AP® BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and Probability

Standard Deviation

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Standard Error of the

$$SE_{\overline{x}} = \frac{s}{\sqrt{n}}$$

$$\chi^2 = \sum \frac{(o-e)^2}{e}$$

Degrees of Freedom								

 \overline{x}

= sample standard deviation (i.e., the sample estimate of the standard deviation of the

= observed results

= expected results

Σ

Degrees of freedom are equal to the distinct possible outcomes minus one.

Laws of Probability

If A and B are mutually exclusive, then:

If A and B are independent, then:

X

Weinberg Equations

= frequency of allele

= frequency of allele

M	etric	Pref	Vec

= value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

Rate and Growth

$$\frac{dY}{dt}$$

= amount of change

$$\frac{ai}{dt}$$

= change in time

Population Growth

$$\frac{dN}{dt} = B - D$$

Exponential Growth

= population size

$$\frac{dN}{dt} = r_{\text{max}} N$$

= carrying capacity

imum per capita

Logistic Growth

$$\frac{dN}{dt} = r_{\text{max}} N \left(\frac{K - N}{K} \right)$$

Diversity Index

Diversity Index =
$$1 - \sum \left(\frac{n}{N}\right)^2$$

n = total number of organisms of a particular species

N =total number of organisms of all species

Water Potential Ψ

$$\Psi \,=\, \Psi_P \,+\, \Psi_S$$

 Ψ_p = pressure potential

 $\Psi_{\rm S}$ = solute potential

The water potential will be equal to the potential of a solution in an open container because the pressure potential of the solution in an open container is zero.

The Solute Potential of a Solution

$$\Psi_{\rm S} = -iCRT$$

= ionization constant (because sucrose does not

C = molar concentration

R = pressure constant

R = 0.0831 liter bars/mole K)

 $T = \text{temperature in Kelvin} (^{\circ}\text{C} + 273)$

Surface Area and Volume

Surface Area of a Sphere

$$SA = 4\pi r^2$$

Volume of a Sphere $V = \frac{4}{3}\pi r^3$

Surface Area of a Rectangular Solid

$$SA = 2lh + 2lw + 2wh$$

Volume of a Rectangular Solid

$$V$$
 lwh

Surface Area of a

$$SA = 2\pi rh + 2\pi r^2$$

$$V = \pi r^2 h$$

Area of a Cube $SA = 6s^2$

$$S1 - 6c^{2}$$

Volume of a Cube

$$V = s^3$$

V