0

�
d
d

y
x
� � � �

x
y

� .

The slope at �3, �4� is 

� �
x
y

� |
�3, �4�

� ��
�

3
4
� � �

3
4

� .

The implicit solution, besides being computationally easier, yields a formula for  dy�dx
that applies at any point on the circle (except, of course, ��5, 0�, where slope is unde-
fined). The explicit solution derived from the formula for y2 applies only to the lower
half of the circle. Now try Exercise 11.

To calculate the derivatives of other implicitly defined functions, we proceed as in Ex-
amples 1 and 2. We treat y as a differentiable function of x and apply the usual rules to dif-
ferentiate both sides of the defining equation.

EXAMPLE 3 Solving for dy/dx

Show that the slope dy�dx is defined at every point on the graph of 2y � x2 � sin y.

SOLUTION

First we need to know dy/dx, which we find by implicit differentiation:

2y � x2 � sin y

�
d
d
x
��2y� � �

d
d
x
��x2 � sin y�

� �
d
d
x
��x2 � � �

d
d
x
��sin y�

2�
d
d

y
x
� � 2x � cos y �

d
d

y
x
�

2�
d
d

y
x
� � �cos y��

d
d

y
x
� � 2x Collect terms with dy/dx …

�2 � cos y��
d
d

y
x
� � 2x and factor out dy/dx.

�
d
d

y
x
� � �

2 �

2
c
x
os y
� . Solve for dy/dx by dividing.

The formula for dy�dx is defined at every point �x, y�, except for those points at which
cos y � 2.  Since cos y cannot be greater than 1, this never happens.

Now try Exercise 13.

… treating y as a function of x
and using the Chain Rule.

Differentiate both sides
with respect to x …

Differentiate both sides
with respect to x.

158 Chapter 3 Derivatives

Figure 3.49 The circle combines the
graphs of two functions. The graph of y2 is
the lower semicircle and passes through
�3, �4). (Example 2)

Ellen Ochoa (1958— )

After earning a doc-
torate degree in 
electrical engineering
from Stanford Univer-
sity, Ellen Ochoa be-
came a research engi-
neer and, within a few 
years, received three

patents in the field of optics. In 1990,
Ochoa joined the NASA astronaut pro-
gram, and, three years later, became the 
first Hispanic female to travel in space.
Ochoa’s message to young people is: 
“If you stay in school you have the po-
tential to achieve what you want in the
future.”

x

y

0

(3, –4)

x–
ySlope � 3–

4
– �

5–5

y2
 � –
25 – x2

y1
 � 
25 – x2
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Implicit Differentiation Process

1. Differentiate both sides of the equation with respect to x.

2. Collect the terms with  dy�dx on one side of the equation.

3. Factor out  dy�dx.

4. Solve for  dy�dx.

Lenses, Tangents, and Normal Lines
In the law that describes how light changes direction as it enters a lens, the important an-
gles are the angles the light makes with the line perpendicular to the surface of the lens at
the point of entry (angles A and B in Figure 3.50). This line is called the normal to the sur-
face at the point of entry. In a profile view of a lens like the one in Figure 3.50, the normal
is a line perpendicular to the tangent to the profile curve at the point of entry. 

Profiles of lenses are often described by quadratic curves (see Figure 3.51). When
they are, we can use implicit differentiation to find the tangents and normals.

EXAMPLE 4 Tangent and normal to an ellipse

Find the tangent and normal to the ellipse  x2 � xy � y2 � 7 at the point ��1, 2�. 
(See Figure 3.51.)

SOLUTION

We first use implicit differentiation to find  dy�dx:

x2 � xy � y2 � 7

�
d
d
x
��x2� � �

d
d
x
��xy� � �

d
d
x
��y2 � � �

d
d
x
��7�

2x � (x�
d
d

y
x
� � y�

d
d

x
x
�) � 2y�

d
d

y
x
� � 0

�2y � x� �
d
d

y
x
� � y � 2x Collect terms.

�
d
d

y
x
� � �

y
2y

�

�

2
x
x

� . Solve for dy/dx.

We then evaluate the derivative at  x � �1, y � 2  to obtain

�
d
d

y
x
� |

��1, 2�
� �

y
2y

�

�

2
x
x

� |
��1, 2�

� �
2
2
�2

�

� �

2��
��

1
1
�
�

�

� �
4
5

� .

The tangent to the curve at ��1, 2� is

y � 2 � �
4
5

� �x ���1��

y � �
4
5

� x � �
1
5
4
� .

. . . treating xy as a product
and y as a function of x.

Differentiate both sides
with respect to x . . . 

Figure 3.51 Tangent and normal lines to
the ellipse x2 � xy � y2 � 7 at the point
��1, 2). (Example 4)

x

y

x2 � xy � y2 � 7

2

–1

Tan
gen

t

(–1, 2)

Norm
al

Figure 3.50 The profile of a lens, show-
ing the bending (refraction) of a ray of
light as it passes through the lens surface.

A
Normal line

Light ray
Tangent

Point of entry

Curve 
of lens
surface

P

B

continued
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160 Chapter 3 Derivatives

The normal to the curve at ��1, 2� is

y � 2 � � �
5
4

� �x � 1�

y � � �
5
4

� x � �
3
4

� . Now try Exercise 17.

Derivatives of Higher Order
Implicit differentiation can also be used to find derivatives of higher order. Here is an 
example.

EXAMPLE 5 Finding a Second Derivative Implicitly

Find d2y�dx2 if  2x3 � 3y2 � 8.

SOLUTION

To start, we differentiate both sides of the equation with respect to x in order to find 
y� � dy�dx.

�
d
d
x
� �2x3 � 3y2� � �

d
d
x
��8�

6x2 � 6yy� � 0

x2 � yy� � 0

y� � �
x
y

2

� , when y � 0

We now apply the Quotient Rule to find y�.

y� � �
d
d
x
� ( �

x
y

2

� ) � �
2xy �

y2
x2y�
� � �

2
y
x
� � �

x
y

2

2� • y�

Finally, we substitute y� � x2�y to express y� in terms of x and y.

y� � �
2
y
x
� � �

x
y

2

2�(�
x
y

2

�) � �
2
y
x
� � �

x
y

4

3� , when y � 0

Now try Exercise 29.

An Unexpected Derivative

Consider the set of all points �x, y� satisfying the equation x2 � 2xy � y2 � 4. 
What does the graph of the equation look like? You can find out in two ways in 
this Exploration.

1. Use implicit differentiation to find dy�dx. Are you surprised by this derivative?

2. Knowing the derivative, what do you conjecture about the graph?

3. What are the possible values of y when  x � 0?  Does this information enable
you to refine your conjecture about the graph?

4. The original equation can be written as �x � y�2 � 4 � 0. By factoring the 
expression on the left, write two equations whose graphs combine to give the
graph of the original equation. Then sketch the graph.

5. Explain why your graph is consistent with the derivative found in part 1.

EXPLORATION 1
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Section 3.7 Implicit Differentiation 161

Rational Powers of Differentiable Functions
We know that the Power Rule

�
d
d
x
�xn � nxn�1

holds for any integer n (Rules 2 and 7 of this chapter). We can now prove that it holds
when n is any rational number.

RULE 9 Power Rule for Rational Powers of x

If n is any rational number, then

�
d
d
x
�xn � nxn�1.

If n � 1, then the derivative does not exist at x � 0.

Proof Let p and q be integers with q � 0 and suppose that y � �q
x�p� � xp�q. Then

yq � xp.

Since p and q are integers (for which we already have the Power Rule), we can differenti-
ate both sides of the equation with respect to x and obtain

qyq�1 �
d
dx

y
� � pxp�1.

If y � 0, we can divide both sides of the equation by  qyq�1 to solve for dy�dx, obtaining

�
d
dx

y
� � �

q
px

y

p

q

�

�

1

1�

� �
p
q

� • �
�x

x
p�

p

q

�

�q

1

�1� y � xp/q

� �
p
q

� • �
x
x
p

p

�

�

p

1

�q� �q
p

� (q � 1) � p � �q
p

�

� �
p
q

� • x� p�1��� p�p�q� A law of exponents

� �
p
q

� • x� p�q��1.

This proves the rule. ■

By combining this result with the Chain Rule, we get an extension of the Power Chain
Rule to rational powers of u:

If n is a rational number and u is a differentiable function of x, then un is a differen-
tiable function of x and 

�
d
d
x
�un � nun�1 �

d
d
u
x
� ,

provided that u � 0 if n � 1.
The restriction that u � 0 when n � 1 is necessary because 0 might be in the domain of

un but not in the domain of un�1, as we see in the first two parts of Example 6.
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162 Chapter 3 Derivatives

Quick Review 3.7 (For help, go to Section 1.2 and Appendix A.5.)

In Exercises 1–5, sketch the curve defined by the equation and find
two functions y1 and y2 whose graphs will combine to give the curve.

1. x � y 2 � 0 y1 � �x�, y2 � ��x� 2. 4x2 � 9y2 � 36

3. x2 � 4y2 � 0 y1 � �
2
x

�, y2 � ��
2
x

� 4. x2 � y2 � 9

5. x2 � y2 � 2x � 3

In Exercises 6–8, solve for y
 in terms of y and x.

6. x2y
 � 2xy � 4x � y y
 � �
4x � y

x2
� 2xy
�

7. y
sin x � x cos x � xy
 � y

8. x�y2 � y
� � y
�x2 � y�

In Exercises 9 and 10, find an expression for the function using
rational powers rather than radicals.

9. �x��x � �3 x�� x3�2 � x5�6 10. �
x �

�
�
x�

3

3�
x�2�

� x�1�2 � x�5�6

In Exercises 1–8, find dy�dx.

1. x2y � xy2 � 6 ��
2
2
x
x
y
y

�

�

y
x

2

2� 2. x3 � y3 � 18xy �
6
y2
y

�

�

6
x
x

2
�

3. y2 � �
x
x

�

�

1
1

� �
y(x �

1
1)2� 4. x2 � �

x
x

�

�

y
y

�

5. x � tan y cos2 y 6. x � sin y sec y

7. x � tan �xy� � 0 See page 164. 8. x � sin y � xy �
x �

1 �

co
y
s y

�

In Exercises 9–12, find dy�dx and find the slope of the curve at the
indicated point.

9. x2 � y2 � 13, (�2, 3)

10. x2 � y2 � 9, (0, 3)

11. (x � 1)2 � (y � 1)2 � 13, (3, 4)

12. (x � 2)2 � (y � 3)2 � 25, (1, �7) See page 164.

In Exercises 13–16, find where the slope of the curve is defined.

13. x2y � xy2 � 4 See page 164. 14. x � cos y See page 164.

15. x3 � y3 � xy See page 164. 16. x2 � 4xy � 4y2 � 3x � 6

In Exercises 17–26, find the lines that are (a) tangent and 
(b) normal to the curve at the given point.

17. x2 � xy � y2 � 1, �2, 3� (a) y � �
7
4

�x � �
1
2

� (b) y � ��
4
7

�x � �
2
7
9
�

18. x2 � y2 � 25, �3, �4� (a) y � �
3
4

�x � �
2
4
5
� (b) y ���

4
3

�x
19. x2y2 � 9, ��1, 3�

See page 164. 

