PRE-CALCULUS BELLRINGER WEDNESDAY 8/13/14 & THURSDAY 8/14/14

 Write the equation of the line that passes through the points (0,-8) & (1,2)

2. Write the equation of the line that passes through the points (-1, 10) & (4,7)

PRE-CALCULUS BELLRINGER FRIDAY 8/15/14

- **1.** Find f(-x) for $f(x) = x^2 + 3$.
- 2. Find the domain of the function $g(x) = \frac{4}{x-4}$.
- **3.** Evaluate the function when x = -7.

$$f(x) = \begin{cases} x+2, & x > -5 \\ -4, & x \le -5 \end{cases}$$

4. A company produces a product for which the variable cost is \$1.35 per unit and the fixed costs are \$678. The total cost C for producing x units of the product can be represented by the function C(x) = 1.35x + 678. Find the total cost when 1000 units are produced. ALGEBRA 2 BELLRINGER FRIDAY 8/15/14 & MONDAY 8/18/14

FIND THE NEXT 2 NUMBERS OF EACH PATTERN:

1, 3, 5, 7, 9, 11,...
 -2, -4, -6, -8, -10, -12,...
 0.2, 1, 5, 25, 125, 625, ...
 50,45,40,35,30,25,...
 512, 256, 128, 64, 32, 16, ...

ALGEBRA 2 SMUGI 8/15/14

Find the 17th term of each sequence:

1.) $a_1 = 18, d = 5$ 2.) $a_1 = 18, d = -3$

PRE-CALCULUS BELLRINGER TUESDAY 8/19/14 1. Find f(-x) for f(x) = x³ + 3x

2. Find f(-x) for $f(x) = -2x^2 - 10x$

3. What is the domain of this function?

ALGEBRA 2 BELLRINGER TUESDAY 8/19/14 & WEDNESDAY 8/20/14

Find the next term in each sequence.

- . 1, 2, 4, 8, . . .
- **6.** 0.1, 1, 10, 100, . . .

336, 168, 84, 42, ...
 900, 300, 100, ...

PRECALCULUS BELLRINGER THURSDAY 8/21/14

1.) GRAPH THE FOLLOWING PIECEWISE FUNCTION:

motaneo, cappeee yea nare.

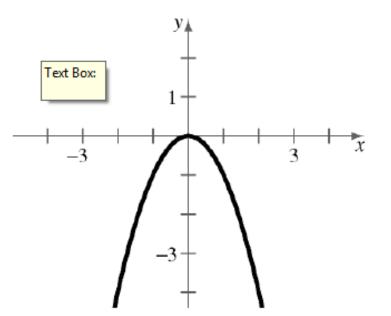
$$y = \begin{cases} x^2 - 2, & x < 1 \\ -2x + 4, & x \ge 1 \end{cases}$$

ALGEBRA 2 SMUGI 8/19/14

Find the 10th term of each geometric sequence:

1.) $a_1 = 18, d = 5$ 2.) $a_1 = 18, d = -3$

3.Find the missing term of this geometric sequence: 12.5, _____, 50


ALGEBRA 2 BELLRINGER THURSDAY 8/21/14 & FRIDAY 8/22/14

 IDENTIFY THIS SEQUENCE AS GEOMETRIC, ARITHMETIC OR NEITHER: 8, -4, 2, -1, 0.5, ...
 FIND THE 15TH TERM OF THE SEQUENCE IN PROBLEM #1

PRECALCULUS BELLRINGER MONDAY 8/25/14

Determine the intervals over which the function $f(x) = -x^2$ is increasing, decreasing, or constant.

1.

Determine whether the function $g(x) = \frac{1}{x^2}$ is odd, even, or neither.

ALGEBRA 2 BELLRINGER MONDAY 8/25/14 & TUESDAY 8/26/14

Write the related series for each finite sequence. Then evaluate each series:

1. -5, -15, -25, -35, -45 **2.** -3, -6, -9, ..., - 21 ALGEBRA 2 BELLRINGER WEDNESDAY 8/27/14 & THURSDAY 8/28/14

Consider the sequence 16, -8, 4, -2, 1, ...
a. Describe the pattern formed in the sequence.
b. Find the next three terms.

