AP Calculus – Final Review Sheet

When you see the words

This is what you think of doing

Find roots Set function = 0 factor

1.	Find the zeros	Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
2.	Show that $f(x)$ is even	Show that $f(-x) = f(x)$
	()	symmetric to y-axis
3.	Show that $f(x)$ is odd	Show that $f(-x) = -f(x)$ OR $f(x) = -f(-x)$
		symmetric around the origin
4.	Show that $\lim_{x \to a} f(x)$ exists	Show that $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$; exists and are equal
5.	Find $\lim_{x\to a} f(x)$, calculator allowed	Use TABLE [ASK], find y values for x-values close to a from left and right
6.	Find $\lim_{x\to a} f(x)$, no calculator	Substitute $x = a$
	$x \rightarrow a$	1) limit is value if $\frac{b}{c}$, incl. $\frac{0}{c} = 0; c \neq 0$
		2) DNE for $\frac{b}{0}$
		3) $\frac{0}{0}$ DO MORE WORK!
		a) rationalize radicals
		b) simplify complex fractions
		c) factor/reduce
		d) known trig limits
		$1. \lim_{x\to 0} \frac{\sin x}{x} = 1$
		$2. \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$
		e) piece-wise fcn: check if RH = LH at break
7.	Find $\lim_{x\to\infty} f(x)$, calculator allowed	Use TABLE [ASK], find y values for large values of x, i.e. 99999999999
8.	Find $\lim_{x\to\infty} f(x)$, no calculator	Ratios of rates of changes
	$x \rightarrow \infty$	$1)\frac{fast}{slow} = DNE$
		$2) \frac{slow}{fast} = 0$
		3) $\frac{same}{same} = ratio$ of coefficients
9.	Find horizontal asymptotes of $f(x)$	Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$
10.	Find vertical asymptotes of $f(x)$	Find where $\lim_{x \to a^{\pm}} f(x) = \pm \infty$
		1) Factor/reduce $f(x)$ and set denominator = 0
		2) $\ln x$ has VA at $x = 0$

11.	Find domain of $f(x)$	Assume domain is $(-\infty,\infty)$. Restrictable domains: denominators $\neq 0$, square roots of only non-negative numbers, log or ln of only positive numbers, real-world constraints
12.	Show that $f(x)$ is continuous	
		Show that 1) $\lim_{x \to a} f(x)$ exists $(\lim_{x \to a^{-}} f(x)) = \lim_{x \to a^{+}} f(x)$) 2) $f(a)$ exists 3) $\lim_{x \to a} f(x) = f(a)$ Find derivative $f'(a) = m$
13.	Find the slope of the tangent line to $f(x)$ at $x = a$.	Find derivative $f'(a) = m$
14.	Find equation of the line tangent to $f(x)$ at	f'(a) = m and use $y - b = m(x - a)$
	(a,b)	sometimes need to find $b = f(a)$
15.	Find equation of the line normal (perpendicular) to $f(x)$ at (a,b)	Same as above but $m = \frac{-1}{f'(a)}$
16.	Find the average rate of change of $f(x)$ on $[a,b]$	Find $\frac{f(b)-f(a)}{b-a}$
17.	Show that there exists a c in $[a,b]$ such that	Intermediate Value Theorem (IVT)
	f(c) = n	Confirm that $f(x)$ is continuous on $[a,b]$, then show that $f(a) \le n \le f(b)$.
18.	Find the interval where $f(x)$ is increasing	Find $f'(x)$, set both numerator and denominator to zero
		to find critical points, make sign chart of $f'(x)$ and determine where $f'(x)$ is positive.
19.	Find interval where the slope of $f(x)$ is increasing	Find the derivative of $f'(x) = f''(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f''(x)$ and determine where $f''(x)$ is positive.
20.	Find instantaneous rate of change of $f(x)$ at a	Find $f'(a)$
21.	Given $s(t)$ (position function), find $v(t)$	Find $v(t) = s'(t)$
22.	Find $f'(x)$ by the limit definition Frequently asked backwards	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ or}$ $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ Find $\frac{1}{b - a} \int_{a}^{b} v(t) dt \text{ OR } \frac{s(b) - s(a)}{b - a} \text{ depending on if you}$
23.	Find the average velocity of a particle on $[a,b]$	Find $\frac{1}{b-a} \int_{a}^{b} v(t) dt$ OR $\frac{s(b)-s(a)}{b-a}$ depending on if you know $v(t)$ or $s(t)$
24.	Given $v(t)$, determine if a particle is	Find $v(k)$ and $a(k)$. If signs match, the particle is
	speeding up at $t = k$	speeding up; if different signs, then the particle is slowing down.
25.	Given a graph of $f'(x)$, find where $f(x)$ is increasing	Determine where $f'(x)$ is positive (above the <i>x</i> -axis.)