20. y2 � 2x � 4y � 1 � 0, ��2, 1� (a) y � �x � 1 (b) y � x � 3

21. 6x2 � 3xy � 2y2 � 17y � 6 � 0, ��1, 0� See page 164.

22. x2 � �3�xy � 2y2 � 5, ��3�, 2� (a) y = 2 (b) y � �3�

23. 2xy � p sin y � 2p, �1, p�2� See page 164.

24. x sin 2y � y cos 2x, �p�4, p�2� (a) y � 2x (b) y � ��
1
2

�x � �
5
8
�
�

25. y � 2 sin �px � y�, �1, 0�
26. x2 cos2 y � sin y � 0, �0, p� (a) y � � (b) x � 0

In Exercises 27–30, use implicit differentiation to find dy�dx and then
d2y�dx2.

27. x2 � y2 � 1 See page 164. 28. x2�3 � y2�3 � 1

29. y2 � x2 � 2x See page 164. 30. y2 � 2y � 2x � 1

In Exercises 31–42, find dy�dx.

31. y � x9�4 (9/4)x5/4 32. y � x�3�5 (�3/5)x�8/5

33. y � �3 x� (1/3)x�2/3 34. y � �4 x� (1/4)x�3/4

35. y � �2x � 5��1�2 36. y � �1 � 6x�2 �3

37. y � x�x�2��� 1� 38. y � �
�x�2

x

��� 1�
� (x2 � 1)�3/2

39. y � �1� �� ��x�� See page 164. 40. y � 3�2x�1�2 � 1��1�3

41. y � 3�csc x�3�2 See page 164. 42. y � �sin �x � 5��5�4

Section 3.7 Exercises

EXAMPLE 6 Using the Rational Power Rule

(a) �
d
d
x
���x�� � �

d
d
x
��x1�2�� �

1
2

�x�1�2 � �
2�

1

x�
�

Notice that �x� is defined at  x � 0, but  1��2�x�� is not.

(b) �
d
d
x
��x2�3� � �

2
3

� �x�1�3� � �
3x

2
1�3�

The original function is defined for all real numbers, but the derivative is undefined at  
x � 0. Recall Figure 3.12, which showed that this function’s graph has a cusp at x � 0.

(c) �
d
d
x
��cos x��1�5 � � �

1
5

� �cos x��6�5 • �
d
d
x
��cos x�

� � �
1
5

� �cos x��6�5 ��sin x�

� �
1
5

� sin x�cos x��6�5 Now try Exercise 33.

2. y1 � �
2
3

� �9 � x2�, y2 � ��
2
3

� �9 � x2�

y1 � �9 � x2�, y2 � ��9 � x2�

5. y1 � �2x � 3� � x2�, y2 � ��2x � 3� � x2�

y
 � �
y
s
�

in
x
x

c
�

os
x
x

�

8. y
 � �
x2 �

xy
y

2

� x
�

4. �
y
x

� � (x � y)2 or�
1 �

x
3
2
x
�

2 �

1
2xy

�

� � , 0
x
�
y

dy
�
dx

� � , 2�3
x
�
y

dy
�
dx

� � , �2�3
x � 1
�
y � 1

dy
�
dx

See page 164.

See page 164.

See page 164.

See page 164.

See page 164.

�4(1 – 6x)�1/3

x2(x2 � 1)�1/2 � (x2 � 1)1/2

�(2x � 5)�3�2

25. (a) y � 2�x � 2� (b) y � ��
2
x
�
� � �

2
1
�
�

5128_Ch03_pp098-184.qxd  2/3/06  4:25 PM  Page 162



Section 3.7 Implicit Differentiation 163

43. Which of the following could be true if  f ��x� � x�1�3?

(a) f �x� � �
2
3

� x2�3 � 3 (b) f �x� � �
1
9
0
�x5�3 � 7

(c) f ��x� � � �
3
1

� x�4�3 (d) f ��x� � �
2
3

� x2�3 � 6

44. Which of the following could be true if  g��t� � 1�t3�4?

(a) g��t � � 4�4 t� � 4 (b) g��t� � �4��4 t�

(c) g�t� � t � 7 � �16�5�t5�4 (d) g��t� � �1�4�t1�4

45. The Eight Curve (a) Find the slopes of the figure-eight-
shaped curve

y4 � y2 � x2

at the two points shown on the graph that follows.

(b) Use parametric mode and the two pairs of parametric 
equations

x1�t� � �t2� �� t�4�, y1�t� � t,

x2 �t� � ��t2� �� t�4�, y2�t� � t,

to graph the curve. Specify a window and a parameter interval.

46. The Cissoid of Diocles (dates from about 200 B.c.)

(a) Find equations for the tangent and normal to the cissoid of
Diocles,

y2�2 � x� � x3,

at the point �1, 1� as pictured below.

(b) Explain how to reproduce the graph on a grapher.

x

y
y2(2 � x) � x3

1

1

(1, 1)

0

y4 � y2 � x2

x

y

0

1

–1

√3—
4

⎯

3—
2

⎛
⎝

⎛
⎝,

3—
4

1–
2

⎛
⎝

⎛
⎝,

⎯ ⎯√

√

47. (a) Confirm that ��1, 1� is on the curve defined by 
x3y2 � cos �py�. 
(b) Use part (a) to find the slope of the line tangent to the curve
at ��1, 1�.

48. Grouping Activity

(a) Show that the relation

y3 � xy � �1

cannot be a function of x by showing that there is more than one
possible y-value when  x � 2.

(b) On a small enough square with center �2, 1�, the part 
of the graph of the relation within the square will define a
function  y � f �x�. For this function, find  f ��2� and  f ��2�.

49. Find the two points where the curve  x2 � xy � y2 � 7 crosses
the x-axis, and show that the tangents to the curve at these
points are parallel. What is the common slope of these tangents?

50. Find points on the curve  x2 � xy � y2 � 7 (a) where the tangent
is parallel to the x-axis and (b) where the tangent is parallel to the
y-axis. (In the latter case, dy�dx is not defined, but dx�dy is.
What value does dx�dy have at these points?)

51. Orthogonal Curves Two curves are orthogonal at a point of
intersection if their tangents at that point cross at right angles.
Show that the curves  2x2 � 3y2 � 5  and  y2 � x3 are
orthogonal at �1, 1� and �1, �1�. Use parametric mode 
to draw the curves and to show the tangent lines.

52. The position of a body moving along a coordinate line at time t is
s � �4 � 6t�3�2, with s in meters and t in seconds. Find the
body’s velocity and acceleration when  t � 2 sec.

53. The velocity of a falling body is  v � 8�s��� t� � 1  feet 
per second at the instant t �sec� the body has fallen s feet from its
starting point. Show that the body’s acceleration is 32 ft�sec2.

54. The Devil’s Curve (Gabriel Cramer [the Cramer 
of Cramer’s Rule], 1750) Find the slopes of the devil’s 
curve  y4 � 4y2 � x4 � 9x2 at the four indicated points.

55. The Folium of Descartes (See Figure 3.47 on page 157)

(a) Find the slope of the folium of Descartes, x3 � y3 � 9xy � 0
at the points �4, 2� and �2, 4�. (a) At (4, 2): �

5
4

�; at (2, 4): �
4
5

�

(b) At what point other than the origin does the folium have a
horizontal tangent? At (3�3

2�, 3�3
4�) 	 (3.780, 4.762)

(c) Find the coordinates of the point A in Figure 3.47, where the
folium has a vertical tangent. At (3�3

4�, 3�3
2�) 	 (4.762, 3.780)

–2

x

y

3–3

2 (3, 2)

(3, –2)

(–3, 2)

(–3, –2)

y4 � 4y2 � x4 � 9x2

(b), (c), and (d)

(a) and (c)

(a) Tangent: y � 2x � 1

normal: y � ��
1
2

�x � �
3
2

�

(b) One way is to graph the
equations

y � � 
�
2

x
�

3

x
��.

The slope is 3/2.

(�1)3(1)2 � cos (�) is true since both sides equal: �1.

There are three values: 1, �
�1 �

2
�5�
�

f�(2) � 1,
f �(2) � �4

At (3, 2): �
2
8
7
�;

at (�3, 2): ��
2
8
7
�;

at (�3, �2): �
2
8
7
�;

at (�3, �2): ��
2
8
7
�

5128_Ch03_pp098-184.qxd  1/13/06  9:13 AM  Page 163



56. The line that is normal to the curve  x2 � 2xy � 3y2 � 0 at 
�1, 1� intersects the curve at what other point? (3, �1)

57. Find the normals to the curve  xy � 2x � y � 0  that are parallel
to the line  2x � y � 0.

58. Show that if it is possible to draw these three normals from the
point �a, 0� to the parabola  x � y2 shown here, then a must be
greater than 1�2. One of the normals is the x-axis. For what
value of a are the other two normals perpendicular?

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

59. True or False The slope of xy2 � x � 1 at (1�2, 1) is 2.
Justify your answer. False. It is equal to �2.

60. True or False The derivative of y � �3
x� is �

3x
1
2/3�. Justify your 

answer. True. By the power rule.

In Exercises 61 and 62, use the curve x2 � xy � y2 � 1.

61. Multiple Choice Which of the following is equal to dy�dx?

(A) �
y
2y

�

�

2x
x

� (B) �
y
2y

�

�

2x
x

�

(C) �
x �

2x
2y

� (D) �
2
x
x
�

�

2
y
y

�

(E) �
y �

x
2x

�

62. Multiple Choice Which of the following is equal to �
d
d

2

x
y
2�? A

(A) ��
(2y �

6
x)3� (B) 

(C) �8x2

(
�
x �

4x
2
y
y
�
)3

8y2
� (D) �

10
(x
x2

�

�

2
1
y
0
)3
y2

�

(E) �
2
x

�

10y2 � 10x2 � 10xy
���

(2y � x)3

x

y

0

x � y2

(a, 0)

63. Multiple Choice Which of the following is equal to dy�dx if
y � x3/4? E

(A) �
3x

4

1�3
� (B) �

4x
3

1�4
� (C) �

3x
4

1�4
� (D) �

3x
4
1/4� (E) �

4x
3
1/4�

64. Multiple Choice Which of the following is equal to the slope
of the tangent to y2 � x2 � 1 at (1,�2�)? C

(A) ��
�
1
2�

� (B) ��2� (C) �
�
1
2�

� (D) �2� (E) 0

Extending the Ideas
65. Finding Tangents

(a) Show that the tangent to the ellipse

�
a
x2

2� � �
b
y2

2� � 1

at the point �x1, y1� has equation

�
x
a
1
2
x
� � �

y
b
1
2
y

� � 1.

(b) Find an equation for the tangent to the hyperbola

�
a
x2

2� � �
b
y2

2� � 1

at the point �x1, y1 �.
66. End Behavior Model Consider the hyperbola

�
a
x2

2� � �
b
y2

2� � 1.

Show that

(a) y � ��
b
a

� �x�2��� a�2�.

(b) g �x� � �b�a��x � is an end behavior model for 

f �x� � �b�a��x�2��� a�2�.

