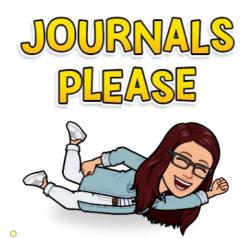
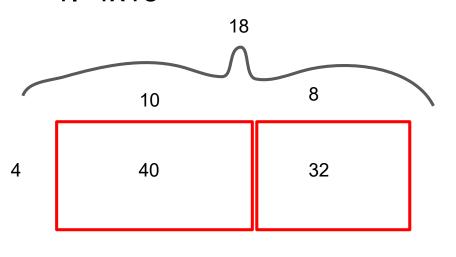
Unit 7 Module 3 Fractions as Parts of a Whole and Parts of a Set Session 1


Problem String-The Associative Property Problems and Investigations-Fractions on a Ruler

Getting Ready-

- Construction paper (see preparation)
- Rulers, scissors, glue sticks
- Piece of chart paper
- Student journals



- Multiply using the associative property
- Identify equivalent fractions by comparing their sizes

The Associative Property Part 1 Date:

1. 4x18

$$4x18 = (4x) + (4x)$$

2. 4x80

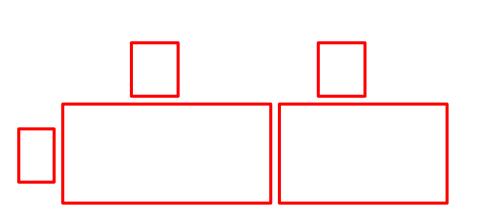
 $4 \times (8 \times 10) =$

Or?

3. 4x800

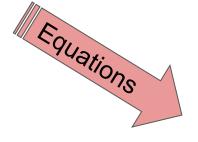
4x (8x10)=

OR



Can anyone explain the associative property?

The Associative Property Part 2


Equations

4. 6x19

6. 6x90

Problems and Investigations-Fractions on a Ruler

Measure 1 strip and label it How could we divide this strip in half?

$$\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{6}{6} \frac{7}{7} \frac{8}{8} \frac{9}{9} \frac{10}{10} \frac{11}{12}$$

$$\frac{1}{2} \text{ foot} = 12 \text{ inches}$$

$$\frac{1}{2} \text{ foot} = 6 \text{ inches}$$

Draw a line in the middle of your second strip and label. How could we divide it into 3 equal parts?

Label your strip in thirds. How can we divide it into 4 equal parts?

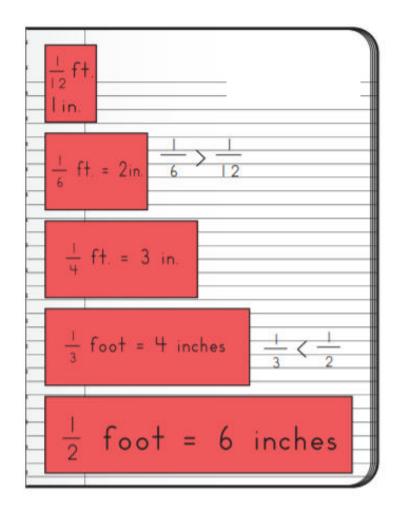
Label your strip in 4 equal parts. How can you divide it into 6 equal parts?

$$\frac{1}{6} \text{ ft} = 2 \text{ in } \left[\frac{1}{6} \text{ ft} = 2 \text{ in } \right] \left[\frac$$

Label your strip in 6 equal parts. How can you divide it into 12 equal parts?

Label your last strip

In your journal


Write the Date

And the Title: Fractions on a

number line

Let's order 1 of each fraction piece from least to greatest

What observations can you make about the relationships between the pieces?

Work Places

5C Line 'Em Up

5D Division Capture

6A Tangram Polygons

6B Geoboard Polygons

6C Guess My Quadrilateral

6D Area or Perimeter

Daily Practice

SB 237- Sixty Seconds in a Minute

Home Connection

HC 131-132- Hours to Minutes