26.	Given a table of x and $f(x)$ on selected values between a and b , estimate $f'(c)$ where c is between a and b .	Straddle c, using a value, k, greater than c and a value, h, less than c. so $f'(c) \approx \frac{f(k) - f(h)}{k - h}$
27.	Given a graph of $f'(x)$, find where $f(x)$ has a relative maximum.	Identify where $f'(x) = 0$ crosses the x-axis from above to below OR where $f'(x)$ is discontinuous and jumps from above to below the x-axis.
28.	Given a graph of $f'(x)$, find where $f(x)$ is concave down.	Identify where $f'(x)$ is decreasing.
29.	Given a graph of $f'(x)$, find where $f(x)$ has point(s) of inflection.	Identify where $f'(x)$ changes from increasing to decreasing or vice versa.
30.	Show that a piecewise function is differentiable at the point <i>a</i> where the function rule splits	First, be sure that the function is continuous at $x = a$ by evaluating each function at $x = a$. Then take the derivative of each piece and show that $\lim_{x \to a^-} f'(x) = \lim_{x \to a^+} f'(x)$
31.	Given a graph of $f(x)$ and $h(x) = f^{-1}(x)$, find $h'(a)$	Find the point where a is the y-value on $f(x)$, sketch a tangent line and estimate $f'(b)$ at the point, then $h'(a) = \frac{1}{f'(b)}$
32.	Given the equation for $f(x)$ and $h(x) = f^{-1}(x)$, find $h'(a)$	Understand that the point (a,b) is on $h(x)$ so the point (b,a) is on $f(x)$. So find b where $f(b) = a$ $h'(a) = \frac{1}{f'(b)}$
33.	Given the equation for $f(x)$, find its derivative algebraically.	1) know product/quotient/chain rules 2) know derivatives of basic functions a. Power Rule: polynomials, radicals, rationals b. e^x ; b^x c. $\ln x$; $\log_b x$ d. $\sin x$; $\cos x$; $\tan x$ e. $\arcsin x$; $\arccos x$; $\arctan x$; $\sin^{-1} x$; etc
34.	Given a relation of x and y , find $\frac{dy}{dx}$ algebraically.	Implicit Differentiation Find the derivative of each term, using product/quotient/chain appropriately, especially, chain rule: every derivative of y is multiplied by $\frac{dy}{dx}$; then group all $\frac{dy}{dx}$ terms on one side; factor out $\frac{dy}{dx}$ and solve.
35.	Find the derivative of $f(g(x))$	Chain Rule $f'(g(x)) \cdot g'(x)$

36.	Find the minimum value of a function on	Solve $f'(x) = 0$ or DNE, make a sign chart, find sign
	[a,b]	change from negative to positive for relative minimums and evaluate those candidates along with endpoints back into $f(x)$ and choose the smallest. NOTE: be careful to confirm that $f(x)$ exists for any x-values that make $f'(x)$ DNE.
37.	Find the minimum slope of a function on	Solve $f''(x) = 0$ or DNE, make a sign chart, find sign
	[a,b]	change from negative to positive for relative minimums and evaluate those candidates along with endpoints back into $f'(x)$ and choose the smallest. NOTE: be careful to
		confirm that $f(x)$ exists for any x-values that make $f''(x)$ DNE.
38.	Find critical values	Express $f'(x)$ as a fraction and solve for numerator and
20	First the shortest manifest of C()	denominator each equal to zero.
39.	Find the absolute maximum of $f(x)$	Solve $f'(x) = 0$ or DNE, make a sign chart, find sign
		change from positive to negative for relative maximums and evaluate those candidates into $f(x)$, also find
		$\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$; choose the largest.
40.	Show that there exists a c in $[a,b]$ such that	Rolle's Theorem
	f'(c) = 0	Confirm that f is continuous and differentiable on the interval. Find k and j in $[a,b]$ such that $f(k) = f(j)$,
		then there is some c in $[k, j]$ such that $f'(c) = 0$.
41.	Show that there exists a c in $[a,b]$ such that	Mean Value Theorem
	f'(c) = m	Confirm that f is continuous and differentiable on the interval. Find k and j in $[a,b]$ such that
		$m = \frac{f(k) - f(j)}{k - j}$., then there is some c in $[k, j]$ such
12		that $f'(c) = m$.
42.	Find range of $f(x)$ on $[a,b]$	Use max/min techniques to find values at relative max/mins. Also compare $f(a)$ and $f(b)$ (endpoints)
43.	Find range of $f(x)$ on $(-\infty,\infty)$	Use max/min techniques to find values at relative max/mins. Also compare $\lim_{x\to\pm\infty} f(x)$.
44.	Find the locations of relative extrema of	Second Derivative Test
	f(x) given both $f'(x)$ and $f''(x)$.	Find where $f'(x) = 0$ OR DNE then check the value of
	Particularly useful for relations of x and y where finding a change in sign would be difficult.	f''(x) there. If $f''(x)$ is positive, $f(x)$ has a relative minimum. If $f''(x)$ is negative, $f(x)$ has a relative maximum.