(c) g�x� � ��b�a��x � is an end behavior model for

f �x� � ��b�a��x�2��� a�2�.

164 Chapter 3 Derivatives

7. ��
1
x

� cos2 (xy) � �
y
x

� 12. � � , 3�4
x � 2
�
y � 3

dy
�
dx

13. � , defined at every point except where x � 0 or y � x�2

14. � � , defined at every point except where y � k�, k any integer

15. � , defined at every point except where y2 � x�3

16. � , defined at every point except where y � � x
1
�
2

3 � 2x � 4y
��

4x � 8y
dy
�
dx

3x2 � y
�
x � 3y2

dy
�
dx

1
�
sin y

dy
�
dx

2xy � y2
�
2xy � x2

dy
�
dx

27. �
d
d
y
x
� � ��

x
y

�

�
d
d

2

x
y
2� � ��

(x2 �

y3
y2)

� � ��
y
1
3�

28. �
d
d
y
x
� � �
�

y
x

��1�3

�
d
d

2

x
y
2� � �

x
3

2/

x

3

4
�
/3y

y
1/

2

3

/3
� � �

3x4/
1
3y1/3�

29. �
d
d
y
x
� � �

x �

y
1

�

�
d
d

2

x
y
2� � �

y2 � (
y
x
3
� 1)2
� � ��

y
1
3�

30. �
d
d
y
x
� � �

y �

1
1

�

�
d
dx

2y
2� � ��

(y �

1
1)3�

39. ��
1
4

� (1 � x1/2)�1/2x�1/2

40. x�3�2(2x�1�2 � 1)�4�3

41. ��
9
2

� (csc x)3�2 cot x

42. �
5
4

�[sin (x � 5)]1/4 cos (x � 5)

21. (a) y � �
6
7

�x � �
6
7

�

(b) y � ��
7
6

�x � �
7
6

�

23. (a) y � ��
�

2
�x � �

(b) y � �
�

2
�x � �

�

2
� � �

�

2
�

At (�1, �1): y � �2x �3;at (3, �3): y � �2x � 3

The normal at the 
point (b2, b) is:
y � �2bx � 2b3 � b.

This line intersects the x-axis at x � b2 � �
1
2

�, which must be greater than �
1
2

� if b � 0. 

The two normals are perpendicular when a � 3/4.

A

19. (a) y � 3x � 6 (b) y � ��
1
3

�x � �
8
3

�
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Section 3.8 Derivatives of Inverse Trigonometric Functions 165

Derivatives of Inverse Trigonometric
Functions

Derivatives of Inverse Functions
In Section 1.5 we learned that the graph of the inverse of a function f can be obtained by
reflecting the graph of f across the line y � x. If we combine that with our understanding
of what makes a function differentiable, we can gain some quick insights into the differen-
tiability of inverse functions. 

As Figure 3.52 suggests, the reflection of a continuous curve with no cusps or corners
will be another continuous curve with no cusps or corners. Indeed, if there is a tangent line
to the graph of f at the point �a, f �a��, then that line will reflect across y � x to become a
tangent line to the graph of f �1 at the point � f �a�, a�. We can even see geometrically that
the slope of the reflected tangent line (when it exists and is not zero) will be the reciprocal
of the slope of the original tangent line, since a change in y becomes a change in x in the
reflection, and a change in x becomes a change in y.

3.8

What you’ll learn about

• Derivatives of Inverse Functions

• Derivative of the Arcsine

• Derivative of the Arctangent

• Derivative of the Arcsecant

• Derivatives of the Other Three

. . . and why

The relationship between the
graph of a function and its inverse
allows us to see the relationship
between their derivatives.

Figure 3.52 The graphs of a function and its inverse. Notice that the tangent lines have 
reciprocal slopes.

(a,  f(a))

( f(a), a)

x

y

O

f(a)

a

y � f(x)

x

y

O

a

f(a)

y � f –1(x)

The slopes are reciprocal:
df –1

——
dx �

1——–�
� f(a) df

—
dx

�
�a

THEOREM 3 Derivatives of Inverse Functions

If f is differentiable at every point of an interval I and  df�dx is never zero on I, then
f has an inverse and f �1 is differentiable at every point of the interval f �I �.

All of this serves as an introduction to the following theorem, which we will assume as
we proceed to find derivatives of inverse functions. Although the essentials of the proof
are illustrated in the geometry of Figure 3.52, a careful analytic proof is more appropriate
for an advanced calculus text and will be omitted here. 
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166 Chapter 3 Derivatives

Derivative of the Arcsine
We know that the function x � sin y is differentiable in the open interval �p�2 � y � p�2
and that its derivative, the cosine, is positive there. Theorem 3 therefore assures us that the
inverse function y � sin�1�x� (the arcsine of x) is differentiable throughout the interval
�1 � x � 1. We cannot expect it to be differentiable at x � �1 or x � 1, however, because
the tangents to the graph are vertical at these points (Figure 3.53).

We find the derivative of y � sin�1 �x� as follows:

y � sin�1 x

sin y � x Inverse function relationship

�
d
d
x
��sin y� � �

d
d
x
�x Differentiate both sides.

cos y�
d
d

y
x
� � 1 Implicit differentiation

�
d
d

y
x
� � �

co
1
s y
�

The division in the last step is safe because cos y � 0 for �p�2 � y � p�2. In fact, cos y
is positive for �p�2 � y � p�2, so we can replace cos y with �1� �� ��si�n� y��2�, which is
�1� �� x�2�. Thus

�
d
d
x
��sin�1 x� � �

�1�
1

�� x�2�
� .

If u is a differentiable function of x with �u � � 1, we apply the Chain Rule to get

�
d
d
x
�sin�1 u � �

�1�
1

�� u�2�
� �

d
d

u
x
� , �u� � 1.

Figure 3.53 The graph of y � sin�1 x
has vertical tangents x � �1 and x � 1.

Domain:     –1     x     1
Range:  �	/2     y     	/2

x

y

1–1

y � sin–1x	–
2

x � sin y

≤ ≤
≤ ≤

	–
2

–

Finding a Derivative on an Inverse Graph
Geometrically 

Let f (x) � x5 � 2x � 1. Since the point �1, 2� is on the graph of f, it follows that
the point �2, 1� is on the graph of f �1.  Can you find

�
d
d
f
x

�1

� �2�,

the value of  df �1�dx at 2, without knowing a formula for  f �1? 

1. Graph f �x� � x5 � 2x � 1. A function must be one-to-one to have an inverse
function. Is this function one-to-one?

2. Find f ��x�. How could this derivative help you to conclude that f has an inverse?

3. Reflect the graph of f across the line  y � x to obtain a graph of f �1.

4. Sketch the tangent line to the graph of f �1 at the point �2, 1�. Call it L.

5. Reflect the line L across the line  y � x. At what point is the reflection of L
tangent to the graph of f ?

6. What is the slope of the reflection of L?

7. What is the slope of L?

8. What is  �
d
d
f
x

�1

� �2�?

EXPLORATION 1
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EXAMPLE 1 Applying the Formula

�
d
d
x
��sin�1 x2� � �

�1� ��
1

�x�2��2�
� • �

d
d
x
� �x2� � �

�1�
2

��
x

x�4�
�

Now try Exercise 3.

Derivative of the Arctangent
Although the function y � sin�1 �x� has a rather narrow domain of ��1, 1�, the function
y � tan�1 x is defined for all real numbers, and is differentiable for all real numbers, as
we will now see. The differentiation proceeds exactly as with the arcsine function.

y � tan�1 x

tan y � x Inverse function relationship

�
d
d
x
��tan y� � �

d
d
x
�x

sec2 y�
d
dy

x
� � 1 Implicit differentiation

�
d
dy

x
� � �

sec
1

2 y
�

� �
1 � �

1
tan y�2� Trig identity: sec2 y � 1 � tan2 y

� �
1 �

1
x2�

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

�
d
d
x
� tan�1 u � �

1 �

1
u2� �

d
d

u
x
� .

EXAMPLE 2 A Moving Particle

A particle moves along the x-axis so that its position at any time t 
 0 is  x�t� � tan�1 �t�.
What is the velocity of the particle when  t � 16?

SOLUTION v�t� � �
d
d
t
� tan�1 �t� � �

1 � �

1

�t� �2
� • �

d
d
t
� �t� � �

1 �

1
t

� • �
2�

1

t�
�

When  t � 16, the velocity is v�16� � �
1 �

1
16

� • �
2�

1

1�6�
� � �

1
1
36
� .

Now try Exercise 11.

Derivative of the Arcsecant
We find the derivative of y � sec�1 x, �x � � 1, beginning as we did with the other inverse
trigonometric functions.

y � sec�1 x

sec y � x Inverse function relationship

�
d
d
x
��sec y� � �

d
d
x
�x

sec y tan y�
d
dy

x
� � 1

�
d
dy

x
� � �

sec y
1
tan y
�

Since ⏐x⏐ � 1, y lies in (0, p�2) � (p�2, p)
and sec y tan y � 0.

5128_Ch03_pp098-184.qxd  1/13/06  9:13 AM  Page 167



168 Chapter 3 Derivatives

To express the result in terms of x, we use the relationships

sec y � x and tan y � ��se�c2� y� �� 1� � ��x�2��� 1�

to get

�
d
dy

x
� � ��

x�x�
1
2��� 1�
� .

Can we do anything about the � sign? A glance at Figure 3.54 shows that the slope of the
graph y � sec�1 x is always positive. That must mean that

�
d
d
x
� sec�1 x � {� if x � 1

� if x � �1.

With the absolute value symbol we can write a single expression that eliminates the 
“�” ambiguity:

�
d
d
x
�sec�1 x � �

�x ��x�
1

2��� 1�
� .

If u is a differentiable function of x with �u � � 1, we have the formula

�
d
d
x
�sec�1 u � �

�u ��u�
1

2��� 1�
� �

d
d

u
x
� , �u � � 1.

EXAMPLE 3 Using the Formula

�
d
d
x
�sec�1 �5x4� ��

�5x4 ���5�
1

x�4��2��� 1�
��

d
d
x
��5x4�

��
5x4�2�

1

5�x�8��� 1�
��20x3�

� �
x�2�5�

4

x�8��� 1�
�

Now try Exercise 17.

Derivatives of the Other Three
We could use the same technique to find the derivatives of the other three inverse trigono-
metric functions: arccosine, arccotangent, and arccosecant, but there is a much easier way,
thanks to the following identities.

1
��
x�x�2��� 1�

1
��
x�x�2��� 1�

Inverse Function–Inverse Cofunction Identities

cos�1 x � p�2 � sin�1 x

cot�1 x � p�2 � tan�1 x

csc�1 x � p�2 � sec�1 x

Figure 3.54 The slope of the curve 
y � sec�1 x is positive for both x � �1
and x � 1.

Domain: |x |    1
Range: [0, 	/2) ∪ (	/2, 	]

x

y

0 1–1

y � sec–1x

	

	–
2

≤

5128_Ch03_pp098-184.qxd  1/13/06  9:13 AM  Page 168
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It follows easily that the derivatives of the inverse cofunctions are the negatives of the
derivatives of the corresponding inverse functions (see Exercises 32–34).

