Chapter 4

Carbon and the Molecular Diversity of Life

Organic Chemistry

- Organic Chemistry
 - The study of carbon-containing compounds
- Cells are composed of 70 95% water
 - Most of the rest is carbon-based compounds
- Organic compounds
 - Can arise only in living organisms
 - Example: CH₄
- Inorganic compounds
 - Found in the nonliving world
 - Example: NaCl

(Brief) History of Organic Chem

- Vitalism:
 - Belief in a life force outside the jurisdiction of physical and chemical laws
- Stanley Miller, 1953
 - Performed an experiment that demonstrated the spontaneous synthesis of organic compounds
- Mechanism:
 - The belief that all natural phenomena, including the processes of life, are governed by physical and chemical laws

Carbon: The Molecule

- Carbon has 4 valence electrons
 - Therefore, it can form 4 covalent bonds

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Carbon Skeleton Diversity

 Organic molecules are diverse in large part due to the variation in carbon skeletons

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Isomers

Isomers

- Compounds that have the same molecular formula but different structures and therefore different properties
- Structural Isomers
- Geometric Isomers
- Enantiomers

Structural Isomers

 Differ in covalent arrangements of their atoms

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Geometric Isomers

- All of the covalent partnerships are the same, but the spatial arrangement is different
- Due to double bonds

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Enantiomers

- Molecules that are mirror-images of each other
- Left- and right-handed
- Thalidomide:
 - Sedative vs. birth defects

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

- Functional groups also make organic molecules diverse
- Each functional group has its own distinctive properties

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

• Hydroxyl Group:

R–OH

Polar

- Carbonyl Group:
 - C=O
 - Aldehyde:

double bond is at the end of the molecule

Ketone:

ouble bond is in the middle of the molecule

Carboxyl Group

- Acidic
- R-C=O
 - OH
- Amino Group
 - Basic
 - R–NH₂

- Sulfhydryl Group:
 - SH
 - Helps stabilize the structure of some proteins
- Phosphate Group:
 - H₂PO₄⁻
 - Plays an important role in the transfer of energy