Chapter 9

Patterns of Inheritance

PowerPoint[®] Lectures for Campbell Essential Biology, Fourth Edition – Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology, Third Edition – Eric Simon, Jane Reece, and Jean Dickey

Lectures by Chris C. Romero, updated by Edward J. Zalisko

© 2010 Pearson Education, Inc.

0

Biology And Society: A Matter of Breeding

- Genetics is the scientific study of heredity.
 - Genetics explains why the offspring of purebred dogs are like their parents.
 - Inbreeding of dogs makes some genetic disorders common.
- A dog's behavior is determined by its
 - Genes
 - Environment

HERITABLE VARIATION AND PATTERNS OF INHERITANCE

- Heredity is the transmission of traits from one generation to the next.
- Gregor Mendel
 - Worked in the 1860s
 - Was the first person to analyze patterns of inheritance
 - Deduced the fundamental principles of genetics

In an Abbey Garden

- Mendel studied garden peas because they
 - Are easy to grow
 - Come in many readily distinguishable varieties
 - Are easily manipulated
 - Can self-fertilize

- A character is a heritable feature that varies among individuals.
- A trait is a variant of a character.
- Each of the characters Mendel studied occurred in two distinct forms.

• Mendel

-Created true-breeding varieties of plants

-Crossed two different true-breeding varieties

• **Hybrids** are the offspring of two different true-breeding varieties.

-The parental plants are the **P** generation.

–Their hybrid offspring are the F_1 generation.

–A cross of the F_1 plants forms the F_2 generation.

Mendel's Law of Segregation

- Mendel performed many experiments.
- He tracked the inheritance of characters that occur as two alternative traits.

Monohybrid Crosses

• A monohybrid cross is a cross between parent plants that differ in only one character.

Blast Animation: Single-Trait Crosses

- Mendel developed four hypotheses from the monohybrid cross:
 - 1. There are alternative versions of genes, called **alleles**.
 - 2. For each character, an organism inherits two alleles, one from each parent.
 - An organism is **homozygous** for that gene if both alleles are identical.
 - An organism is **heterozygous** for that gene if the alleles are different.

- 3. If two alleles of an inherited pair differ
 - The allele that determines the organism's appearance is the dominant allele
 - The other allele, which has no noticeable effect on the appearance, is the recessive allele

- 4. Gametes carry only one allele for each inherited character.
 - The two members of an allele pair segregate (separate) from each other during the production of gametes.
 - This statement is the **law of segregation**.

- Do Mendel's hypotheses account for the 3:1 ratio he observed in the F₂ generation?
- A **Punnett square** highlights the four possible combinations of gametes and offspring that result from each cross.

Blast Animation: Genetic Variation: Fusion of Gametes

- Geneticists distinguish between an organism's physical traits and its genetic makeup.
 - An organism's physical traits are its **phenotype**.
 - An organism's genetic makeup is its genotype.

Genetic Alleles and Homologous Chromosomes

- Homologous chromosomes have
 - Genes at specific loci
 - Alleles of a gene at the same locus

Mendel's Law of Independent Assortment

- A **dihybrid cross** is the crossing of parental varieties differing in two characters.
- What would result from a dihybrid cross? Two hypotheses are possible:
 - 1. Dependent assortment
 - 2. Independent assortment

© 2010 Pearson Education, Inc.

- Mendel's dihybrid cross supported the hypothesis that each pair of alleles segregates independently of the other pairs during gamete formation.
- Thus, the inheritance of one character has no effect on the inheritance of another.
- This is the **law of independent assortment**.
- Independent assortment is also seen in two hereditary characters in Labrador retrievers.

(b) A Labrador dihybrid cross

© 2010 Pearson Education, Inc.

Using a Testcross to Determine an Unknown Genotype

- A **testcross** is a mating between
 - An individual of dominant phenotype (but unknown genotype)
 - A homozygous recessive individual

Two possible genotypes for the black dog:

The Rules of Probability

- Mendel's strong background in mathematics helped him understand patterns of inheritance.
- The rule of multiplication states that the probability of a compound event is the product of the separate probabilities of the independent events.

Family Pedigrees

• Mendel's principles apply to the inheritance of many human traits.

