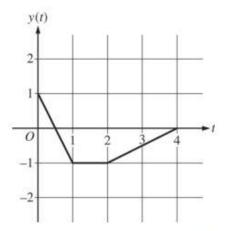
AP Calculus BC 2015, 2016 Released BC Only FRQ

- 2. At time $t \ge 0$, a particle moving along a curve in the xy-plane has position (x(t), y(t)) with velocity vector $v(t) = (\cos(t^2), e^{0.5t})$. At t = 1, the particle is at the point (3, 5).
 - (a) Find the x-coordinate of the position of the particle at time t = 2.
 - (b) For 0 < t < 1, there is a point on the curve at which the line tangent to the curve has a slope of 2. At what time is the object at that point?
 - (c) Find the time at which the speed of the particle is 3.
 - (d) Find the total distance traveled by the particle from time t = 0 to time t = 1.
- 5. Consider the function $f(x) = \frac{1}{x^2 kx}$, where k is a nonzero constant. The derivative of f is given by

$$f'(x) = \frac{k - 2x}{\left(x^2 - kx\right)^2}.$$

- (a) Let k = 3, so that $f(x) = \frac{1}{x^2 3x}$. Write an equation for the line tangent to the graph of f at the point whose x-coordinate is 4.
- (b) Let k = 4, so that $f(x) = \frac{1}{x^2 4x}$. Determine whether f has a relative minimum, a relative maximum, or neither at x = 2. Justify your answer.
- (c) Find the value of k for which f has a critical point at x = -5.
- (d) Let k = 6, so that $f(x) = \frac{1}{x^2 6x}$. Find the partial fraction decomposition for the function f. Find $\int f(x) dx$.
- 6. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^n = x \frac{3}{2}x^2 + 3x^3 \dots + \frac{(-3)^{n-1}}{n}x^n + \dots$ and converges to f(x) for |x| < R, where R is the radius of convergence of the Maclaurin series.
 - (a) Use the ratio test to find R.
 - (b) Write the first four nonzero terms of the Maclaurin series for f', the derivative of f. Express f' as a rational function for |x| < R.</p>
 - (c) Write the first four nonzero terms of the Maclaurin series for e^x . Use the Maclaurin series for e^x to write the third-degree Taylor polynomial for $g(x) = e^x f(x)$ about x = 0.



- 2. At time *t*, the position of a particle moving in the *xy*-plane is given by the parametric functions (x(t), y(t)), where $\frac{dx}{dt} = t^2 + \sin(3t^2)$. The graph of *y*, consisting of three line segments, is shown in the figure above. At t = 0, the particle is at position (5, 1).
 - (a) Find the position of the particle at t = 3.
 - (b) Find the slope of the line tangent to the path of the particle at t = 3.
 - (c) Find the speed of the particle at t = 3.
 - (d) Find the total distance traveled by the particle from t = 0 to t = 2.
- 4. Consider the differential equation $\frac{dy}{dx} = x^2 \frac{1}{2}y$.
 - (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
 - (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2, 8). Does the graph of f have a relative minimum, a relative maximum, or neither at the point (-2, 8)? Justify your answer.
 - (c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2. Find $\lim_{x \to -1} \left(\frac{g(x) 2}{3(x+1)^2}\right)$. Show the work that leads to your answer.
 - (d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate h(1).
- 6. The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the *n*th derivative of f at x = 1 is given by $f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$ for $n \ge 2$.
 - (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
 - (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
 - (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
 - (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).