
Java Computer Programming

Bulgarian Solitaire

In this assignment, you will model the game of Bulgarian Solitaire. The game starts with 45

cards. (They need not be playing cards. Unmarked index cards work just as well.) Randomly

divide them into some number of piles of random size. For example, you might start with piles of

size 20, 5, 1, 9, and 10. In each round, you take one card from each pile, forming a new pile with

these cards. For example, the sample starting configuration would be transformed into piles of

size 19, 4, 8, 10, and 5. The solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9,

in some order. (It can be shown that you always end up with such a configuration.)

In your program, produce a random starting configuration and print it. Then keep applying the

solitaire step and print the result. Stop when the solitaire final configuration is reached.

Object class Pile

 Instance field – int numofcards - number of cards in this pile

 Parameterized Constructor – pass in the number of cards for this pile

 Methods – getter for number of cards

 Void method to deduct one card

Test Class

 Create arraylist of Pile

 Randomly create piles of cards totaling 45 cards and place into array list

 Display the initial piles with counts

 Start simulation – while not done

1. Deduct a “card” from each pile

2. Create a new pile from the number deducted from each existing piles – place in

front of arraylist

3. Check to remove any empty piles (backwards?)

4. Check to see if finished

 Display final list and number of iterations of simulation

Sample run:

13 4 6 6 10 6

 6 12 3 5 5 9 5

 7 5 11 2 4 4 8 4

 8 6 4 10 1 3 3 7 3

 9 7 5 3 9 2 2 6 2

 9 8 6 4 2 8 1 1 5 1

 10 8 7 5 3 1 7 4

 8 9 7 6 4 2 6 3

 8 7 8 6 5 3 1 5 2

 9 7 6 7 5 4 2 4 1

 9 8 6 5 6 4 3 1 3

 9 8 7 5 4 5 3 2 2

 9 8 7 6 4 3 4 2 1 1

……….

 9 8 7 6 4 5 3 2 1

 9 8 7 6 5 3 4 2 1

 9 8 7 6 5 4 2 3 1

 9 8 7 6 5 4 3 1 2

 9 8 7 6 5 4 3 2 1

Number of iterations: 52