Freckles

Widow's peak

Free earlobe

RECESSIVE TRAITS

No freckles

Straight hairline

Attached earlobe

• Dominant traits are not necessarily

–Normal or

-More common

• Wild-type traits are

-Those seen most often in nature

-Not necessarily specified by dominant alleles

- A family pedigree
 - Shows the history of a trait in a family
 - Allows geneticists to analyze human traits

First generation (grandparents)

Second generation (parents, aunts, and uncles)

Third generation (brother and sister)

Human Disorders Controlled by a Single Gene

- Many human traits
 - Show simple inheritance patterns
 - Are controlled by single genes on autosomes
| Table 9.1 | Some Autosomal Disorders in Humans | | | | |
|--------------------------------|------------------------------------|--|---------------------------------------|--|--|
| Disorder | | Major Symptoms | Incidence | | |
| Recessive Disorders | | | | | |
| Albinism | | Lack of pigment in skin, hair, and eyes | 1
22,000 | | |
| Cystic fibrosis | | Excess mucus in lungs, digestive tract, liver; increased susceptibility to infections; death in early childhood unless treated | $\frac{1}{1,800}$ European-Americans | | |
| Phenylketonuria (PKU) | | Accumulation of phenylalanine in blood; lack of normal skin pigment; mental retardation unless treated | $\frac{1}{10,000}$ in U.S. and Europe | | |
| Sickle-cell disease | | Sickled red blood cells; damage to many tissues | $\frac{1}{500}$ African-Americans | | |
| Tay Sachs disease | | Lipid accumulation in brain cells; mental deficiency; blindness; death in childhood | $\frac{1}{3,500}$ European Jews | | |
| Dominant Disor | ders | | | | |
| Achondroplasia | | Dwarfism | 1
25,000 | | |
| Alzheimer's disease (one type) | | Mental deterioration; usually strikes late in life | Not known | | |
| Huntington's disease | | Mental deterioration and uncontrollable movements; strikes in middle age | 1
25,000 | | |
| Hypercholesterolemia | | Excess cholesterol in blood; heart disease | <u> </u> | | |

Recessive Disorders

- Most human genetic disorders are recessive.
- Individuals who have the recessive allele but appear normal are **carriers** of the disorder.

• Cystic fibrosis

-Is the most common lethal genetic disease in the United States

-Is caused by a recessive allele carried by about one in 25 people of European ancestry

• Prolonged geographic isolation of certain populations can lead to **inbreeding**, the mating of close relatives.

-Inbreeding increases the chance of offspring that are homozygous for a harmful recessive trait.

Dominant Disorders

- Some human genetic disorders are dominant.
 - Huntington's disease, which leads to degeneration of the nervous system, does not begin until middle age.
 - Achondroplasia is a form of dwarfism.
 - The homozygous dominant genotype causes death of the embryo.
 - Thus, only heterozygotes have this disorder.

Molly Jo Matt Amy Zachary Jake Jeremy Figure 9.16

The Process of Science: What Is the Genetic Basis of Hairless Dogs?

- **Observation**: Dogs come in a wide variety of physical types.
- **Question**: What is the genetic basis for the hairless phenotype?
- **Hypothesis**: A comparison of genes of coated and hairless dogs would identify the gene or genes responsible.

- **Prediction**: A mutation in a single gene accounts for the hairless appearance.
- **Experiment**: Compared DNA sequences of 140 hairless dogs from 3 breeds with 87 coated dogs from 22 breeds.
- **Results**: Every hairless dog, but no coated dogs, had a single change in a single gene.

Genetic Testing

- Today many tests can detect the presence of disease-causing alleles.
- Most genetic testing is performed during pregnancy.
 - Amniocentesis collects cells from amniotic fluid.
 - Chorionic villus sampling removes cells from placental tissue.
- Genetic counseling helps patients understand the results and implications of genetic testing.

VARIATIONS ON MENDEL'S LAWS

• Some patterns of genetic inheritance are not explained by Mendel's laws.

Incomplete Dominance in Plants and People

• In **incomplete dominance**, F₁ hybrids have an appearance in between the phenotypes of the two parents.

• Hypercholesterolemia

- Is characterized by dangerously high levels of cholesterol in the blood.
- Is a human trait that is incompletely dominant.
- Heterozygotes have blood cholesterol levels about twice normal.
- Homozygotes have blood cholesterol levels about five times normal.

ABO Blood Groups: An Example of Multiple Alleles and Codominance

• The **ABO blood groups** in humans are an example of multiple alleles.

Blood Group	Genotypes	Red Blood Cells	Antibodies Present in	Reactions Mixed with	When Blood Antibodies	d from Gro s from Gro	ups Below Is ups at Left
(Phenotype			Blood	0	Α	В	AB
A	I ^A I ^A Or I ^A i	Carbohydrate A	Anti-B				
В	I ^B I ^B or I ^B j	Carbohydrate B	Anti-A		***		
АВ	I ^A I ^B		_				
Ο	ii		Anti-A Anti-B				N.A.

