AP Statistics

Unit 1 – Exploring and Understanding Data

Name ______ Hr _____

Chapter 2 – Data (Pages 17-18)

Essential Skills / Learning Targets	Practice	Self-Check		
I can identify the Who, What, When, Where, Why, and How of the data in a given scenario or article.	#13, 15, 17, 25	\odot		: (i)
Chapter 3 – Displaying & Describing Categorical Data (Pgs 38-43)				
Essential Skills / Learning Targets	Practice	Self-Check		
I can apply the Area Principle to graphs and identify errors in the construction of graphs.	#15, 16	0	::	$\overline{\mathbf{O}}$
I can use a contingency table to calculate percentages of interest.	#21, 25, 29	0	:	8
I can find marginal and conditional distributions of a contingency table and create a segmented bar graph to explore the idea of independence.	#23, 31	©	٢	8
I can identify and apply Simpson's Paradox.	#37, 39	\odot	÷	$\overline{\mathbf{i}}$

Chapter 4 – Displaying & Summarizing Quantitative Data (Pgs 72-78)

Essential Skills / Learning Targets	Practice	Self-Check		
I can describe the distribution of a quantitative variable using SOCS, including a suitable measure of center and spread based on information about the variable's distribution.	#7, 11, 13	÷	:	3
I can explain the concept of standard deviation, including how to calculate it.	#15	\odot	:	\odot
I understand how the shape of a graph affects the measures of center and spread (concept of resistance)	#17, 21, 25, 28, 29	0	:	\odot
I can create an appropriate graphical representation of data, including all scales and labels.	#30, 31, 36, 40	\odot		$\overline{\mathbf{O}}$

Chapter 5 – Understanding & Comparing Distributions (Pgs 95-103)

Essential Skills / Learning Targets	Practice	Self-Check			
I can compare and contrast different graphical	#7, 9, 21, 36	©		\otimes	
representations of the same data.					
I can create comparative graphical representations of data	#11, 33, 34	\odot	\odot	$\overline{\mathbf{S}}$	
I can create a boxplot (showing outliers) by hand from a five- number summary, remembering to scale and label the axes.	#12, 23, 25, 29	0	:	8	
I can compare the distributions of two or more groups by comparing their centers, spreads, and shapes, using comparative language.	#15, 16, 20	٢		$\overline{\mathbf{S}}$	
I can interpret an ogive and find its five-number summary	#27, 28	\odot		$\overline{\mathbf{S}}$	

Chapter 6 – The Normal Model (Pgs 129-133)

Essential Skills / Learning Targets	Practice	Self-Check		
I understand how linear transformations of a variable affect the summary statistics.	#3, 5	\odot	:	3
I can calculate a z-score and use that value to make valid comparisons between multiple distributions.	#12, 13, 15, 17	0	:	3
I can use the Empirical Rule to estimate percentages.	#25, 26, 29	\odot	(i)	\odot
I can use the Normal Probability Tables to calculate percentages for a given distribution.	#37, 38, 43, 45	\odot	:	\odot
I can use the Normal Probability Tables to calculate raw scores for a given distribution.	#9, 10, 39, 41	\odot	:	\odot
I can use a Normal Probability Plot to determine if a Normal model is appropriate for a data set.	#31, 32	\odot		\odot