45.	Find inflection points of $f(x)$ algebraically.	Express $f''(x)$ as a fraction and set both numerator and denominator equal to zero. Make sign chart of $f''(x)$ to find where $f''(x)$ changes sign. (+ to – or – to +) NOTE: be careful to confirm that $f(x)$ exists for any x-values that make $f''(x)$ DNE.
46.	Show that the line $y = mx + b$ is tangent to $f(x)$ at (x_1, y_1)	Two relationships are required: same slope and point of intersection. Check that $m = f'(x_1)$ and that (x_1, y_1) is on both $f(x)$ and the tangent line.
47.	Find any horizontal tangent line(s) to $f(x)$ or a relation of x and y .	Write $\frac{dy}{dx}$ as a fraction. Set the numerator equal to zero. NOTE: be careful to confirm that any values are on the curve. Equation of tangent line is $y = b$. May have to find b.
48.	Find any vertical tangent line(s) to $f(x)$ or a relation of x and y .	Write $\frac{dy}{dx}$ as a fraction. Set the denominator equal to zero. NOTE: be careful to confirm that any values are on the curve. Equation of tangent line is $x = a$. May have to find a.
49.	Approximate the value of $f(0.1)$ by using the tangent line to f at $x = 0$	Find the equation of the tangent line to f using $y - y_1 = m(x - x_1)$ where $m = f'(0)$ and the point is $(0, f(0))$. Then plug in 0.1 into this line; be sure to use an approximate (\approx) sign. Alternative linearization formula: $y = f'(a)(x-a) + f(a)$
50.	Find rates of change for volume problems.	Write the volume formula. Find $\frac{dV}{dt}$. Careful about product/ chain rules. Watch positive (increasing measure)/negative (decreasing measure) signs for rates.
51.	Find rates of change for Pythagorean Theorem problems.	$x^{2} + y^{2} = z^{2}$ $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt}$; can reduce 2's Watch positive (increasing distance)/negative (decreasing distance) signs for rates.
52.	Find the average value of $f(x)$ on $[a,b]$	Find $\frac{1}{b-a} \int_{a}^{b} f(x) dx$
53.	Find the average rate of change of $f(x)$ on $[a,b]$	$\frac{f(b) - f(a)}{b - a}$
54.	Given $v(t)$, find the total distance a particle travels on $[a,b]$	Find $\int_{a}^{b} v(t) dt$
55.	Given $v(t)$, find the change in position a particle travels on $[a,b]$	Find $\int_{a}^{b} v(t)dt$

