AP Statistics

CVUSD 10-day Extended Learning Plan

If you have access to a computer, laptop, or cellphone and the internet, you will first want to go to: <u>https://bit.ly/3blr8CH</u> for FREE classes on all AP exam preparations.

OR

You are welcome to use the activities below

Davs 1-4	AP Stats										
,	Day 1-10										
	Directions: Show all your work. Indicate clearly the methods you use, because you will be scored										
	on the correctness of your methods as well as on the accuracy and completeness of your results										
	and explanations.										
	1. The manager of a grocery store selected a random sample of 11 customers to investigate the										
	relationship between the number of customers in a checkout line and the time to finish										
	checkout. As soon as the selected customer entered the end of a checkout line, data were										
	the time in seconds until the selected customer was finished with the checkout. The data are										
	shown in the follow scatterplot along with the corresponding least-squares regression line and										
	1 250-										
	1,230										
	1,000-										
	(spi										
	5 750-										
	± 500+										
	250-										
	•										
	Customers in Line										
	computer output.										
	a) Identify and interpret in context the estimate of the intercept for the least-squares										
	regression line. b) Identify and interpret in context the coefficient of determination r^2										
	c) One of the data points was determined to b an outlier. Circle the point on the scatterplot										
	and explain why the point is considered an outlier.										
	, , , , , , , , , , , , , , , , , , ,										
	Predictor Coef SE Coef T P										
	Constant 72.95 110.36 0.66 0.525										
	Customers in line 174.40 35.06 4.97 0.001										
	S = 200.01 R-Sa = 73.33% R-Sa (adi) = 70.37%										

	2. A limnologist takes sam in each sample. The lim the creek and the numb summary statistics sho	nples from a nologist wa per of flatwo wn below:	a creek o ants to l orms in	on severa ook at th the samj	al days le relati ple. The	and co onship data s	unts the numbers of flatworms between the temperature of how a linear pattern with the
		mean	S	tandard	deviat	ion	
	x = creek temperature (°C)	<i>x</i> ⁻ =10.2	S	x = 2.8			
	y = number of flatworms	y ⁻ =37.6	y s _j	_y = 30.8			
			r	=-0.98	5		
	Find the equation of the la flatworms from the creek Round your entries to the new $y^{\wedge} = $	east-squar temperati earest hundi	es regr ure. redth.	ession li	ine for	predic	ting the number of
Days 5-10	 Plamen is a social mer posts to see if there is times the post gets sha (expected counts appear) 	dia manage a relations ared. Here ear below o	er for a hip betv are the bserve	large co ween the outcom d counts	mpany. e time c es and):	. He ta of each partial	kes a random sample of their post and the number of results of a chi-square test
		Chi-square	test: Tin s	ne of posi hares	t vs. nur	nber of	
			0-50	51-100	100 +	Total	
		Morning	203	77	50	330	
			219	72	39		
		Afternoon	117	36	12	165	
			109.5	36	19.5		
		Evening	45	7	3	55	
		-	36.5	12	6.5		
		Total	365	120	65	550	
	They want to use these rest for inference were met. What are the values of th e	ults to carry e test statis	y out a χ stic and	2 test of P-value	indepe e for the	ndence eir tes	Assume that all conditions

	Width i	s less than $2~\mathrm{cm}$	Width is more than 2 cm	Total
Lengtl) is less than $5.2~{ m cm}$	14	3	17
Lengt	m is~5.2~cm to $ m 5.7~cm$	4	11	15
Lengtl	is more than $5.7~{ m cm}$	7	9	16
Total		25	23	48
Liv wants to perfor What is the expe	m a χ_2 test of indepected count for the	25 endence betv ell correspo	23 veen petal length onding to petals	v