PRE CAL BELLRINGER WEDNESDAY 8/27/14

1. Graph these functions by using an by hand on the same graph. Label each one by its letter:

a. $f(x) = x^2$ b. $f(x) = x^2 - 4$ c. $f(x) = (x - 3)^2$ d. $f(x) = (x - 3)^2 - 4$

PRE-CALCULUS BELLRINGER FRIDAY 8/29/2014

Given that $f(x) = 4x^2 - 6x$ and $g(x) = \frac{1}{2}x$, find the composition.

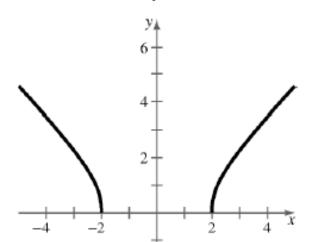
- 1. f og
- 2. g of

3. Solve
$$x = \frac{2y+3}{y-1}$$
 for *y*.

ALGEBRA 2 8/29/2014

○ 1.YOU WILL MAKE \$58,000 A YEAR FOR THE FIRST YEAR OF YOUR CAREER AND YOU WILL RECEIVE A 4% RAISE EVERY YEAR. WHAT WILL YOUR SALARY BE IN YOUR 15TH YEAR OF WORKING THERE?

O 2. GIVEN AN ARITHMETIC SEQUENCE IN WHICH $a_1 = 3$, $a_5 = 15 a_n = 69$, and d = 3, FIND n

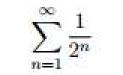

PRE-CALCULUS BELLRINGER WEDNESDAY 9/3/14

Find the inverse of the function.

1.
$$f(x) = \frac{1}{3}x - 2$$

$$f(x) = \frac{x+4}{x-6}$$

 Is the function shown in the graph a one-to-one function? Does it have an inverse function? Explain.



ALGEBRA 2 BELLRINGER WEDNESDAY 9/3/14 & THURSDAY 9/4/14 1. GIVEN A SEQUENCE DETERMINED BY an = 2n + 3

O A. what is the 100th term of this sequence

- O B. What is an expression in sigma notation for the sum of the first 500 terms of this sequence
- C. What is the sum of the first 500 terms of this sequence?
- O D. What is the sum of the 501st through 1000th terms of this sequence?

2. Determine if the following geometric series converges or diverges:

3. Find the approximate sum for this series if possible

ALGEBRA 2 BELLRINGER 9/8/14

• STATE WHETHER EACH INEQUALITY IS TRUE OR FALSE:

01.) 5 < 12	2.) 5 < -12	3.) 5 ≥ 12
○ 4.) 5 ≤ 12	5.) 5 ≤ 5	6.) 5 ≥ 5

SOLVE EACH EQUATION
7.) 3X + 3 = 2X - 3
8.) 5X = 9(X - 8) + 12

ALGEBRA 2 SMUGI 9/4/14

GIVEN A SEQUENCE DETERMINED BY $a_n = 5n - 6$

- O A. what is the 134th term of this sequence
- O B. What is an expression in sigma notation for the sum of the first 766 terms of this sequence
- O C. What is the sum of the first 256 terms of this sequence?
- O D. What is the sum of the 401st through 999th terms of this sequence?

SOLVE EACH INEQUALITY:
3.) 4X + 8 > 20
4.) 4(X - 1)<3X + 5

SOLVE EACH EQUATION:
1.) 5(X - 6) = 40
2.) 5B = 2(3B - 8)

ALGEBRA 2 BELLRINGER TUESDAY 9/9/14 & WEDNESDAY 9/10/14

PRE CAL BELLRINGER THURSDAY 9/11/14

Factor the expression completely.

1.
$$x^4 - 3x^2 - 4$$

2.
$$2y^4 + 6y^3 + 2y^2 + 6y$$

Find the *x*-intercepts of the function.

3.
$$f(x) = \frac{x-3}{x+8}$$

4. $f(x) = 2x^2 - 7x + 6$

PRE-CAL BELLRINGER MONDAY 9/15/14

Factor the expression completely. 1. $x^2 - 5x - 24$ 2. $3x^3 + 6x^2 - 4x - 8$ **3.** Simplify $\frac{4n^5 - 12n^3 + 6n^2}{2n^2}$ 4. Multiply $(2x - 1)(3x^2 - x + 5)$.

