Virtual Private Networks

Fred Baker

What is a VPN

Public networks are used to move information between trusted network segments using

A VIRTUAL Private Network replaces all of the above utilizing the public Internet Performance and availability depend on your ISP and the Internet

Why?

T1 connections between San Francisco and New York City : \$10,000/mo Dial-in access from Denver and Chicago to San Francisco : \$600/mo

HomeNet to the office.

VPN Types

Use	Application	Alternative To	Benefits	
Remote Access VPN	Remote Connectivity	Dedicated Dial ISDN	Ubiquitous Access LowerCost	
IntranetVPN	Site-to-Site Internal Connectivity	Leased Line	Extend Connectivity LowerCost	
ExtranetVPN	Business-to- Business External Connectivity	Fax, Mail, EDI	Facilitates E-Commerce	

VPN Implementations

The Fundamental Building Block of VPNs!

What a VPN needs

- VPNs must be encrypted
 - so no one can read it
- VPNs must be authenticated
- No one outside the VPN can alter the VPN
- All parties to the VPN must agree on the security properties

VPN Components

Parts of a VPN

VPN works via crypto/Encapsulation

- transmission
- un-encapsulation

Encryption and Decryption Clear-Text

Basic Crypto – Keys are key

Components Keys Mathematical algorithms Message digest

Types Secret (symmetric) Public (asymmetric) PKI Public Key Infrastructure

International politics

2 Kinds Key Systems

Secret Key -Symmetric

Same key used by sender and receiver

Key used to encrypt and decrypt data

Rely on users to protect the key

Very fast

Used since the 1970 s

Most popular DES (Data Encryption Stan

Most widely used today

Public Key -Asymmetric

Two keys public and private

Public key known

Private key kept confidential by owner

Slower than symmetric key

More complex - key distribution

Most popular RSA

Symmetric Key Algorithms

- DES—56-bit key
- Triple-DES—encrypt, decrypt, encrypt, using either two or three 56-bit keys
- IDEA—128-bit key
- Blowfish—variable-length key, up to 448 bits

Public Key Encryption Example

- Alice wants to send Bob encrypted data
 - Alice gets Bob's public key
 - Alice encrypts the data with Bob's public key
 - Alice sends the encrypted data to Bob
- Bob decrypts the data with his private key

PKI vs Symmetric Key

- PKI easier as you don't have to manage keys on a per user basis
- But MUCH more compute intensive (up to 1000 times faster)
- Many systems do a combination I.e. PGP
 - -Use PKI to send a symmetric key
 - -Then use the symmetric key to crypto the data

Using Crypto in real life

PKI to send Private Keys

PKI Certs a way to authenticate

Prove the user cert Certificates of authority

Certificate Authority (CA) verifies identity CA signs digital certificate containing public key Certificate equivalent to an ID card

Digital Signature to verify data not changed in transit

PKI the full picture

Where you do Crypto

Technologies

PPTP - Point to Point Tunneling Protocol - Layer 2 - Multiprotocol L2TP/IPSec - Layer 2 Tunneling Protocol - Multiprotocol - Encryption and Authentication IPSec - IP Security - Layer 3 - IP protocol - Encryption and Authentication SSL - Secure Sockets Laver - Laver 6/7 - Application - Encryption and Authentication

Application Layer: SSL

Transport Layer: IPSEC

- A standard
- is composed of:
 - Diffie-Huffman key exchange
 - PKI for the DH exchanges
 - DES and other bulk encryption
 - Hash to authenticate packets
 - Digital Certificates to validate keys

Transport Layer: IPSEC VPNs 3 parts

Builds the tunnel

Integrated security technologies

- ESP = Encapsulating Security Payloads encrypts IP datagram DES and 3DES are most common encryption mechanisms used May provide confidentiality, authentication, integrity, non-repudiation, replay protection, and traffic analysis protection Does everything AH does
- AH = Authentication Header validates sender and indicates data integrity MD5 and SHA1 are most common authentication mechanisms used Provides integrity and authentication but not confidentiality
- IKE Internet Key Exchange (aka:ISAKMP/Oakley) Protocol

Tunnel vs Transport

- Transport
 - Implemented by the end point systems
 - Real address to real address
 - Cannot 'go through' other networks
- Tunnel
 - Encapsulation of the original IP packet in another packet
 - Can 'go through' other networks
 - End systems need not support this
 - Often PC to a box on the 'inside'

