

types of organisms relatively constant

over long periods of time under stable

physical disturbance to an ecosystem

conditions. If a modest biological or

Biology Unit 4: Ecology

Unit #:	APSDO-00018815	Duration:	10.0 Week(s)	Date(s):	03-30-2015 to 06-12-2015
Team: Andrea Galusk Grades: 10 Subjects: Science	a (Author), Jodi Kryzanski, Andrev	w Butler, Andre	a Galuska, Martha Kane, Athena	Kosinski, John S	Salerni
			Unit Focus		
explanations for explanations of their physical of ecosystems. So individuals and dynamics of eco cellular respirat problems, labo within ecosystem	idents construct explanations for or the role of energy in the cyclin f the interactions of photosynthe environment, how organisms obta tudents demonstrate an ability to d species. Students have increase cosystems. Summative assessme ation processes, modeling to dem pratory practice, experimental de ems. Primary instructional mater ., POGILs (process oriented guide	g of matter in o sis and cellular ain resources, o investigate th ed understandir ents may includ ionstrate the tra- sign, and comm ials may includ	brganisms utilizing photosynthesis respiration. Students understand change the environment, and how e role of biodiversity in ecosystem ng of interactions among organis e: modeling to demonstrate the ansfer of matter and energy thro nunication linking evidence to ex e: course textbook (Biology by M	s and cellular re d organisms interview these change ms and the role ms and how the cycling of matter ugh trophic leve planations about iller and Levine	espiration. They can support eractions with each other and as affect both organisms and of animal behavior on survival of ose interactions influence the er between photosynthetic and els, analysis of data, application ut interactions and changes e), supplemental print and online
	Stage 1:	Desired	Results - Key Unders	standings	
Es	tablished Goals		Tra	nsfer	
Science: 10 • A comple	tion Science Standards (DCI) ex set of interactions within an em can keep its numbers and	T2 (T5) Com T3 (T2) Desi methods.	ect, analyze, and evaluate the qu imunicate scientific information c gn an investigation or model usir elon a valid scientific conclusion	learly, thorough ng appropriate s	hly, and accurately. scientific tools, resources, and

T5 (T1) Integrate knowledge from a variety of disciplines and apply it to new situations to make sense of information, formulate insightful questions, and/or solve problems.
 T6 (T6) Use mathematics to represent physical variables and their relationships, to make

occurs, it may return to its more or less	
original status (i.e., the ecosystem is	
resilient), as opposed to becoming a ver	У
different ecosystem. Extreme	
fluctuations in conditions or the size of	
any population, however, can challenge	
the functioning of ecosystems in terms	
of resources and habitat availability.	
LS2.9.C1	

- As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. LS1.9.C4
- As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. *LS1.9.C3*
- Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. *PS3.9.B1*
- Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and

less	quantitative predictions, and to solve problems	
s a very	Меа	ning
of	Understandings	Essential Questions
nge ms	U1	Q1
ons, em of	LS4-D (9-12) Human activity such as habitat destruction, pollution, introduction of invasive species, etc. can disrupt an	LS2-A (9-12) What biotic (predation, competition, and disease) and abiotic factors influence the stability of an ecosystem?
ocess	ecosystem and threaten the survival of some species.	Q2
es nd	U2	LS2-A (9-12) How do environmental factors acting on a population affect whether the
n Ir	LS4-D (9-12) Humans positively impact ecosystems through varied conservation	population is in an exponential or logistic growth pattern?
ire :he	efforts such as habitat restoration, breeding programs, efforts to reduce pollution, etc.	Q3
ng	U3 (U327) Energy transfers and matter cycles between producers, consumers, decomposers, and their environment. U4 (U328) Plants and animals depend upon	LS2-C (9-12) How do ecosystems recover through ecological succession following disturbances such as glacial retreat, forest fires, lava flows, and dune blow-outs?
n	interactions with each other to survive (e.g., being part of a group).	Q4
the n is 1.	U5 (U300) All animals need food, obtained from plants or other animals, in order to live and grow. Plants need water and light to live and grow.	LS2-D (9-12) How do interdependent interactions between and within populations of an ecosystem affect chances of survival?
	U6 (U309) Photosynthesis provides a	Q5
s, I ch	mechanism for converting light energy into chemical energy (sugars) while cellular respiration breaks down sugar to create a usable form of chemical energy.	LS4-D (9-12) How do human activities positively and negatively impact ecosystems?
nd	U7 (U331) Ecosystems are dynamic and their characteristics and stability can vary over time.	Q6 (Q337) How do the processes of photosynthesis and cellular respiration provide and conserve most of the energy in
s : for	U8 (U330) The carrying capacity of an ecosystem is determined by a variety of living and nonliving factors.	an ecosystem? Q7 (Q338) Why are populations smaller for organisms near the top of the trophic