ALGEBRA 2 SMUGI 9/10/14

OBANANAS COST TWENTY-FIVE CENTS PER POUND. I WANT TO SPEND BETWEEN \$2.50 & \$3 ON BANANAS. BETWEEN WHAT AMOUNT OF BANANAS CAN I PURCHASE?

ALGEBRA 2 BELLRINGER 9/11/14

○ 1. |Z - 1| = 7Z - 13○ 2. $|K - 3| \le 19$ PRE CALCULUS BELLRINGER 9/17/14

Factor the expression completely.

- **1.** $x^2 5x 24$
- **2.** $3x^3 + 6x^2 4x 8$
- **3.** Simplify $\frac{4n^5 12n^3 + 6n^2}{2n^2}$.
- **4.** Multiply $(2x 1)(3x^2 x + 5)$.

ALGEBRA 2 BELLRINGER WEDNESDAY 9/17/14 & THURSDAY 9/18/14

1. Solve and graph

$$2 < 5 - |x - 17|$$

2.Solve and check for extraneous solutions

$$|3x + 5| - 2x = 3x + 4$$

PRECALCULUS BELLRINGER FRIDAY 9/19/14

Divide.

1. $(2x^5 - 3x^4 + 9x^2 - 7)$ by (2x + 1)**2.** $\frac{3x^3 - 12x^2 + 5x - 18}{x - 4}$

ALGEBRA 2 BELLRINGER 9/22/14

GRAPH: 1. Y = 2X + 4 2. Y = 1/3 X - 2 3. Y = |X - 2|

PRE CAL BELLRINGER 9/23/14

STATE THE POSSIBLE NUMBER OF RATIONAL ROOTS, POSSIBLE POSITIVE AND NEGATIVE ROOTS (DESCARTES) AND THEN FIND ALL ROOTS:

F(X) = 3 - 2 - 24 + 54

ALGEBRA 2 BELLRINGER TUESDAY 9/23/14 & WEDNESDAY 9/24/14

1. GRAPH AND SHADE APPROPRIATELY: Y > 2X + 3 $Y \le -(1/2) X - 2$

2. GRAPH AND SHADE APPROPRIATELY:
Y > 3X - 1
Y ≥ |X + 2|

PRE CALCULUS BELLRINGER WEDNESDAY 10/1/14

- **1**. (9-6i) (4-i)
- **2**. (2 + 3*i*)(3 2*i*)
- **3.** Simplify and write in standard form: $\frac{2i}{i^4}$
- **4.** Write the quotient $\frac{3-i}{1-3i}$ in standard form.
- **5.** Plot the following in the complex plane: -2, 3 i, -i, 1 + i.

ALGEBRA 2 BELLRINGER WEDNESDAY 10/1/14 & THURSDAY 10/2/14

Find each sum.

$$1. \begin{bmatrix} 3 & 5 \\ 2 & 8 \end{bmatrix} + \begin{bmatrix} 3 & 5 \\ 2 & 8 \end{bmatrix} + \begin{bmatrix} 3 & 5 \\ 2 & 8 \end{bmatrix}$$
$$2. \begin{bmatrix} -4 \\ 7 \end{bmatrix} + \begin{bmatrix} -4 \\ 7 \end{bmatrix}$$
$$3. \begin{bmatrix} -1 & 3 & 4 \\ 0 & -2 & -5 \end{bmatrix} + \begin{bmatrix} -1 & 3 & 4 \\ 0 & -2 & -5 \end{bmatrix} + \begin{bmatrix} -1 & 3 & 4 \\ 0 & -2 & -5 \end{bmatrix} + \begin{bmatrix} -1 & 3 & 4 \\ 0 & -2 & -5 \end{bmatrix}$$

PRE CALCULUS BELLRINGER FRIDAY 10/3/14

Find the horizontal and vertical asymptotes and holes in the graph of the function.

