🚜 AP Calculus AB Preview Packet

Objective: To give you the opportunity to assess your preparedness for taking Calculus.

You should be familiar with ALL the following topics. If not, then use this preview packet as a guide to what you need to review before starting in the fall. There is not enough time for us to reteach Algebra 1 through precalculus while simultaneously introducing the new calculus concepts. We will be assuming you are comfortable with the following.

Last note: The AP Calculus AB Test is 50% calculator AND 50% NO calculator, so it is important to develop your proficiency with and without the calculator. Try to respect that intention when doing this packet.

Section 1: NO CALCULATOR

Solve the following:

1.
$$x^3 + 3x^2 - 10x = 0$$

2.
$$x(3x + 10) = 77$$

3.
$$|2x+5| < 4$$

Find the points of intersection:

4.
$$y = x^2$$
 and $y = 6x - x^2$

5.
$$y = x - 2x^2$$
 and $y = -5x$

Simplify:

$$6. \quad x(\sqrt{x} + \sqrt[3]{x})$$

$$7 \cdot \frac{3x^2 - 4\sqrt[3]{x} + x}{\sqrt{x}}$$

$$\%. \qquad \frac{x^3-8}{x^3+8}$$

$$Q \cdot \frac{2x^2 + x - 6}{x^2 + 3x + 2}$$

Logarithms:

Find the exact value of each expression:

13.
$$\ln e^{-100}$$

Express the quantity as a single logarithm

19.
$$\frac{1}{2} \ln x - 5 \ln (x^2 + 1)$$

20.
$$\ln 3 + 1/3 \ln 8$$

Solve each equation for x.

21.
$$2 \text{ mx} = 1$$

22.
$$5^{x-3} = 25$$

23.
$$2\ln x = \ln 2 + \ln(3x - 4)$$

- 24. (3, 4) and (2, -6)
- 25. x-intercept 7 passing through (4, 10)
- 26. A. Find the slope of the line with equation 2x 5y = 9
 - B. Find the equation of the line that passes through (3, -4) and is parallel to the line in part a.
 - C. Find the equation of the line that passes through (3, -4) and is perpendicular to the line in part a.

Sketch the graph of the following (without a calculator!):

27.
$$y - 4 = -3(x + 2)$$

$$y = 2x^2 - 1$$

30.
$$y = \ln x$$

$$x = 4y^2 + 2$$

32.
$$(x+3)^2 + (y-2)^2 = 9$$

$$y = 1/x^2$$

$$y = 4 + 3\cos 2x$$

A.
$$f(x) = 3x + 5$$

$$f(x) = \sqrt{x}$$

Trigonometry: Find the exact value:

37.
$$\sin^{-1}(\frac{1}{2})$$

38.
$$\cos^{-1}(-\sqrt{3}/2)$$

39.
$$\sin^{-1}(-\sqrt{2/2})$$

Find all solutions to the equation (still no calculator):

40.
$$2\cos 2\theta - \sqrt{3} = 0$$

41.
$$2 \sin 3\theta + \sqrt{2} = 0$$

Section 2: Calculator Required

Solve:

42.
$$2x^2 - 3x - 4 = 0$$

(If you have a quadratic program in your calculator, know how to use it.)

Find the maximum values, the minimum values and the zeros of the following functions:

43.
$$y = 2x^3 - 8x^2 - x + 6$$

44.
$$y = 3\sin(x - 8)$$
 $0 < x < 2\pi$

Find the point(s) of intersection of the following:

45.
$$y = -3x^2 - 4x + 3$$
 and $y = \sqrt{(x + 8)}$

	T	 	1		Ţ	1		<u> </u>								T		
cot(x)																		
sec(x)										•								
csc(x)																		
tan(x)																	100	
(x)soo																		•
sin(x)									•								•	
Degrees	0	30	45	09	90	120	135	150	180	210	225	240	270	300	315	330	360	
Radians	0	π/ ₆	"/ ₄	"/ ₃	"/2	$2\pi_{13}$	3π/4	5π/ ₆	ĸ	711/6	$5\pi_{f_4}$	$4\pi_{f_3}$	$^{3\pi}l_2$	5m/3	7π/ ₄	1111/6	2π	
Quadrant			-			=	=		_					Δ	Δ	2		

(Cosx, sing)

B

LIBRARY OF FUNCTIONS

Identity Function f(x) = x

Square Function $f(x) = x^2$

Cube Function $f(x) = x^3$

Square Root Function

$$f(x) = \sqrt{x}$$

Reciprocal Function

$$f(x)=\frac{1}{x}$$

Cube Root Function

$$f(x) = \sqrt[3]{x}$$

Absolute Value Function f(x) = |x|

Exponential Function $f(x) = e^x$

Natural Logarithm Function $f(x) = \ln x$

Sine Function

$$f(x) = \sin x$$

Cosine Function $f(x) = \cos x$

Tangent Function $f(x) = \tan x$

Cosecant Function

$$f(x) = \csc x$$

Secant Function $f(x) = \sec x$

Cotangent Function $f(x) = \cot x$

FORMULAS/EQUATIONS

Distance Formula

If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, the distance from P_1 to P_2 is

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Standard Equation of a Circle

The standard equation of a circle of radius k with center at (h, k) is -----

$$(x-h)^2 + (y-k)^2 = r^2$$

Slope Formula

The slope m of the line containing the points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ is

$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{if } x_1 \neq x_2$$

$$m$$
 is undefined if $x_1 = x_2$

Point-Slope Equation of a Line The equation of a line with slope m containing the point (x_1, y_1) is

$$y - y_1 = m(x - x_1)$$

Slope-Intercept Equation of a Line The equation of a line with slope m and y-intercept b is

$$y = mx + b$$

Quadratic Formula

The solutions of the equation $ax^2 + bx + c = 0$, $a \ne 0$, are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 - 4ac > 0$, there are two unequal real solutions.

If $b^2 - 4ac = 0$, there is a repeated real solution.

If $b^2 - 4ac < 0$, there are two complex solutions that are not real.

GEOMETRY FORMULAS

Cîrcle

Triangle

Rectangle

Rectangular Box

Sphere

Right Circular Cylinder

r = Radius, A = Area, C = Circumference

$$A = \pi r^2 \qquad C = 2\pi r$$

b = Base, h = Altitude (Height), A = area

$$A = \frac{1}{2} bh$$

l = Length, w = Width, A = area, P = perimeter

$$A = lw \qquad P = 2l + 2w$$

l = Length, w = Width, h = Height, V = Volume, S = Surface area

$$V = lwh \qquad S = 2lw + 2lh + 2wh$$

r = Radius, V = Volume, S = Surface area $V = \frac{4}{3} \pi r^3$ $S = 4\pi r^2$

$$V = \frac{4}{3} \pi r^3 \qquad S = 4\pi r^2$$

r = Radius, h = Height, V = Volume, S = Surface area

$$V = \pi r^2 h \qquad S = 2\pi r^2 + 2\pi r h$$