What are the coordinates of the point $\frac{3}{5}$ of the way from <u>A to B?</u>

SOLUTION

$$10(\frac{3}{5}) = 6$$
 $15(\frac{3}{5}) = 9$
 $\times - \text{value } 3 + 6 = 9$

(9,5)

a. $\left(\frac{1}{10}\right)$ of the way from A to B.

Difference of
$$x = 13-3=10$$

 $x = 0$ of $y = 11-(-4)=15$
 $(10)(\frac{7}{10}) = 7$ $(15)(\frac{7}{10}) = 10.5$

b.
$$\frac{4}{5}$$
 of the way from *B* to *A*.

$$(\frac{1}{5})(10) = 8$$
 $(\frac{1}{5})(10) = 8$ $(\frac{1$

$$(\frac{4}{5})(10) = 8$$
 $(\frac{4}{5})(15) = 12$
 $13 - 8$ $(5 - 1)$

Find the coordinates of point P that is $\frac{3}{4}$ of the way along the directed line segment from C (6, -5) to D (-3, 4).

Difference of
$$x = 6 - (-3) = 9$$
 $p: \{1 - 6.75 - 9(\frac{3}{4}) = -6.75$
 $q(\frac{3}{4}) = 6.75 - 9(\frac{3}{4}) = -6.75$
 $6 - 6.75 - 5 - (-6.75)$
 1.75
 $(.75, 1.75)$

Find the coordinates of point Q that is $\frac{2}{3}$ of the way along the directed segment from R (-7, -2) to S (2, 4).

How can you find the <u>distance between</u> $P(x_1, y_1)$ and $Q(x_2, y_2)$ on the coordinate plane?

Always positive

$$Q(x_2, y_2)$$

$$Q(x_2, y_2)$$

$$|y_2 - y_1|$$

$$|x_2 - x_1|$$

Distance Formula

The distance d between two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is:

$$d(P, Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Find the distance between each pair of points. Round your answer to the nearest tenth, if necessary.

$$d = \sqrt{(x_3 - x_1)^2 + (x_3 - y_1)^2}^{(2)}$$

$$= \sqrt{(1 - (-5))^2 + (-2 - 5)^2}$$

$$= \sqrt{(6)^2 + (-7)^2}$$

$$\sqrt{36 + 49}$$

$$\sqrt{85}$$

$$d = \sqrt{(x_3 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-5 - 4)^2 + (1 - 0)^2}$$

$$= \sqrt{(-7)^2 + (1)^2}$$

$$= \sqrt{81 + 1}$$

$$= \sqrt{82}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-2 - 3)^2 + (0 - (-5)^2)^2}$$

$$\sqrt{(-5)^2 + (5)^2}$$

$$\sqrt{25 + 25}$$

Find the distance between each pair of points. Round your answer to the nearest tenth, if necessary.

7)
$$(-2, 3)$$
, $(-7, -7)$

$$d = \sqrt{(-7 - (-2))^2 + (-7 - 3)^2}$$

$$\sqrt{(-5)^2 + (-10)^2}$$

$$\sqrt{25 + 100}$$

$$\sqrt{125}$$

$$(-10, -7), (-8, 1)$$

8)
$$(2,-9)$$
, $(-1,4)$

$$\sqrt{(-1-\lambda)^2 + (4-(-4))^2}$$

$$\sqrt{(-3)^2 + (13)^2}$$

$$\sqrt{9 + 169}$$

$$\sqrt{178}$$
12) $(-6,-10)$, $(-2,-10)$

A pitcher throws a ball to a batter, who hits the ball to the shortstop. If the ball travels in a straight line between each, what is the <u>total distance</u> traveled by the ball? Round your answer to the nearest tenth of a foot.

$$d_{1} = \sqrt{(5-1)^{2} + (5-1)^{2}}$$

$$= \sqrt{(4)^{2} + (4)^{2}}$$

$$= \sqrt{16 + 16} = \sqrt{32}$$

$$d_{2} = \sqrt{(5-1)^{2} + (10-1)^{2}}$$

$$= \sqrt{4^{2} + 9^{2}}$$

$$= \sqrt{16 + 81} = \sqrt{97}$$

$$\sqrt{32} + \sqrt{97} = 15.5$$