56.	Given $v(t)$ and initial position of a particle, find the position at $t = a$.	Find $\int_{0}^{a} v(t)dt + s(0)$
		Read carefully: starts at rest at the origin means $s(0) = 0$ and $v(0) = 0$
57.	$\frac{d}{dx}\int_{a}^{x}f(t)dt =$	f(x)
58.	$\frac{d}{dx} \int_{a}^{x} f(t) dt =$ $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$	f(g(x))g'(x)
59.	Find area using left Riemann sums	$A = base[x_0 + x_1 + x_2 + + x_{n-1}]$ Note: sketch a number line to visualize
60.	Find area using right Riemann sums	$A = base[x_1 + x_2 + x_3 + + x_n]$ Note: sketch a number line to visualize
61.	Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles. Note: sketch a number line to visualize
62.	Find area using trapezoids	$A = \frac{base}{2} \left[x_0 + 2x_1 + 2x_2 + + 2x_{n-1} + x_n \right]$ This formula only works when the base (width) is the same. Also trapezoid area is the average of LH and RH. If different widths, you have to do individual trapezoids, $A = \frac{1}{2}h(b_1 + b_2)$
63.	Describe how you can tell if rectangle or trapezoid approximations over- or underestimate area.	Overestimate area: LH for decreasing; RH for increasing; and trapezoids for concave up Underestimate area: LH for increasing; RH for decreasing and trapezoids for concave down DRAW A PICTURE with 2 shapes.
64.	Given $\int_a^b f(x) dx$, find $\int_a^b [f(x)+k] dx$	$\int_{a}^{b} \left[f(x) + k \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx = \int_{a}^{b} f(x) dx + k(b - a)$ Use the given points and plug them into $\frac{dy}{dx}$, drawing
65.	Given $\frac{dy}{dx}$, draw a slope field	Use the given points and plug them into $\frac{dy}{dx}$, drawing little lines with the indicated slopes at the points.
66.	y is increasing proportionally to y	$\frac{dy}{dt} = ky \text{ translating to } y = Ae^{kt}$
67.	Solve the differential equation	Separate the variables $-x$ on one side, y on the other. The dx and dy must all be upstairs. Integrate each side, add C. Find C before solving for y,[unless ln y , then solve for y first and find A]. When solving for y, choose $+$ or $-$ (not both), solution will be a continuous function passing through the initial value.
68.	Find the volume given a base bounded by $f(x)$ and $g(x)$ with $f(x) > g(x)$ and cross sections perpendicular to the <i>x</i> -axis are squares	The distance between the curves is the base of your square. So the volume is $\int_{a}^{b} (f(x) - g(x))^{2} dx$

69.	Given the value of $F(a)$ and $F'(x) = f(x)$, find $F(b)$	Usually, this problem contains an anti-derivative you cannot do. Utilize the fact that if $F(x)$ is the anti-
		derivative of f, then $\int_{a}^{b} f(x)dx = F(b) - F(a)$. So solve
		for $F(b)$ using the calculator to find the definite integral,
		$F(b) = \int_{a}^{b} f(x)dx + F(a)$
70.	Meaning of $\int_{a}^{b} f(t) dt$	The accumulation function: net (total if $f(x)$ is positive) amount of y-units for the function $f(x)$ beginning at $x = a$ and ending at $x = b$.
71.	Given $v(t)$ and $s(0)$, find the greatest	Solve $v(t) = 0$ OR DNE. Then integrate $v(t)$ adding
	distance from the origin of a particle on $[a,b]$	s(0) to find $s(t)$. Finally, compare $s(each candidate)$ and $s(each endpoint)$. Choose greatest distance (it might be negative!)
72.	Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $[0,b]$, find	$g + \int_{0}^{m} (F(t) - E(t))dt$
	a) the amount of water in the tank at <i>m</i> minutes	
73.	b) the rate the water amount is changing at <i>m</i>	$\frac{d}{dt}\int_{0}^{m} (F(t)-E(t))dt = F(m)-E(m)$
74.	c) the time when the water is at a minimum	Solve $F(t) - E(t) = 0$ to find candidates, evaluate
	minimum	candidates and endpoints as $x = a$ in
		$g + \int_{0}^{\infty} (F(t) - E(t)) dt$, choose the minimum value
75.	Find the area between $f(x)$ and $g(x)$ with $f(x) > g(x)$ on $[a,b]$	$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx$
76.	Find the volume of the area between $f(x)$ and $g(x)$ with $f(x) > g(x)$, rotated about the x-axis.	$V = \pi \int_{a}^{b} \left[\left(f(x) \right)^{2} - \left(g(x) \right)^{2} \right] dx$
77.	Given $v(t)$ and $s(0)$, find $s(t)$	$s(t) = \int_0^t v(x) dx + s(0)$
78.	Find the line $x = c$ that divides the area under $f(x)$ on $[a,b]$ to two equal areas	$\frac{1}{2}\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx$
	under $f(x)$ on $[a,b]$ to two equal areas	$2\frac{1}{a}$ Note: this approach is usually easier to solve than
		1
		$\int_{a}^{c} f(x)dx = \int_{c}^{b} f(x)dx$

79.	Find the volume given a base bounded by
	f(x) and $g(x)$ with $f(x) > g(x)$ and
	cross sections perpendicular to the x-axis are
	semi-circles

The distance between the curves is the **diameter** of your circle. So the volume is
$$\frac{1}{2}\pi \int_{a}^{b} \left(\frac{f(x)-g(x)}{2}\right)^{2} dx$$