You have probably noticed by now that most calculators do not have buttons for cot�1,
sec�1, or csc�1. They are not needed because of the following identities:

Notice that we do not use tan�1 �1�x� as an identity for cot�1 x. A glance at the graphs
of y � tan�1 �1�x� and y � p�2 – tan�1 x reveals the problem (Figure 3.55). 

Calculator Conversion Identities

sec�1 x � cos�1 �1�x�

cot�1 x � p�2 � tan�1 x

csc�1 x � sin�1 �1�x�

Figure 3.55 The graphs of (a) y � tan�1 �1�x� and (b) y � ��2 � tan�1 x. The graph in (b) is the
same as the graph of y � cot�1 x.

[–5, 5] by [–3, 3]

(a)

[–5, 5] by [–3, 3]

(b)

We cannot replace cot�1 x by the function y � tan�1 �1�x� in the identity for the inverse
functions and inverse cofunctions, and so it is not the function we want for cot�1 x. The
ranges of the inverse trigonometric functions have been chosen in part to make the two
sets of identities above hold.

EXAMPLE 4 A Tangent Line to the Arccotangent Curve

Find an equation for the line tangent to the graph of  y � cot�1 x at  x � �1. 

SOLUTION

First, we note that

cot�1 ��1� � p�2 � tan�1 ��1� � p�2 � ��p�4� � 3p�4.

The slope of the tangent line is

�
d
dy

x
� |

x��1
� ��

1 �

1
x2� |

x��1
� ��

1 �

1
��1�2� � � �

1
2

� .

So the tangent line has equation  y � 3p�4 � ��1�2��x � 1�.
Now try Exercise 23.
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Section 3.8 Exercises

In Exercises 1–8, find the derivative of y with respect to the appropri-
ate variable.

1. y � cos�1 �x2� 2. y � cos�1 �1�x�

3. y � sin�1 �2�t 4. y � sin�1 �1 � t�

5. y � sin�1 �
t
3
2� 6. y � s�1� �� s�2� � cos�1 s

7. y � x sin�1 x � �1� �� x�2� 8. y � �
sin�1

1
�2x�
�

In Exercises 9–12, a particle moves along the x-axis so that its posi-
tion at any time t � 0 is given by x(t). Find the velocity at the indi-
cated value of t.

9. x(t) � sin�1��
4
t
��, t � 3 10. x(t) � sin�1 ��

�
4

t�
��, t � 4

11. x(t) � tan�1 t, t � 2 1�5 12. x(t) � tan�1(t2), t � 1 1

In Exercises 13–22, find the derivatives of y with respect to the 
appropriate variable.

13. y � sec�1 �2s � 1� 14. y � sec�1 5s

15. y � csc�1 �x2 � 1�, x � 0 16. y � csc�1 x�2

17. y � sec�1 �
1
t
� , 0 � t � 1 18. y � cot�1 �t�

19. y � cot�1 �t��� 1� 20. y � �s2� �� 1� � sec�1 s

21. y � tan�1 �x�2��� 1� � csc�1 x, x � 1 0, x > 1

22. y � cot�1 �
1
x

� � tan�1 x 0, x 	 0

In Exercises 23–26, find an equation for the tangent to the graph of y
at the indicated point.

23. y � sec�1x, x � 2 24. y � tan�1x, x � 2

25. y � sin�1��
4
x

��, x � 3 26. y � tan�1(x2), x � 1

27. (a) Find an equation for the line tangent to the graph of  
y � tan x at the point �p�4, 1�. y � 2x � �

�

2
� � 1

(b) Find an equation for the line tangent to the graph of  
y � tan�1 x at the point �1, p�4�. y � �

1
2

�x � �
1
2

� � �
�

4
�

28. Let f �x� � x5 � 2x3 � x � 1. 

(a) Find f �1� and f 
�1�. f (1) � 3, f 
(1) � 12

(b) Find f �1�3� and  � f �1�
�3�. f �1(3) � 1, (f �1)
(3) � �
1
1
2
�

29. Let f �x� � cos x � 3x.

(a) Show that f has a differentiable inverse.

(b) Find f �0� and  f 
�0�. f(0) � 1, f 
(0) � 3

(c) Find f �1�1� and � f �1�
�1�. f �1(1) � 0, (f �1)
(1) � �
1
3

�

30. Group Activity Graph the function f �x� � sin�1 �sin x� in
the viewing window ��2p, 2p� by ��4, 4�. Then answer the
following questions:

(a) What is the domain of f ?

(b) What is the range of f ?

(c) At which points is f not differentiable?

(d) Sketch a graph of  y � f 
�x� without using NDER or
computing the derivative.

(e) Find  f 
�x� algebraically. Can you reconcile your answer
with the graph in part (d)?

31. Group Activity A particle moves along the x-axis so that its
position at any time  t � 0  is given by  x � arctan t.

(a) Prove that the particle is always moving to the right.

(b) Prove that the particle is always decelerating.

(c) What is the limiting position of the particle as t approaches
infinity? �

�

2
�

In Exercises 32–34, use the inverse function–inverse cofunction
identities to derive the formula for the derivative of the function.

32. arccosine See page 171. 33. arccotangent See page 171.

34. arccosecant See page 171.

Quick Review 3.8 (For help, go to Sections 1.2, 1.5, and 1.6.)

In Exercises 1–5, give the domain and range of the function, and
evaluate the function at x � 1.

1. y � sin�1 x Domain: [�1, 1]; Range: [���2, ��2] At 1: ��2

2. y � cos�1 x  Domain: [�1, 1]; Range: [0, �] At 1: 0

3. y � tan�1 x Domain: all reals; Range: (���2, ��2) At 1: ��4

4. y � sec�1 x  Domain: (�∞, �1] � [1, ∞);

5. y � tan �tan�1 x� Domain: all reals; Range: all reals At 1: 1

In Exercises 6–10, find the inverse of the given function.

6. y � 3x � 8 f �1 (x) � �
x �

3
8

�

7. y � �3
x��� 5� f �1 (x) � x3 �5

8. y � �
8
x

� f �1 (x) � �
8
x

�

9. y � �
3x

x
� 2
� f �1 (x) � �

3 �

2
x

�

10. y � arctan �x�3� f �1 (x) � 3 tan x, ���2� x � ��2

Range: [0, ��2) � (��2, �] At 1: 0

�2�
��
�1 � 2t�2�

�
2x

�
�1 � x4�

�
6

��
t�t4 � 9�

1
��
x�x2 � 1�

�
1

��
�2t � t2�

�
2s2

�
�1�s2�

sin�1 x

�7��7 �3��24

�
2

���
(sin�1 2x)2�1 � 4x�2�

1
��
s�25s2 �� 1�

�
2

��
x�x2 � 4�

�
1

��
2�t�(t � 1)

See page 171.

See page 171.

See page 171.

See page 171. ss � 1
��
s�s2 � 1�

y � 0.289x � 0.470 y � �
1
5

�x � 0.707

y � 0.378x – 0.286
y � x � 0.215

29. (a) f 
(x) � 3 � sin x and f 
(x) 	 0. So f has a differentiable inverse by Theorem 3.

31. (a) v(t) � �
d
d
x
t
� � �

1 �

1
t2

� which is always positive.

(b) a(t) � �
d
d
v
t
� � ��

(1 �

2t
t2)2� which is always negative.
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Standardized Test Questions
You may use a graphing calculator to solve the following
problems.

35. True or False The domain of y � sin�1x is �1 � x � 1.
Justify your answer. True. By definition of the function.

36. True or False The domain of y � tan�1x is �1 � x � 1.
Justify your answer. False. The domain is all real numbers.

37. Multiple Choice Which of the following is �
d
d
x
� sin�1 
�

2
x

��? E

(A) ��
�4

2
� x2�
� (B) ��

�4
1
� x2�
� (C) �

4 �

2
x2�

(D) �
�4

2
� x2�
� (E) �

�4
1
� x2�
�

38. Multiple Choice Which of the following is �
d
d
x
� tan�1(3x)? D

(A) ��
1 �

3
9x2� (B) ��

1 �

1
9x2� (C) �

1 �

1
9x2�

(D) �
1 �

3
9x2� (E) �

�1 �

3
9x�2�

�

39. Multiple Choice Which of the following is �
d
d
x
� sec�1(x2)? A

(A) �
x�x

2
4 � 1�
� (B) �

x�x
2
2 � 1�
� (C) �

x�1
2
� x4�
�

(D) �
x�1

2
� x2�
� (E) �

�1
2
�

x
x4�

�

40. Multiple Choice Which of the following is the slope of the
tangent line to y � tan�1(2x) at x � 1? C

(A) �2�5 (B) 1�5 (C) 2�5 (D) 5�2 (E) 5

Explorations
In Exercises 41–46, find (a) the right end behavior model,
(b) the left end behavior model, and (c) any horizontal tangents for
the function if they exist.

41. y � tan�1 x 42. y � cot�1 x

43. y � sec�1 x 44. y � csc�1 x

45. y � sin�1 x 46. y � cos�1 x

Extending the Ideas
47. Identities Confirm the following identities for  x � 0.

(a) cos�1 x � sin�1 x � p�2

(b) tan�1 x � cot�1 x � p�2

(c) sec�1 x � csc�1 x � p�2

48. Proof Without Words The figure gives a proof without
words that  tan�1 1 � tan�1 2 � tan�1 3 � p. Explain what is
going on.

49. (Continuation of Exercise 48) Here is a way to construct
tan�1 1, tan�1 2, and  tan�1 3  by folding a square of paper. Try
it and explain what is going on.

Fold 1

Fold 2

Fold 3

tan–1 3

tan–1 1

tan–1 2

13. .

15. �

17. �

19. �
1

��
2t �t �1�

1
�
�1 � t2�

2
��
(x2 � 1)�x2 � 2�

1
��
⏐2s � 1⏐�s2 � s�

32. �
d
d
x
� cos�1(x) � �

d
d
x
� 
�

�

2
� � sin�1 x�

� 0 � �
d
d
x
� sin�1 x

� �

33. �
d
d
x
� cot�1 x � �

d
d
x
� 
�

�

2
� � tan�1 x�

� 0 � �
d
d
x
� tan�1 x

� ��
1 �

1
x2�

34. �
d
d
x
� csc�1 (x) � �

d
d
x
� 
�

�

2
� � sec�1 x�

� 0 � �
d
d
x
� sec�1 x

� �
1

��
⏐x⏐�x2 � 1�

1
�
�1 � x2�

41. (a) y � ��2 (b) y � ���2 (c) None

42. (a) y � 0 (b) y � � (c) None

43. (a) y � ��2 (b) y � ��2 (c) None

44. (a) y � 0 (b) y � 0 (c) None
45. (a) None (b) None (c) None
46. (a) None (b) None (c) None
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Derivatives of Exponential and 
Logarithmic Functions

Derivative of ex

At the end of the brief review of exponential functions in Section 1.3, we mentioned that
the function y � ex was a particularly important function for modeling exponential
growth. The number e was defined in that section to be the limit of �1 � 1�x�x as x→	.
This intriguing number shows up in other interesting limits as well, but the one with the
most interesting implications for the calculus of exponential functions is this one:

lim
h→0

�
eh

h
� 1
� � 1.