resources are finite. This fundamental
tension affects the abundance (number
of individuals) of species in any given
ecosystem. <i>LS2.9.A1</i>

- Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. *PS3.9.B2*
- Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. *LS2.9.D1*
- Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. *ETS1.9.A2*
- Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. LS4.9.D2
- Moreover, anthropogenic changes (induced by human activity) in the environment-including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change-can disrupt an ecosystem and threaten the survival of

A consistion of Kn	structure? Q8 (Q312) How are the processes of photosynthesis and cellular respiration connected in the cycling of matter and transfer of energy through different organizational levels of living system?	
Acquisition of Kno		
Knowledge	Skills	
кі	S1	
Photosynthesis and cellular respiration are interdependent metabolic processes	Model interdependent relationships between producers, consumers, and decomposers	
К2	(including, but not limited to, symbiotic relationships)	
Interactions between organisms in a food web	S2	
КЗ	Model interdependent relationship between photosynthesis and cellular respiration	
As biomass is recycled in a trophic structure, energy is transferred to different forms at a	including the cycling of matter and energy S3	
rate of 10% efficiency	Use analytical representations (logistic and	
K4 Law of conservation of matter and the cycling of carbon, nitrogen, phosphorous	exponential growth curves) to support explanations of factors that affect carrying capacity of ecosystems	
	S4	
K5 Symbiotic relationships can have beneficial, detrimental, and neutral affects on population dynamics	Predicting potential impacts of environmental changes (including biotechnology applications) to biodiversity	
K6	S5	
Ecosystems change in predictable ways through primary and secondary succession	Explaining changes in ecosystems as a result of succession	
К7	S6	
Abiotic and biotic factors influence biomes	Simulate changes in a biome based on varied environmental factors including human	

some species. <i>LS2.9.C2</i>	and their biodiversity	impacts
 Photosynthesis and cellular respiration 		
(including anaerobic processes) provide	К8	
most of the energy for life processes.		
LS2.9.B1	Negative and positive human impacts on	
 Photosynthesis and cellular respiration 	ecological systems	
are important components of the carbon		
cycle, in which carbon is exchanged		
among the biosphere, atmosphere,		
oceans, and geosphere through		
chemical, physical, geological, and		
biological processes. <i>LS2.9.B3</i>		
 Plants or algae form the lowest level of 		
the food web. At each link upward in a		
food web, only a small fraction of the		
matter consumed at the lower level is		
transferred upward, to produce growth		
and release energy in cellular respiration		
at the higher level. Given this		
inefficiency, there are generally fewer		
organisms at higher levels of a food web.		
Some matter reacts to release energy for		
life functions, some matter is stored in		
newly made structures, and much is		
discarded. The chemical elements that		
make up the molecules of organisms		
pass through food webs and into and out		
of the atmosphere and soil, and they are		
combined and recombined in different		
ways. At each link in an ecosystem,		
matter and energy are conserved.		
LS2.9.B2		
• The availability of energy limits what can		
occur in any system. <i>PS3.9.B4</i>		
• The main way that solar energy is		
captured and stored on Earth is through		
the complex chemical process known as		
photosynthesis. <i>PS3.9.D3</i>		
• The process of photosynthesis converts		
light energy to stored chemical energy		
by converting carbon dioxide plus water		
into sugars plus released oxygen.		

 LS1.9.C1 The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbonbased molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. LS1.9.C2
--