1.
$$f(x) = \frac{x^2 - 4x + 3}{-x^2 + 2x + 3}$$

2. $g(x) = \frac{2x^2 - x - 10}{x^2 + 2x - 8}$

Divide.

$$f(x) = \frac{x^2 - 1}{x}$$

$$4. \quad f(x) = \frac{4x^2 + 2x}{x - 2}$$

ALGEBRA 2 BELLRINGER FRIDAY 10/3/14 & MONDAY 10/6/14

nd the inverse of each matrix, if it exists.

$$\mathbf{D} \begin{bmatrix} -2 & 1 & -1 \\ 2 & 0 & 4 \\ 0 & 2 & 5 \end{bmatrix} \quad \mathbf{21.} \begin{bmatrix} 2 & 0 & -1 \\ -1 & -1 & 1 \\ 3 & 2 & 0 \end{bmatrix} \quad \mathbf{22.} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 4 & -2 \\ 3 & -2 & 1 \end{bmatrix} \quad \mathbf{23.} \begin{bmatrix} 1 & 2 & 6 \\ 1 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

				E١	/Al	LUAT	ГЕ Т	HE C	DET	ERI	MIN	۱AI	NT	OF	EA	СН №	1ATF	RIX
	[1	2	3	1	ſ	-1	-2	-3]			1	2	3]	-		-1	2	-3]
a.	1	2	3	1	b.	-3	-2	-1		c.	2	3	1		d.	2	-3	-1
	1	2	3_	J		-1	-2	-3			1	2	3_			-1	2	-3]

ALGEBRA 2 BELLRINGER TUESDAY 10/7/14 & WEDNESDAY 10/8/14

GET OUT YOUR HOMEWORK (PG 371 #1-15 ALL) AND ENTER THEM IN THE CALCULATORS. I WILL TAKE THEM UP IN 15 MINUTES.

PRE CAL BELLRINGER 10/9/14

USE THE BINOMIAL THEOREM TO EXPAND $(^{2}+3)^{6}$

ALGEBRA 2 BELLRINGER THURSDAY 10/9/14 & FRIDAY 10/10/14

MATRIX A REPRESENTS THE AMOUNT OF CLOTHES I PURCHASED AT THE MALL ON 3 DIFFERENT TRIPS. MATRIX B REPRESENTS THE PRICE OF EACH ITEM OF CLOTHING:

$$A = \begin{array}{cccc} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 3 & 3 & 3 \end{array}$$
$$B = \begin{array}{cccc} 15 & 20 \\ 35 & 45 \end{array}$$

FIND THE AMOUNT THAT I SPENT ON EACH TRIP

PRE CAL BELLRINGER MONDAY 10/13/14

- ketch the graphs of $y = x^5$ and $f(x) = x^5 1$ on the same set of axes.
- escribe the right-hand and left-hand behavior of the graph of $f(x) = 3 2x^4$
- ind all the real zeros of the function $f(x) = 2x^4 5x^3 + 2x^2$. Then determine ultiplicity of each zero.
- ketch the graph of $f(x) = x^3 4x$.

SMUGI 10/16/14

1. WRITE THE EQUATION OF THE CIRCLE WITH CENTER (0,-2) AND RADIUS OF 8 IN STANDARD FORM

2. WRITE THE EQUATION OF A PARABOLA WITH a = 2AND A VERTEX OF (-1, 2) AND IS UPSIDE DOWN

ALGEBRA 2 BELLRINGER 10/29/14

1. WRITE THE EQUATION OF THE CIRCLE WITH CENTER (-1,4) AND RADIUS OF 11 IN STANDARD FORM

2. WRITE THE EQUATION OF A PARABOLA WITH a = 3 AND A VERTEX OF (4, -2) AND IS UPSIDE DOWN

ALGEBRA 2 BELLRINGER FRIDAY 10/31/14 & MONDAY 11/3/14

1. WRITE THIS EQUATION OF THIS CIRCLE IN STANDARD FORM IN ORDER TO DETERMINE THE CENTER AND RADIUS. THEN GRAPH THE CIRCLE.

• + =

2. DETERMINE THE CENTER OF THIS ELLIPSE:

$$(+) + (-) = 1$$

3. DETERMINE THE CENTER OF THIS HYPERBOLA:

(+) - (-) = 1

PRE CAL BELLRINGER 10/31/14 HAPPY HALLOWEEN!!!!!

WARM-UP EXERCISES

Evaluate the expression.

1. $\log_7 49$ **3.** $\ln \frac{1}{e^2}$

Simplify the expression.