(The graph and the table in Figure 3.56 provide strong support for this limit being 1. A
formal algebraic proof that begins with our limit definition of e would require some rather
subtle limit arguments, so we will not include one here.)

The fact that the limit is 1 creates a remarkable relationship between the function ex

and its derivative, as we will now see.

�
d
d
x
��ex� � lim

h→0
�
ex�h

h
� ex

�

� lim
h→0

�
ex • e

h

h � ex

�

� lim
h→0 (ex • �

eh

h
� 1
�)

� ex • lim
h→0 (�eh

h
� 1
�)

� ex • 1

� ex

In other words, the derivative of this particular function is itself!

�
d
d
x
��ex� � ex

If u is a differentiable function of x, then we have

�
d
d
x
� eu � eu �

d
d
u
x
� .

We will make extensive use of this formula when we study exponential growth and
decay in Chapter 6.

EXAMPLE 1 Using the Formula

Find dy�dx if y � e (x�x2).

SOLUTION 

Let u � x � x2 then y � eu. Then

� eu , and � 1 � 2x.

Thus, � eu � e(x�x2)(1 � 2x).

Now try Exercise 9.

du
�
dx

dy
�
dx

du
�
dx

du
�
dx

dy
�
dx

172 Chapter 3 Derivatives

3.9

What you’ll learn about

• Derivative of ex

• Derivative of ax

• Derivative of lnx

• Derivative of loga x

• Power Rule for Arbitrary Real
Powers

. . . and why

The relationship between
exponential and logarithmic
functions provides a powerful
differentiation tool called
logarithmic differentiation.

Figure 3.56 (a) The graph and (b) the
table support the conclusion that 

lim
h→0

�
eh

h
� 1
� � 1.

[–4.9, 4.9] by [–2.9, 2.9]

(a)

(b)

X
.98515
.99007
.99502
ERROR
1.005
1.0101
1.0152

Y1

X=0

–.03
–.02
–.01
0
.01
.02
.03
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Derivative of a x

What about an exponential function with a base other than e? We will assume that the base
is positive and different from 1, since negative numbers to arbitrary real powers are not al-
ways real numbers, and y � 1x is a constant function. 

If a � 0 and a � 1, we can use the properties of logarithms to write ax in terms of ex.
The formula for doing so is

ax � ex ln a.    ex lna � e ln(ax) � ax

We can then find the derivative of ax with the Chain Rule.

�
d
d
x
�ax � �

d
d
x
�ex ln a � ex ln a • �

d
d
x
��x ln a� � ex ln a • ln a � ax ln a

Thus, if u is a differentiable function of x, we get the following rule. 

Is any other function 
its own derivative?

The zero function is also its own deriva-
tive, but this hardly seems worth men-
tioning. (Its value is always 0 and its
slope is always 0.) In addition to ex,
however, we can also say that any 
constant multiple of ex is its own 
derivative:

�
d

d

x
� (c • ex ) � c • ex.

The next obvious question is whether
there are still other functions that are
their own derivatives, and this time the
answer is no. The only functions that
satisfy the condition dy�dx � y are 
functions of the form y � kex (and no-
tice that the zero function can be in-
cluded in this category). We will prove
this significant fact in Chapter 6.

EXAMPLE 2 Reviewing the Algebra of Logarithms

At what point on the graph of the function  y � 2t � 3  does the tangent line have slope 21?

SOLUTION

The slope is the derivative:

�
d
d
t
��2t � 3� � 2t • ln 2 � 0 � 2t ln 2.

We want the value of t for which  2t ln 2 � 21.  We could use the solver on the calcula-
tor, but we will use logarithms for the sake of review.

2t ln 2 � 21

2t � �
l
2
n
1
2

�

ln 2t � ln (�
l
2
n
1
2

�) Logarithm of both sides

t • ln 2 � ln 21 � ln �ln 2� Properties of logarithms

t ��
ln 21 �

ln
l
2
n �ln 2�
�

t 	 4.921

y � 2t � 3 	 27.297 Using the stored value of t

The point is approximately �4.9, 27.3�. Now try Exercise 29.

For a � 0 and a � 1,

�
d
d
x
� �au� � au ln a�

d
du

x
� .
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174 Chapter 3 Derivatives

Derivative of ln x
Now that we know the derivative of ex, it is relatively easy to find the derivative of its in-
verse function, ln x.

y � ln x

ey � x Inverse function relationship

�
d
d
x
��ey� � �

d
d
x
��x� Differentiate implicitly.

ey �
d
dy

x
� � 1

�
d
dy

x
� � �

e
1
y� � �

1
x

�

If u is a differentiable function of x and u � 0,

Leaving Milk on the Counter

A glass of cold milk from the refrigerator is left on the counter on a warm summer
day. Its temperature y (in degrees Fahrenheit) after sitting on the counter t minutes is

y � 72 � 30 �0.98�t.

Answer the following questions by interpreting y and dy�dt.

1. What is the temperature of the refrigerator? How can you tell?

2. What is the temperature of the room? How can you tell?

3. When is the milk warming up the fastest? How can you tell?

4. Determine algebraically when the temperature of the milk reaches 55°F.

5. At what rate is the milk warming when its temperature is 55°F? Answer with
an appropriate unit of measure.

EXPLORATION 1

�
d
d
x
� ln u � �

1
u

� �
d
d

u
x
� .

EXAMPLE 3 A Tangent through the Origin

A line with slope m passes through the origin and is tangent to the graph of y � ln x.
What is the value of m? 

SOLUTION

This problem is a little harder than it looks, since we do not know the point of tangency.
However, we do know two important facts about that point:

1. it has coordinates �a, ln a� for some positive a, and

2. the tangent line there has slope  m � 1�a (Figure 3.57).

Since the tangent line passes through the origin, its slope is 

m � �
ln

a
a
�

�

0
0

� � �
ln

a
a

� .
continued

This equation answers what was once a
perplexing problem: Is there a function
with derivative x�1? All of the other
power functions follow the Power Rule,

�
d

d

x
� xn � nx n�1.

However, this formula is not much help
if one is looking for a function with x�1

as its derivative! Now we know why: The
function we should be looking for is not
a power function at all; it is the natural
logarithm function. 

Figure 3.57 The tangent line intersects
the curve at some point �a, ln a�, where the
slope of the curve is 1�a. (Example 3)

x

y

0

2

1

1 2 3 4 5

–
(a, ln a)

y = ln x

slope =
1
a
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Setting these two formulas for m equal to each other, we have

�
ln

a
a

� � �
1
a

�

ln a � 1

e ln a � e1

a � e

m � �
1
e

� . Now try Exercise 31.

Derivative of loga x
To find the derivative of loga x for an arbitrary base �a � 0, a � 1�, we use the change-
of-base formula for logarithms to express loga x in terms of natural logarithms, as follows:

loga x � �
l
l
n
n

a
x

� .

The rest is easy:

�
d
d
x
� loga x � �

d
d
x
� (�

l
l
n
n

a
x

� )
� �

ln
1

a
� • �

d
d
x
� ln x Since ln a is a constant

� �
ln

1
a

� • �
1
x

�

� �
x l

1
n a
� .

So, if u is a differentiable function of x and u � 0, the formula is as follows.

For  a � 0  and  a � 1,

�
d
d
x
� loga u � �

u l
1
n a
� �

d
d

u
x
� .

EXAMPLE 4 Going the Long Way with the Chain Rule

Find  dy�dx if  y � loga a sin x.

SOLUTION

Carefully working from the outside in, we apply the Chain Rule to get:

�
d
d
x
��loga asin x� � �

asin
1
x ln a
� • �

d
d
x
� �asin x� loga u,  u � asin x

� �
asin

1
x ln a
� • asin x ln a • �

d
d
x
��sin x� au,  u � sinx

� �
a
a

s

s

i

i

n

n

x

x

l
l
n
n

a
a

� • cos x

� cos x. Now try Exercise 23.

5128_Ch03_pp098-184.qxd  1/13/06  9:13 AM  Page 175



176 Chapter 3 Derivatives

We could have saved ourselves a lot of work in Example 4 if we had noticed at the be-
ginning that loga asin x, being the composite of inverse functions, is equal to sin x. It is al-
ways a good idea to simplify functions before differentiating, wherever possible. On the
other hand, it is comforting to know that all these rules do work if applied correctly.

Power Rule for Arbitrary Real Powers
We are now ready to prove the Power Rule in its final form. As long as x � 0, we can
write any real power of x as a power of e, specifically

xn � en ln x.

This enables us to differentiate xn for any real power n, as follows:

�
d
d
x
��xn� � �

d
d
x
��en ln x�

� en ln x • �
d
d
x
��n ln x� eu, u � n ln x

� en ln x • �
n
x

�

� xn • �
n
x

�

� nxn�1.

The Chain Rule extends this result to the Power Rule’s final form.

EXAMPLE 5 Using the Power Rule in all its Power

(a) If  y � x�2�, then

�
d
dy

x
� � �2�x ��2��1�.

(b) If  y � �2 � sin 3x�p, then

�
d
d
x
� �2 � sin 3x�p � p�2 � sin 3x�p�1�cos 3x� • 3

� 3p�2 � sin 3x�p�1�cos 3x�.
Now try Exercise 35.

EXAMPLE 6 Finding Domain

If f �x� � ln �x � 3�, find f ��x�.  State the domain of f �.

SOLUTION

The domain of f is  �3, 	� and 

f ��x� � �
x �

1
3

� . continued

RULE 10 Power Rule for Arbitrary Real Powers

If u is a positive differentiable function of x and n is any real number, then un is a
differentiable function of x, and 

�
d
d
x
�un � nun�1 �

d
d

u
x
� .
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The domain of f � appears to be all  x � 3.  However, since f is not defined for x � 3,
neither is f �. Thus,

f ��x� � �
x �

1
3

� , x � 3.

That is, the domain of  f � is  �3, 	�. Now try Exercise 37.

Sometimes the properties of logarithms can be used to simplify the differentiation process,
even if we must introduce the logarithms ourselves as a step in the process. Example 7 shows
a clever way to differentiate y � x x for x � 0.

EXAMPLE 7 Logarithmic Differentiation

Find  dy�dx for  y � x x, x � 0.

SOLUTION y � x x

ln y � ln x x Logs of both sides

ln y � x ln x Property of logs

�
d
d
x
��ln y� � �

d
d
x
��x ln x� Differentiate implicitly.

�
1
y

� �
d
d

y
x
� � 1 • ln x � x • �

1
x

�

�
d
d

y
x
� � y�ln x � 1�

�
d
d

y
x
� � xx�ln x � 1� Now try Exercise 43.

EXAMPLE 8 How Fast does a Flu Spread?

The spread of a flu in a certain school is modeled by the equation

P�t� � �
1 �

10
e
0
3�t� ,

where P�t� is the total number of students infected t days after the flu was first noticed.
Many of them may already be well again at time t.

(a) Estimate the initial number of students infected with the flu.

(b) How fast is the flu spreading after 3 days?

(c) When will the flu spread at its maximum rate? What is this rate?