Blood Group (Phenotype)	Genotypes	Red Blood Cells
A	I ^A I ^A Or I ^A i	Carbohydrate A
В	I ^B I ^B Or I ^B j	Carbohydrate B
AB	ΙΑΙΒ	
Ο	ii	

Antibodies Present in	Reactions When Blood from Groups Below Is Mixed with Antibodies from Groups at Left					
Blood	0	O A		AB		
Anti-B						
Anti-A						
Anti-A Anti-B				S. S.		

© 2010 Pearson Education, Inc.

- The immune system produces blood proteins called antibodies that can bind specifically to blood cell carbohydrates.
- Blood cells may clump together if blood cells of a different type enter the body.
- The clumping reaction is the basis of a blood-typing lab test.

Sickle-cell (abnormal) hemoglobin

Abnormal hemoglobin crystallizes into long flexible chains, causing red blood cells to become sickle-shaped.

Sickled cells can lead to a cascade of symptoms, such as weakness, pain, organ damage, and paralysis.

• The human blood type alleles I^A and I^B exhibit **codominance**: Both alleles are expressed in the phenotype.

Pleiotropy and Sickle-Cell Disease

- **Pleiotropy** is the impact of a single gene on more than one character.
- Sickle-cell disease
 - Exhibits pleiotropy
 - Results in abnormal hemoglobin production
 - Causes disk-shaped red blood cells to deform into a sickle shape with jagged edges

© 2010 Pearson Education, Inc.

Skin pigmentation

Polygenic Inheritance

• **Polygenic inheritance** is the additive effects of two or more genes on a single phenotype.

The Role of Environment

- Many human characters result from a combination of heredity and environment.
- Only genetic influences are inherited.

THE CHROMOSOMAL BASIS OF INHERITANCE

- The chromosome theory of inheritance states that
 - Genes are located at specific positions on chromosomes
 - The behavior of chromosomes during meiosis and fertilization accounts for inheritance patterns
- It is *chromosomes* that undergo segregation and independent assortment during meiosis and thus account for Mendel's laws.

Dihybrid testcross

Gray body, long wings (wild-type)

GgLI

Black body, short wings (mutant)

ggll

Female

Male

944

Parental phenotypes 83%

Figure 9.25-2

Recombinant phenotypes 17%
Linked Genes

Linked genes

- Are located close together on a chromosome
- May be inherited together
- Using the fruit fly *Drosophila melanogaster*, Thomas Hunt Morgan determined that some genes were linked based on the inheritance patterns of their traits.

Recombinant gametes

Genetic Recombination: Crossing Over

- Crossing over can
 - Separate linked alleles
 - Produce gametes with recombinant chromosomes
 - Produce offspring with recombinant phenotypes

• The percentage of recombinant offspring among the total is called the **recombination frequency**.

Linkage Maps

- Early studies of crossing over were performed using the fruit fly *Drosophila melanogaster*.
- Alfred H. Sturtevant, a student of Morgan, developed a method for mapping gene loci, which resulted in the creation of linkage maps.
 - A diagram of relative gene locations on a chromosome is a **linkage map**.

SEX CHROMOSOMES AND SEX-LINKED GENES

• Sex chromosomes influence the inheritance of certain traits.

Sex Determination in Humans

- Nearly all mammals have a pair of sex chromosomes designated X and Y.
 - Males have an X and Y.
 - Females have XX.

Sex-Linked Genes

- Any gene located on a sex chromosome is called a **sex-linked gene**.
 - Most sex-linked genes are found on the X chromosome.
 - Red-green color blindness is a common human sex-linked disorder.

• Hemophilia

- Is a sex-linked recessive blood-clotting trait that may result in excessive bleeding and death after relatively minor cuts and bruises
- Has plagued royal families of Europe

Evolution Connection: Barking Up the Evolutionary Tree

- About 15,000 years ago in East Asia, humans began to cohabit with ancestral canines that were predecessors of modern wolves and dogs.
- As people settled into geographically distinct populations, different canines became separated and inbred.

- In 2005 researchers sequenced the complete genome of a dog.
- An evolutionary tree of dog breeds was created.

Figure 9.33

Intermediate phenotype (incomplete dominance) (*Rr*)

Sex-Linked Traits					
Female: Two alleles	Genotype	XN XN	X ^N X ⁿ		X ⁿ X ⁿ
	Phenotype	Normal female	Carrier female		Affected female (rare)
Male: One allele	Genotype	X ^N Y		X ⁿ Y	
	Phenotype	Normal male		Affected male	