5. 3²(3^x)

2. log 0.001

4. log₁₆2

ALGEBRA 2 BELLRINGER WEDNESDAY 1. SIMPLIFY/USING EXPONENDRULES1/6/14 2. SIMPLIFY USING EXPONENT RU Condense the expression $\frac{1}{2} \log x - \log (x+1)$ to the logarithm of a single quantity. 3... Expand the expression $\ln \frac{2x}{x^3}$. 4.

ALGEBRA 2 BELLRINGER TUESDAY 11/11/14 & WEDNESDAY 11/12/14

1. IF YOU MOVED A CIRCLE WITH THIS EQUATION: (+) + (-) = UP FOUR UNITS AND LEFT 3 UNITS, WHAT WOULD THE EQUATION OF THIS NEW CIRCLE BE?

(HINT: GRAPH THIS CIRCLE FIRST, THEN MOVE THE CENTER)

2. DESCRIBE WHAT TRANSFORMATIONS TOOK PLACE FROM THE EQUATION OF THIS CONIC SECTION:
f(X) = TO THIS ONE f(X) = (-) +

HINT: WHAT IS THE VERTEX OF THE 1^{ST} ONE? AND THE 2^{ND} ?

3. USE THE INFORMATION PROVIDED TO WRITE THE VERTEX FORM OF THIS PARABOLA: Y = - - + HINT: X = -

4. NOW GRAPH THE PARABOLA FROM #3

ALGEBRA 2 BELLRINGER TUESDAY 11/11/14 & WEDNESDAY 11/12/14 TAKE 2

1. IF YOU MOVED A CIRCLE WITH THIS EQUATION: (-) + (+) = DOWN 5 UNITS AND RIGHT 2 UNITS, WHAT WOULD THE EQUATION OF THIS NEW CIRCLE BE?

2. DESCRIBE WHAT TRANSFORMATIONS TOOK PLACE FROM THE EQUATION OF THIS CONIC SECTION:
f(X) = (-) TO THIS ONE f(X) = -(+) +

3. USE THE INFORMATION PROVIDED TO WRITE THE VERTEX FORM OF THIS PARABOLA: Y = - + +

4. NOW GRAPH THE PARABOLA FROM #3

PRECALCULUS BELLRINGER TUESDAY 11/11/14

1. Use the properties of logs to expand this expression: In

2. Use the properties of logs to condense this expression:
2[lnx - ln(x + 1) - ln(x - 1)]

to simplify this expression:

3. Use the properties

$$\left(\frac{x y^{-\frac{5}{3}} - \frac{-5}{3}}{x y^{-1} \cdot yx}\right)^{-1}$$

PRECALCULUS BELLRINGER THURSDAY 11/13/14

1. USE THE PROPERTIES OF LOGARITHMS TO EXPAND $\cdot \sqrt{}$ THIS EXPRESSION:

2. USE THE PROPERTIES OF LOGARITHMS TO CONDENSE THIS TO A SINGLE LOGARITHM: + (- $\sqrt{}$)

3. USE THE PROPERTIES OF EXPONENTS TO SIMPLIFY:

$$\frac{(ba^3)^2}{a^0b^{\frac{3}{2}} \cdot a^{-\frac{1}{2}}b^{-\frac{3}{2}}}$$

ALGEBRA 2 BELLRINGER THURSDAY 11/13/14 & FRIDAY 11/14/14

1. IF YOU MOVED A CIRCLE WITH THIS EQUATION: (+) + (+) = DOWN 10 UNITS AND RIGHT 6 UNITS, WHAT WOULD THE EQUATION OF THIS NEW CIRCLE BE?

2. DESCRIBE WHAT TRANSFORMATIONS TOOK PLACE FROM THE EQUATION OF THIS CONIC SECTION: f(X) = (+) + TO THIS ONE f(X) = -(-) +

(hint: what is the vertex of the 1st? And the 2nd?)

3. WHICH TRANSFORMATIONS CAN BE PERFORMED ON THE GRAPH OF f(X) = THAT RESULT IN THE GRAPH OF f'(X) = - - -

4. WHAT ARE THE DOMAIN AND RANGE OF BOTH PARABOLAS IN #2?

5. WHAT ARE THE DOMAIN AND RANGE OF BOTH PARABOLAS IN #3?

ALGEBRA 2 BELLRINGER THURSDAY 11/13/14 & FRIDAY 11/14/14 TAKE 2

1. IF YOU MOVED A CIRCLE WITH THIS EQUATION: (-) + (+) = UP 7 UNITS AND LEFT 2 UNITS, WHAT WOULD THE EQUATION OF THIS NEW CIRCLE BE?