SOLUTION

The graph of P as a function of t is shown in Figure 3.58.
(a) P�0� � 100��1 � e3� � 5  students (to the nearest whole number). 

continued

Figure 3.58 The graph of 

P�t� � �
1 �

10
e
0
3�t� ,

modeling the spread of a flu. (Example 8)

[–5, 10] by [–25, 120]
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178 Chapter 3 Derivatives

(b) To find the rate at which the flu spreads, we find  dP�dt. To find  dP�dt, we need to
invoke the Chain Rule twice:

�
d
d
P
t
� � �

d
d
t
��100�1 � e3�t��1� � 100 • ��1��1 � e3�t��2 • �

d
d
t
��1 � e3�t�

� �100�1 � e3�t��2 • �0 � e3�t • �
d
d
t
��3 � t��

� �100�1 � e3�t��2�e3�t • ��1��

� �
�1

1
�

00
e
e

3

3

�

�

t

t

�2�

At  t � 3, then, dP�dt � 100�4 � 25.  The flu is spreading to 25 students per day.

(c) We could estimate when the flu is spreading the fastest by seeing where the graph of
y � P�t� has the steepest upward slope, but we can answer both the “when” and the
“what” parts of this question most easily by finding the maximum point on the graph of
the derivative (Figure 3.59).

We see by tracing on the curve that the maximum rate occurs at about 3 days, when 
(as we have just calculated) the flu is spreading at a rate of 25 students per day. 

Now try Exercise 51.

Figure 3.59 The graph of dP�dt, the rate
of spread of the flu in Example 8. The
graph of P is shown in Figure 3.58.

[–5, 10] by [–10, 30]

Quick Review 3.9 (For help, go to Sections 1.3 and 1.5.)

1. Write log5 8 in terms of natural logarithms.

2. Write 7x as a power of e. ex ln 7

In Exercises 3–7, simplify the expression using properties of expo-
nents and logarithms.

3. ln �etan x� tan x 4. ln �x2 � 4� � ln �x � 2�
5. log2 �8x�5 � 3x � 15 6. �log4 x15 ���log4 x12 � 5�4

7. 3 ln x � ln 3x � ln �12x2� ln (4x4)

In Exercises 8–10, solve the equation algebraically using logarithms.
Give an exact answer, such as �ln 2��3, and also an approximate an-
swer to the nearest hundredth. 

8. 3x �19 x � �
l
l
n
n

1
3
9

� 	 2.68

9. 5t ln 5 � 18

10. 3x�1 � 2x

Section 3.9 Exercises

In Exercises 1–28, find  dy�dx.  Remember that you can use NDER 
to support your computations.

1. y � 2ex 2ex 2. y � e2x 2e2x

3. y � e�x �e�x 4. y � e�5x �5e�5x

5. y � e2x�3 �
2
3

�e2x�3 6. y � e�x�4 ��
1
4

�e�x/4

7. y � xe2 � ex e2 � ex 8. y � x2ex � xex

9. y � e�x� e�x�/2�x� 10. y � e�x2� 2xe(x2)

11. y � 8x 8x ln 8 12. y � 9�x �9�x ln 9

13. y � 3csc x 14. y � 3cot x �3cot x(ln 3)(csc2 x)

15. y � ln �x2 � �
2
x

� 16. y � �ln x�2 �
2 l

x
n x
�

17. y � ln �1�x� See page 180. 18. y � ln �10�x� See page 180.

19. y � ln �ln x� �
x l

1
n x
� 20. y � x ln x � x ln x

21. y � log4 x2 See page 180. 22. y � log5 �x� See page 180.

23. y � log2 �1�x� 24. y � 1� log2 x

25. y � ln 2 • log2 x 26. y � log3 �1 � x ln 3�

27. y � log10 ex 28. y � ln 10 x ln 10

29. At what point on the graph of y � 3x � 1 is the tangent line
parallel to the line y � 5x � 1? 	 (1.379, 5.551)

30. At what point on the graph of y � 2ex � 1 is the tangent line
perpendicular to the line y � �3x � 2? 	 (�1.792, �0.667)

31. A line with slope m passes through the origin and is tangent to
y � ln (2x). What is the value of m? 2e�1

32. A line with slope m passes through the origin and is tangent to
y � ln (x�3). What is the value of m? �

1
3

�e�1

In Exercises 33–36, find dy�dx.

33. y � xp �x��1 34. y � x1��2� (1 � �2�)x�2�

35. y � x��2� ��2�x��2��1 36. y � x1�e (1 � e)x�e

In Exercises 37–42, find  f�(x) and state the domain of f �.

37. f (x) � ln (x � 2) �
x �

1
2

�, x � �2

38. f (x) � ln (2x � 2)

�
l
l
n
n

8
5�

ln (x � 2) x ��
ln 18 �

ln
l
5
n (ln 5)
� 	 1.50

x � �
ln 2

ln
�

3
ln 3

� 	 �2.71

x2ex � xex � ex

13. �3csc x(ln 3)(csc x cot x)

��
x l

1
n 2
�, x � 0 ��

x(ln 2)(
1
log2 x)2�

�
1
x

�, x � 0

26. �
1 �

1
x ln 3
�, x � ��

ln
1

3
�

�
ln

1
10
�

�
x �

1
1

�, x � �1
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39. f (x) � ln (2 � cos x)

40. f (x) � ln (x2 � 1)

41. f (x) � log2 (3x � 1)

42. f (x) � log10�x � 1�

Group Activity In Exercises 43–48, use the technique of logarith-
mic differentiation to find  dy�dx.

43. y � �sin x�x, 0 � x � p�2 (sin x)x [x cot x � ln (sin x)]

44. y � x tan x, x � 0

45. y � 
5 ���x��

��2
3�x
��

4

�

��x
5�
2

���
3� 1��

��
46. y � �

x
�
�
x �

x�2

1
���

�2 �
1�
3� 
�x(x

�
�

x2

1
�

)2/
1�
3��
�

1
x

� � �
x2 �

x
1

� � �
3(x

2
� 1)
��

47. y � xln x �
2xln x

x
(ln x)
� 48. y � x(1/ln x) 0, x � 0

49. Find an equation for a line that is tangent to the graph of  y � ex

and goes through the origin. y � ex

50. Find an equation for a line that is normal to the graph of y � xex

and goes through the origin. y � �x

51. Spread of a Rumor The spread of a rumor in a certain school
is modeled by the equation

P(t) � �
1 �

30
2
0

4�t�,

where P(t) is the total number of students who have heard the
rumor t days after the rumor first started to spread.

(a) Estimate the initial number of students who first heard the
rumor. 18

(b) How fast is the rumor spreading after 4 days?

(c) When will the rumor spread at its maximum rate? What is
that rate?

52. Spread of Flu The spread of flu in a certain school is modeled
by the equation

P(t) � �
1 �

20
e
0
5�t�,

where P(t) is the total number of students infected t days after
the flu first started to spread.

(a) Estimate the initial number of students infected with this flu.

(b) How fast is the flu spreading after 4 days? 39 students per day

(c) When will the flu spread at its maximum rate? What is that
rate? After 5 days; 50 students per day

53. Radioactive Decay The amount A (in grams) of radioactive
plutonium remaining in a 20-gram sample after t days is given
by the formula 

A � 20 • �1�2�t�140.

At what rate is the plutonium decaying when  t � 2 days?
Answer in appropriate units. rate 	 0.098 grams/day

54. For any positive constant k, the derivative of  ln �kx� is  1�x.
Prove this fact

(a) by using the Chain Rule. See page 180.

(b) by using a property of logarithms and differentiating.

55. Let f �x� � 2x.

(a) Find  f ��0�. ln 2

(b) Use the definition of the derivative to write  f ��0� as a limit.

(c) Deduce the exact value of 

lim
h→0

�
2h

h
� 1
� .

(d) What is the exact value of 

lim
h→0

�
7h

h
� 1
�?

56. Writing to Learn The graph of  y � ln x looks as though it
might be approaching a horizontal asymptote. Write an argument
based on the graph of  y � ex to explain why it does not. 

Standardized Test Questions 
You should solve the following problems without using a
graphing calculator.

57. True or False The derivative of y � 2x is 2x. Justify your
answer. False. It is (ln 2)2x.

58. True or False The derivative of y � e2x is 2 (ln 2) e2x. Justify
your answer. False. It is 2e2x.

59. Multiple Choice If a flu is spreading at the rate of

P(t) � �
1 �

15
e
0
4�t�,

which of the following is the initial number of persons infected?

(A) 1 (B) 3 (C) 7 (D) 8 (E) 75

60. Multiple Choice Which of the following is the domain of
f �(x) if f (x) � log2 (x � 3)? D

(A) x � �3 (B) x � 3 (C) x � �3 (D) x � �3

(E) x 
 �3

61. Multiple Choice Which of the following gives dy�dx if
y � log10(2x � 3)? A

(A) �
(2x �

2
3)ln 10
� (B) �

2x
2
� 3
� (C) �

(2x �

1
3)ln10
�

(D) �
2x

1
� 3
� (E) �

2
1
x
�

62. Multiple Choice Which of the following gives the slope of
the tangent line to the graph of y � 21�x at x � 2? E

(A) ��
1
2

� (B) �
1
2

� (C) �2 (D) 2 (E) ��
ln

2
2

�

[–3, 6] by [–3, 3]

�
2 �

sin
co

x
s x

�, all reals

40. �
x2

2
�

x
1

�, all reals

�(3x �
3
1) ln 2�, x � �1�3

42. �
2(x �

1
1)ln 10
�, x � �1

xtan x ��tan
x

x
� � (ln x)(sec2 x)�

45. 
�(x �

(2
3
x
)
�

4(x
5

2

)
�
3

1)
��1/5 
�5(x

4
�3)
� � �

5(x2
2
�

x
1)

� � �
5(2x

6
� 5)
��

52 students per day

After 4 days; 52 students per day

f �(0) � lim
h→0 

�
2h �

h
1

�

ln 2

ln 7

B

See page 180.

1
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Exploration
63. Let  y1 � ax, y2 � NDER y1, y3 � y2 �y1, and  y4 � ey3.

(a) Describe the graph of y4 for  a � 2, 3, 4, 5.  Generalize
your description to an arbitrary  a � 1.

(b) Describe the graph of y3 for  a � 2, 3, 4, 5.  Compare a
table of values for y3 for  a � 2, 3, 4, 5  with  ln a.
Generalize your description to an arbitrary  a � 1.

(c) Explain how parts (a) and (b) support the statement

�
d
d
x
� ax � ax if and only if a � e.

(d) Show algebraically that  y1 � y2 if and only if  a � e.

Extending the Ideas
64. Orthogonal Families of Curves Prove that all curves in the

family 

y � � �
1
2

� x2 � k

(k any constant) are perpendicular to all curves in the family 
y � ln x � c (c any constant) at their points of intersection. 
(See accompanying figure.)

[–3, 6] by [–3, 3]

65. Which is Bigger, pe or ep? Calculators have taken some of
the mystery out of this once-challenging question. (Go ahead
and check; you will see that it is a surprisingly close call.) You
can answer the question without a calculator, though, by using
the result from Example 3 of this section.