Diffie-Hellman Key Exchange (1976)

• By openly exchanging nonsecret numbers, two people can compute a unique shared secret number known only to them

Modular Exponentiation Both g and p Are Shared and Well-Known

- Generator, g
- Modulus (prime), p
- **Y** = **g**^X mod **p**

2^237276162930753723 mod 79927397984597926572651

Security Association is the agreement on how to secure

create the ISAKMP SA (Internet Security Association Key Management Protocol)

Negotiate IKE parameters Exchange public keys Exchange certificates and check Certificate Revocation List (CRL) Exchange signed data for authentication

IPSEC Key Exchange (IKE)

Manual Key Management	Two parties negotiate
Administrator sets up keys at both	ends Encryption algorithm
Not scalable	Hash digests
Automated Key Managment	Authentication
On-demand creation of keys	Key strength
Complex to configure	Security association lifetimes
Scalable	-

IKE allows scale as I do not need to hard code passwords for each pair

Ensure confidential communications in an unsecured network Also known as the Key Management Nightmare !!!!!

Link Layer: L2TP for VPDN (Vir Pvt Dial Net)

IPSec IKE negotiation Establish IPSec ESP for L2TP UDP port 1701 L2TP tunnel setup, management over IPSec User authentication to domain

PPTP: Free from Microsoft

PPTP

PPoE is Point-Point protocol over Ethernet

Single tunnel between end-points : single device support (GRE = generic routing encapsulation)

6 bytes of overhead when compression used

No tunnel authentication

With RADIUS server supports authentication and accounting

CHAP V2 fixes password, masquerading, and encryption weakness

40 or 128 bit RC4 packet encryption

PPTP: Security

CHAP V2 Authentication with 40 or 128 bit RC4 encryption

VPN Comparisons

	L2TP/IPSec	IPSec	PPTP	SSL
Mode	Client/server	Host-host	Client/server	Client/server
Layer	2	3	2	7
Protocols	Multiprotocol	IP	Multiprotocol	IP
Security				
User Authentication	РКІ		РКІ	Log-in
Machine Authenticatio	1	PKI		
Packet Authentication		х	х	
Packet Encryption	DES, 3DES, PGP	DES, 3DES	х	
Key Management	IKE	IKE	РКІ	Private Key
	*Provided outside of specification			

So why have a private network: QOS not fully cooked

- Very dependent on your ISP
- Real hard to do across ISPs
- So no guarantee of performance

Other Issues

ISPs that change IP address in flight

Like Nat

Can NAT work with all VPN protocols?

Need to access IP and TCP checksums, so these cannot be encrypted

You loose end-end traceability

VPNs make NAT very complex and therefore a vulnerable part of your network

New solutions coming out of IETF to solve several of these issues Will your supplier support these.....and how fast!

Wireless: a new big driver, WAS (Work At Starbucks)

An access point (AP) is a shared device Remember the performance issues of shared hubs Bridges and other devices allow for interconnection Protocols and applications work seamlessly

Many security protocols, depends on deployer

SSID - Set Service ID

MAC ID - Media Access Control ID

WEP - Wired Equivalent Privacy

802.1x - IEEE 802.1x standard

VPNs - Virtual Private Networks

VLANs - Virtual Local Area Networks

VPN means I don't care how you connect

Scalable authentication and encryption solution Requires end user configuration and VPN software Requires end user knowledge of VPN technology User re-authenticates if roaming

Example

Secondary Tunnel

So what could be wrong?

- VPN clients hit the network stack
- May not play well with personal firewalls
- Or other software
- May not need full access to the target network just encrypted access

One answer: clientless VPN

- Use SSL as the transport protocol to an appliance
- Can add NT authentication to the appliance
- Clientless mode: Use web enabled applications over the Internet, the appliance SSLifies web sites
- Java Applet: Use an downloadable applet to send traffic over SSL, get more support for applications.
- Can work well if you want to have encrypted web based apps without redoing the application
 - to use SSL you need certs and have to change EVERY link to HTTPs
 - Also big hit on the server cpu

Summary: VPNs

- Very big in the work access space
 - Exploit High speed
- Wireless
 - in the office
 - public 'hot spots' like Borders
- Replaces direct dial into the work network
- Replace dedicated Business partners
- May replace the corporate WAN