- 2. DESCRIBE WHAT TRANSFORMATIONS TOOK PLACE FROM THE EQUATION OF THIS CONIC SECTION:
 f(X) = -() TO THIS ONE f(X) = (+) + 1
- 3. WHICH TRANSFORMATIONS CAN BE PERFORMED ON THE GRAPH OF f(X) = THAT RESULT IN THE GRAPH OF f'(X) = - -
- 4. WHAT ARE THE DOMAIN AND RANGE OF BOTH PARABOLAS IN #2?
- 5. WHAT ARE THE DOMAIN AND RANGE OF BOTH PARABOLAS IN #3?

ALGEBRA 2 BELLRINGER MONDAY 11/17/14 & WEDNESDAY 11/19/14

1. IF YOU MOVED A CIRCLE WITH THIS EQUATION: (-) + (+) = UP 3 UNITS AND RIGHT 10 UNITS, WHAT WOULD THE EQUATION OF THIS NEW CIRCLE BE?

2. DESCRIBE WHAT TRANSFORMATIONS TOOK PLACE FROM THE EQUATION OF THIS CONIC SECTION:
f(X) = - TO THIS ONE f(X) = (+) + 11

3. WHICH TRANSFORMATIONS CAN BE PERFORMED ON THE GRAPH OF f(X) = (-) + THAT RESULT IN THE GRAPH OF f'(X) = - - -

4. WHAT ARE THE DOMAIN AND RANGE OF THIS PARABOLA?
 f(X) = (-) +1

PRECALCULUS BELLRINGER THURSDAY 11/20/14

1. In a research experiment, a population of fruit flies is increasing according to the law of exponential growth. y = After 2 days there are 100 flies, and after 4 days there are 300 flies. How many flies will there be after 5 days?

(hint: let y be the number of flies at time, x. Solve the 1st one – then plug into the second one to solve for a)

2. USE THE PROPERTIES OF EXPONENTS TO SIMPLIFY:

$$\frac{u^2 v^2 \cdot u^0 v^{\frac{7}{4}}}{\left(u^{-2}\right)^{\frac{1}{3}}}$$

FIND (F + G)(X)
 FIND (F - G)(X)
 FIND (F*G)(X)
 FIND (-)()
 FIND (F o G)(X)
 FIND (G o F)(X)

F(X) = 2X + 1G(X) = 3X - 2

ALGEBRA 2 BELLRINGER MONDAY 11/24/14 & TUESDAY 11/25/14 FIND (F + G)(X)
 FIND (F - G)(X)
 FIND (F*G)(X)
 FIND (-)()
 FIND (F o G)(X)
 FIND (G o F)(X)

F(X) = X - 6G(X) = 2X + 5

ALGEBRA 2 BELLRINGER MONDAY 12/1/14 & TUESDAY 12/2/14 FIND (F + G)(X)
 FIND (F - G)(X)
 FIND (F*G)(X)
 FIND (-)()
 FIND (F o G)(X)
 FIND (G o F)(-2)

F(X) = 2X + 1G(X) = X - 2

ALGEBRA 2 BELLRINGER WEDNESDAY 12/3/14 & THURSDAY 12/4/14

ALGEBRA 2 BELLRINGER FRIDAY 12/5/14 & MONDAY 12/8/14

- 1. DETERMINE THE DOMAIN AND RANGE: = (+) +
- 2. WHAT IS THE VERTEX OF THE EQUATION IN #1?
- **3. WHAT SHAPE IS THE GRAPH OF THE EQUATION IN #1?**
- 4. IF YOU REFLECTED THIS EQUATION ACROSS THE Y-AXIS, WHAT WOULD THE VERTEX BE?

ALGEBRA 2 BELLRINGER TUESDAY 12/9/14 & WEDNESDAY 12/10/14

O WHAT ARE THE CENTER AND THE RADIUS OF THIS CIRCLE?

 $x^2 + y^2 - 22x + 10y + 130 = 0$