Recall from that example that the line through the origin tangent
to the graph of  y � ln x has slope 1�e.

(a) Find an equation for this tangent line.

(b) Give an argument based on the graphs of  y � ln x and the
tangent line to explain why  ln x � x�e for all positive  x � e.

(c) Show that  ln �xe� � x for all positive  x � e.

(d) Conclude that xe � ex for all positive  x � e.

(e) So which is bigger, pe or  ep?

[–3, 6] by [–3, 3]

180 Chapter 3 Derivatives

Quick Quiz for AP* Preparation: Sections 3.7–3.9

You may use a graphing calculator to solve the following 
problems.

1. Multiple Choice Which of the following gives dy�dx at x � 1
if x3 � 2xy � 9? E

(A) 11�2 (B) 5�2 (C) 3�2 (D) �5�2 (E) �11�2

2. Multiple Choice Which of the following gives dy�dx
if y � cos3(3x � 2)? A

(A) �9 cos2 (3x � 2) sin (3x � 2)

(B) �3 cos2 (3x � 2) sin (3x � 2)

(C) 9 cos2 (3x � 2) sin (3x � 2)

(D) �9 cos2(3x � 2)

(E) �3 cos2 (3x � 2)

3. Multiple Choice Which of the following gives dy�dx
if y � sin�1 (2x)? C

(A) � �
�1 �

2
4x�2�

� (B) � �
�1 �

1
4x�2�

� (C) �
�1 �

2
4x�2�

�

(D) �
�1 �

1
4x�2�

� (E) �
1 �

2x
4x2�

4. Free Response A curve in the xy-plane is defined by 
xy2 � x3y � 6.

(a) Find dy/dx.

(b) Find an equation for the tangent line at each point on the
curve with x-coordinate 1.

(c) Find the x-coordinate of each point on the curve where the
tangent line is vertical.

54. (a) �
d
d
x
� ln (kx) � �

k
1
x
� �

d
d
x
� kx � �

k
k
x
� � �

1
x

�

(b) �
d
d
x
� ln (kx) � �

d
d
x
� (ln k � ln x) � 0 � �

d
d
x
� ln x � �

1
x

�

64. �
d
d
x
� 
��

1

2
�x2 � k� � �x and �

d
d
x
� (ln x � c) � �

1

x
�. 

Therefore, at any given value of x, these two curves will have perpendicu-
lar tangent lines.

65. (a) y � �
1

e
� x

(b) Because the graph of ln x lies below the graph of the tangent line for
all positive x � e.

(c) Multiplying by e, e(ln x) � x, or ln xe � x.
(d) Exponentiate both sides of the inequality in part (c).
(e) Let x � � to see that �e � e�.

17. ��
1
x

�, x � 0 18. ��
1
x

�, x � 0 21. �
x l

2
n 4
� � �

x l
1
n 2
� 22. �

2x
1
ln 5
�, x � 0
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Chapter 3 Key Terms

acceleration (p. 130)

average velocity (p. 128)

Chain Rule (p. 149)

Constant Multiple Rule (p. 117)

Derivative of a Constant Function (p. 116)

derivative of f at a (p. 99)

differentiable function (p. 99)

differentiable on a closed interval (p. 104)

displacement (p. 128)

free-fall constants (p. 130)

implicit differentiation (p. 157)

instantaneous rate of change (p. 127)

instantaneous velocity (p. 128)

Intermediate Value Theorem for 
Derivatives (p. 113)

inverse function–inverse cofunction 
identities (p. 168)

jerk (p. 144)

left-hand derivative (p. 104)

local linearity (p. 110)

logarithmic differentiation (p. 177)

marginal cost (p. 134)

marginal revenue (p. 134)

nth derivative (p. 122)

normal to the surface (p. 159)

numerical derivative �NDER� (p. 111)

orthogonal curves (p. 154)

orthogonal families (p. 180)

Power Chain Rule (p. 151)

Power Rule for Arbitrary Real Powers (p. 176)

Power Rule for Negative Integer 
Powers of x (p. 121)

Power Rule for Positive Integer 
Powers of x (p. 116)

Power Rule for Rational Powers 
of x (p. 161)

Product Rule (p. 119)

Quotient Rule (p. 120)

right-hand derivative (p. 104)

sensitivity to change (p. 133)

simple harmonic motion (p. 143)

speed (p. 129)

Sum and Difference Rule (p. 117)

symmetric difference quotient (p. 111)

velocity (p. 128)

Calculus at Work

I
work at Ramsey County Hospital and
other community hospitals in the Min-
neapolis area, both with patients and in

a laboratory. I have wanted to be a physi-
cian since I was about 12 years old, and I
began attending medical school when I
was 30 years old. I am now working in the
field of internal medicine.

Cardiac patients are common in my
field, especially in the diagnostic stages.
One of the machines that is sometimes

used in the emergency room to diagnose
problems is called a Swan-Ganz catheter,
named after its inventors Harold James
Swan and William Ganz. The catheter is in-
serted into the pulmonary artery and then
is hooked up to a cardiac monitor. A pro-
gram measures cardiac output by looking
at changes of slope in the curve. This in-
formation alerts me to left-sided heart
failure.

Lupe Bolding, M.D.
Ramsey County Hospital

Minneapolis, MN

11. y � x2 csc 5x 12. y � ln �x�

13. y � ln �1 � ex� �
1 �

ex

ex� 14. y � xe�x �xe�x � e�x

15. y � e�1�ln x� e 16. y � ln �sin x�
17. r � ln �cos�1 x� 18. r � log2 �u2�
19. s � log5 �t � 7� 20. s � 8�t �8�t ln 8

21. y � x ln x    See page 184. 22. y � �
�

�2
x�
x
2�
�
��
2x

1�
�

23. y � etan�1 x �
1
et

�

an�

x

1x

2� 24. y � sin�1�1� �� u�2�

25. y � t sec�1 t � �
1
2

� ln t 26. y � �1 � t2� cot�1 2t

27. y � z cos�1 z � �1� �� z�2� 28. y � 2�x��� 1� csc�1�x�

Chapter 3 Review Exercises

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1–30, find the derivative of the function.

1. y � x5 � �
1
8

� x2 � �
1
4

� x 2. y � 3 � 7x3 � 3x7

3. y � 2 sin x cos x 4. y � �
2
2

x
x

�

�

1
1

� ��
(2x �

4

1)2�

5. s � cos �1 � 2t� 2 sin (1 – 2t) 6. s � cot �
2
t
� �

t

2
2� csc2 �

2

t
�

7. y � �x� � 1 � �
�

1

x�
� 8. y � x�2�x��� 1� �

�
3x

2x

�

�

1

1�
�

9. r � sec �1 � 3u� 10. r � tan2 �3 � u2�

5x4 � �
4

x
� � �

1

4
�

�21x2 � 21x6

�2 cos2 x � 2 sin2 x � 2 cos 2x

7. � �
2x

1
3/2�

1
�
2�x�

3 sec (1 � 3�) tan (1 � 3�) �4� tan (3 � �2) sec2 (3 � �2)

�5x2 csc 5x cot 5x � 2x csc 5x
�
2

1

x
�, x � 0

16. cot x, where x is an interval of the form (k�, (k � 1) �), k even

17. �
cos�1 x

1

�1�x2�
�

�
(t �

1

7)ln 5
�, t � 7

cos�1 z ��
1

x
� � �

c

�
sc�

x

1

�

�
1�
x�

�

18. �
� l

2

n 2
�

See 
page 184.

See page 184.

See page 184.
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29. y � csc�1 �sec x�, 0 � x � 2p

30. r � (�11 �

�

c
s
o
in
s
u

u
� )

2

2
�1
1

�

�

c

s

o

in

s

�

�
�� 
�cos

(1

�

�

�

c

s

o

in

s �

�

)2

� 1
��

In Exercises 31–34, find all values of x for which the function is 
differentiable.

31. y � ln x2 For all x � 0 32. y � sin x � x cos x For all 

33. y � 
�
1
1� �

�� x
x�2�� For all x � 1 34. y � �2x � 7��1�x � 5�

In Exercises 35–38, find  dy�dx.

35. xy � 2x � 3y � 1 36. 5x4�5 � 10y6�5 � 15

37. �xy� � 1 ��
y

x
� or ��

x

1
2� 38. y2 � �

x �

x
1

� �
2y(x

1

� 1)2�

In Exercises 39–42, find  d 2y�dx2 by implicit differentiation.

39. x3 � y3 � 1 ��
2

y

x
5� 40. y2 � 1 � �

2
x

� ��
1 �

x4y
2

3

xy2
�

41. y3 � y � 2 cos x 42. x1�3 � y1�3 � 4

In Exercises 43 and 44, find all derivatives of the function.

43. y � �
x
2

4

� � �
3
2

� x2 � x 44. y � �
1
x
2

5

0
�

In Exercises 45–48, find an equation for the (a) tangent and 
(b) normal to the curve at the indicated point.

45. y � �x�2��� 2�x�, x � 3

46. y � 4 � cot x � 2 csc x, x � p�2

47. x2 � 2y2 � 9, �1, 2� 48. x � �xy� � 6, �4, 1�

In Exercises 49–52, find an equation for the line tangent to the curve
at the point defined by the given value of t.

49. x � 2 sin t, y � 2 cos t, t � 3p�4 y � x � 2�2�

50. x � 3 cos t, y � 4 sin t, t � 3p�4

51. x � 3 sec t, y � 5 tan t, t � p�6 y � �
1

3

0
�x � 5�3�

52. x � cos t, y � t � sin t, t � �p�4

53. Writing to Learn

(a) Graph the function

x, 0 � x � 1
f �x� � {2 � x, 1 � x � 2.

(b) Is f continuous at  x � 1?  Explain.

(c) Is f differentiable at  x � 1?  Explain.

54. Writing to Learn For what values of the constant m is

sin 2x, x � 0
f �x� � {mx, x � 0

(a) continuous at  x � 0?  Explain.

(b) differentiable at  x � 0?  Explain.

In Exercises 55–58, determine where the function is 
(a) differentiable, (b) continuous but not differentiable, and 
(c) neither continuous nor differentiable.

55. f �x� � x4�5 (a) For all x � 0 56. g�x� � sin �x2 � 1�

57.
2x � 3, �1 � x � 0

f �x� � {x � 3, 0 � x � 4

�
x �

x
1

� , �2 � x � 0
58. g�x� � {�

x �

x
1

� , 0 � x � 2

In Exercises 59 and 60, use the graph of f to sketch the graph of f �.

59. Sketching f � from f

60. Sketching f � from f

61. Recognizing Graphs The following graphs show the 
distance traveled, velocity, and acceleration for each second 
of a 2-minute automobile trip. Which graph shows

(a) distance iii? (b) velocity? i (c) acceleration? ii

62. Sketching f from f � Sketch the graph of a continuous
function f with f �0� � 5  and

�2, x � 2
f ��x� � {�0.5, x � 2.

63. Sketching f from f � Sketch the graph of a continuous
function f with f ��1� � 2  and

�2, x � 1
f ��x� � {1, 1 � x � 4

�1, 4 � x � 6.

(i)

t
0 1 2

(ii)

t
0 1

(iii)

t
0 1 2

2

x

y

1

1

2 3–1–2–3

–1

y = f(x)

x

y

y = f(x)

real x

For all x � �
7

2
�

��
y

x

�

�

2

3
� ��

1

3
�(xy)�1/5

41. �2
(3y2�1)2 cos x � 12y sin2 x
���

(3y2 � 1)3
42. �

2

3
�x�4/3y1/3 � �

2

3
�x�5/3y2/3 � �

8

3
�x�5/3y1/3 50. y � �

4

3
�x � 4�2�

43. y� � 2x3 – 3x – 1, y� � 6x2 – 3, y�� � 12x, y(4) � 12, and the rest are all zero.

44. y� � �
2

x

4

4

�, y� � �
x

6

3

�, y�� � �
x

2

2

�, y(4) � x, y(5) � 1, and the rest are all zero.

(a) y � �
�
2

3�
�x � �3� (b) y ���

�
2

3�
�x � �

5�
2

3�
�

(a) y � �x � �
�

2
� � 2 (b) y � x � �

�

2
� � 2

47. (a) y � ��
1

4
�x � �

9

4
� (b) y � 4x � 2

48. (a) y ���
5

4
�x � 6 (b) y � �

4

5
�x � �

1

5

1
�

y � (1 � �2�)x ��2� �1 � �
�

4
�  

or y 	 2.414x � 3.200

(b) At x � 0 (c) Nowhere (b) Nowhere (c) Nowhere
(a) For all x 

(a) [�1, 0) � (0, 4]
(b) At x � 0
(c) Nowhere in its domain

(a) [�2, 0) � (0, 2]
(b) Nowhere
(c) Nowhere in its domain
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64. Which of the following statements could be true if 
f ��x� � x1�3? Answer is D: i and iii only could be true

i. f �x� � �
2
9
8
� x7�3 � 9 ii. f ��x� � �

2
9
8
� x7�3 � 2

iii. f ��x� � �
3
4

� x4�3 � 6 iv. f �x� � �
3
4

� x4�3 � 4

A. i only B. iii only

C. ii and iv only D. i and iii only

65. Derivative from Data The following data give the
coordinates of a moving body for various values of t.

(a) Make a scatter plot of the �t, s� data and sketch a smooth
curve through the points.

(b) Compute the average velocity between consecutive points of
the table.

(c) Make a scatter plot of the data in part (b) using the midpoints
of the t values to represent the data. Then sketch a smooth curve
through the points.

(d) Writing to Learn Why does the curve in part (c)
approximate the graph of ds�dt?

66. Working with Numerical Values Suppose that a function
f and its first derivative have the following values at  x � 0  and
x � 1.

Find the first derivative of the following combinations at the
given value of x.

(a) �x� f �x�, x � 1 �13/10 (b) �f ��x��, x � 0 �1/3

(c) f � �x��, x � 1 1/10 (d) f �1 � 5 tan x�, x � 0 �1

(e) �
2 �

f �
c
x
o
�
s x

� , x � 0 �2/3 (f) 10 sin (�
p

2
x
�) f 2�x�, x � 1 �12

67. Working with Numerical Values Suppose that functions f
and g and their first derivatives have the following values at  
x � �1  and  x � 0.

Find the first derivative of the following combinations at the
given value of x.

(a) 3f �x� � g�x�, x � �1 5 (b) f 2�x�g3�x�, x � 0 0

(c) g� f �x��, x � �1 8 (d) f �g�x��, x � �1 2

(e) �
g�x

f
�
�x

�

�
2

� , x � 0 6 (f) g�x � f �x��, x � 0 –1

x f �x� g�x� f ��x� g��x�

�1 0 �1 2 1
0 �1 �3 �2 4

x f �x� f ��x�

0 9 �2
1 �3 1�5

t (sec) 0 0.5 1 1.5 2 2.5 3 3.5 4
s (ft) � 10 38 58 70 74 70 58 38 10

68. Find the value of  dw�ds at  s � 0  if  w � sin ��r� � 2� and
r � 8 sin �s � p�6�. �3�

69. Find the value of  dr�dt at  t � 0  if  r � �u2 � 7�1�3 and  
u2t � u � 1. �1/6

70. Particle Motion The position at time  t 
 0 of a particle
moving along the s-axis is

s�t� � 10 cos �t � p�4�.

(a) Give parametric equations that can be used to simulate the
motion of the particle.

(b) What is the particle’s initial position  �t � 0�?
(c) What points reached by the particle are farthest to the 
left and right of the origin?

(d) When does the particle first reach the origin? What are its
velocity, speed, and acceleration then?

71. Vertical Motion On Earth, if you shoot a paper clip 64 ft
straight up into the air with a rubber band, the paper clip will be
s�t� � 64t � 16t2 feet above your hand at t sec after firing.

(a) Find  ds�dt and  d 2s�dt2.

(b) How long does it take the paper clip to reach its maximum
height? 2 sec

(c) With what velocity does it leave your hand? 64 ft/sec

(d) On the moon, the same force will send the paper clip to a
height of  s�t� � 64t � 2.6t2 ft  in t sec. About how long will it
take the paper clip to reach its maximum height, and how high
will it go?

72. Free Fall Suppose two balls are falling from rest at a certain
height in centimeters above the ground. Use the equation 
s � 490t2 to answer the following questions.

(a) How long does it take the balls to fall the first 160 cm? What
is their average velocity for the period? �

4
7

� sec; 280 cm/sec

(b) How fast are the balls falling when they reach the 160-cm
mark? What is their acceleration then? 560 cm/sec; 980 cm/sec2

73. Filling a Bowl If a hemispherical bowl of radius 10 in. is
filled with water to a depth of x in., the volume of water is given
by  V � p�10 � �x�3��x2.  Find the rate of increase of the
volume per inch increase of depth. p(20x  – x2)

74. Marginal Revenue A bus will hold 60 people. The fare
charged ( p dollars) is related to the number x of people who 
use the bus by the formula  p � �3 � �x�40��2.

(a) Write a formula for the total revenue per trip received by the
bus company.

(b) What number of people per trip will make the marginal
revenue equal to zero? What is the corresponding fare?

(c) Writing to Learn Do you think the bus company’s fare
policy is good for its business? One possible answer: Probably not,
since the company charges less overall for 60 passengers than it does for
40 passengers.

r(x) � 
3 � �
4

x

0
��

2
x � 9x � �

2

3

0
�x2 � �

16

1

00
�x3

40 people; $4.00

�
d

d

s

t
� � 64 � 32t �

d
d

2

t2
s

� � �32

�
5

6

.

4

2
� 	 12.3 sec; 5
�

5

6

.

4

2
�� 	 393.8 ft
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75. Searchlight The figure shows a boat 1 km offshore sweeping
the shore with a searchlight. The light turns at a constant rate,
du�dt � �0.6 rad�sec.

(a) How fast is the light moving along the shore when it reaches
point A? �0.6 km/sec

(b) How many revolutions per minute is 0.6 rad�sec?

76. Horizontal Tangents The graph of  y � sin �x � sin x�
appears to have horizontal tangents at the x-axis. Does it? Yes

77. Fundamental Frequency of a Vibrating Piano String
We measure the frequencies at which wires vibrate in cycles
(trips back and forth) per sec. The unit of measure is a hertz:
1 cycle per sec. Middle A on a piano has a frequency 440 hertz.
For any given wire, the fundamental frequency y is a function 
of four variables:

r: the radius of the wire;

l: the length;

d: the density of the wire;

T: the tension (force) holding the wire taut.

With r and l in centimeters, d in grams per cubic centimeter, and
T in dynes (it takes about 100,000 dynes to lift an apple), the
fundamental frequency of the wire is

y � �
2
1
rl
�
�
p

T
d
��.

If we keep all the variables fixed except one, then y can be
alternatively thought of as four different functions of one
variable, y�r�, y�l�, y�d�, and  y�T �.  How would changing
each variable affect the string’s fundamental frequency? To find
out, calculate  y��r�, y��l�, y��d�, and  y��T �.

78. Spread of Measles The spread of measles in a certain school
is given by

P�t� � �
1 �

20
e
0
5�t� ,

where t is the number of days since the measles first appeared,
and P�t� is the total number of students who have caught the
measles to date.

�

1 km
A

x

(a) Estimate the initial number of students infected with
measles. P(0) 	 1.339, so initially, one student was infected

(b) About how many students in all will get the measles? 200

(c) When will the rate of spread of measles be greatest? What is
this rate? After 5 days, when the rate is 50 students/day

79. Graph the function f �x� � tan�1 �tan 2x� in the window 
��p, p� by ��4, 4�. Then answer the following questions.

(a) What is the domain of f ? x � k�
�

4
�, where k is an odd integer

(b) What is the range of f ? (���2,��2)

(c) At which points is f not differentiable?

(d) Describe the graph of f �.

80. If  x2 � y2 � 1, find  d 2y�dx2 at the point �2, �3��. �1/(3�3�)

184 Chapter 3 Derivatives

AP* Examination Preparation
You may use a graphing calculator to solve the following 
problems.

81. A particle moves along the x-axis so that at any time t 
 0 its
position is given by x(t) � t3 � 12t � 5.

(a) Find the velocity of the particle at any time t.

(b) Find the acceleration of the particle at any time t.

(c) Find all values of t for which the particle is at rest.

(d) Find the speed of the particle when its acceleration is zero.

(e) Is the particle moving toward the origin or away from the origin
when t � 3? Justify your answer.

82. Let y � .

(a) Find �
d
d
y
x
�.

(b) Find .

(c) Find an equation of the line tangent to the curve at x � 1.

(d) Find an equation of the line normal to the curve at x � 1.

(e) Find any points where the tangent line is horizontal.

83. Let f (x) � ln (1 � x2).

(a) State the domain of f .

(b) Find f �(x).

(c) State the domain of f �.

(d) Prove that  f �(x) � 0 for all x in the domain of f .

d2y
�
dx2

ex � e�x
�

2

18/� 	
5.73 revolutions/min

77. y�(r) � ��
2r

1
2l
� 
�

�

T
d
��, so increasing r decreases the frequency.

y�(l) � ��
2r

1

l2
� 
�

�

T
d
��, so increasing l decreases the frequency.

y�(d) � ��
4

1

rl
� 
�

�

T
d3��, so increasing d decreases the frequency.

y�(T) � �
4rl�

1

�Td�
� , so increasing T increases the frequency.

79. (c) Where it’s not defined, at x � k�
�

4
�, k an odd integer

(d) It has period ��2 and continues to repeat the pattern seen in this window.

21.  �
2(ln x

x

)xln x

�

22. or


�
1

x
� � ln 2 ��

x2 �

x

1
��

24. ��
�u2

u

� u�4�
� � ��

⏐u⏐�
u

1 � u2�
�

25. �
⏐t⏐�

t

t2 � 1�
� � sec�1t � �

2

1

t
�

26. ��
2

1

�

�

2

4

t

t

2

2� � 2t cot�1 2t

(2x)2x
�
�x2 � 1�

(2 � 2x)[x3 ln 2 � x ln 2 � 1]
���

(x2 � 1)3/2

Additional Answers:
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