Tustin HS AP Chemistry SUMMER ASSIGNMENT

Instructor: Ms. Abbey Zinsser

Email: <u>azinsser@tustin.k12.ca.us</u> or <u>azinsser@mytusd.org</u>

Textbook: *Chemistry: The Central Science*, Brown, LeMay, Bursten, 11th edition (2006).

Due Date: 2nd day of school (August 15th, 2018)

In order to complete the summer assignment you will need to have access to the textbook. A copy of the **textbook** is available for **checkout** at the library.

Assignment: The assignment is divided into 6 modules. Each module (except for Module A) will be collected on the second day of school. This assignment (Modules B-F) should average about an hour per module. You should have learned these topics in your first year chemistry class. If you are struggling with the assignment, email me as soon as possible.

Failure to complete this assignment may result in removal from the course

Module	Topic	Submit	Point Value
A	POLYATOMIC ION Memorization	Nothingyou will be tested on the 2 nd day of school	100 point test
В	Naming Ionic & Covalent Compounds	I MOUNTE R PRACTICE I	
С	Naming Acids	Module C Practice	20
D	Chapter 1: Matter & Measurements	Textbook Problems	20
Е	Chapter 2: Atoms, Molecules & Ions	Textbook Problems	20
F	Chapter 3: Stoichiometry	Textbook Problems	20
		TOTAL	100

Modules:

- **For Module A:** Nothing to turn in, but TEST on POLYATOMIC IONS on 2nd day of School. DON'T PROCRASTINATE!! You must get 100% on the assessment. If you do not get 100%, you will retake it until you do—losing 5% each attempt. Example: 100% on 1st attempt, 95% on 2nd attempt, 90% on 3rd attempt, 85% on 4th attempt, etc.
- For Modules B-C: Module Worksheets will be collected
- For Modules D-F: You will need access the textbook--checkout from the library
 - o You will be turning in Chapter 1-3 problems.
 - o Title the assignment with Chapter # & problem numbers. Example: Chapter 1 #2, 5, etc.
 - o SHOW ALL WORK, including units and dimensional analysis where appropriate
 - o Refer to the examples within in the textbook for help
 - You may also email me for help; I will get back to you as soon as I can.
 - These topics should have been covered in your first year chemistry course and should be a review.

Scoring:

- Each question will be graded for accuracy and/or completion.
- To receive maximum score:
 - Show all work. No work = no credit. If you aren't sure what kind of work to show, view the examples.
 - o All answers should be written with units (when given) and correct significant figures.
 - Submit on time on the second day of school.

MODULE A: Common Ions to KNOW!!

This part of the summer assignment is quite simple. Just give yourself enough time to master the formulas, charges and names of the common polyatomic ions. On the **2**nd **day of school**, you will be given a quiz on these ions. You will be asked to:

- Write the names of these ions given the formula and charge
- Write the formula and charge when given the names

TABLE 1: Ionic Charges of Representative Elements

Cations: Full Name			Anions: End in "-ide"					
1	2	3-11	12	13-14	15	16	17	18
Li+	Be ²⁺				N ³⁻	O ²⁻	F ¹⁻	
Na+	Mg ²⁺			Al ³⁺	P ³⁻	S ²⁻	Cl ¹⁻	
K+	Ca ²⁺		Zn^{2+}			Se ²⁻	Br¹-	
Rb⁺	Sr ²⁺	Ag+	Cd ²⁺				I^{1-}	
Cs+	Ba ²⁺							

<u>"From the Table" Ions:</u> For the ions in Table 1, their placement in the Periodic Table suggest the charge on the ion, since the neutral atom gains or loses a predictable number of electrons in order to obtain a noble gas configuration. This was a focus in first year chemistry, so if you are unsure what this means, get HELP BEFORE the start of the year. Three transition metals are also included (silver, cadmium and zinc). These three elements will always have the charge given in the table and should be also be memorized.

TABLE 2: Common Polyatomic Ions

1- charge		2- charge		3- charge	
Formula	Name	Formula	Name	Formula	Name
H ₂ PO ₄ ¹⁻	Dihydrogen	HPO ₄ ²⁻	Hydrogen Phosphate	PO ₄ 3-	Phosphate
	Phosphate				
$C_2H_3O_2^{-1}$	Acetate	$C_2O_4^{2-}$	Oxalate	PO ₃ 3-	Phosphite
HSO ₃ 1-	Hydrogen Sulfite	SO ₃ ²⁻	Sulfite		
HSO ₄ 1-	Hydrogen Sulfate	SO ₄ ²⁻	Sulfate		
HCO ₃ 1-	Hydrogen Carbonate	CO ₃ ²⁻	Carbonate		
NO ₂ 1-	Nitrite	CrO ₄ ²⁻	Chromate	1+ charge	
NO ₃ 1-	Nitrate	Cr ₂ O ₇ ²⁻	Dichromate	NH ₄ 1+	Ammonium
CN 1-	Cyanide	SiO ₃ ²⁻	Silicate	H ₃ O ¹⁺	Hydronium
OH 1-	Hydroxide	O_2^{2-}	Peroxide		
MnO ₄ 1-	Permanganate	S ₂ O ₃ ² -	Thiosulfate		
ClO 1-	Hypochlorite				
ClO ₂ 1-	Chlorite				
ClO ₃ 1-	Chlorate				
ClO ₄ 1-	Perchlorate				
BrO ₃ 1-	Bromate				
SCN 1-	Thiocyanate				
IO ₃ 1-	Iodate				

<u>Polyatomic Ions:</u> The common ions in Table 2 need to be **<u>MEMORIZED.</u>** Below are a number of patterns that can be used to greatly reduced the amount of memorizing one must do.

<u>Hint 1:</u> "-ate" ions have *one more oxygen* that the corresponding "-ite" ions, but the same charge. If you memorize the "-ate" ions, then you should also be able to memorize the "-ite" ions quite easily, and vice versa.

Example: Sulf<u>ate</u> is SO₄²-, so sulf<u>ite</u> is the same charge with one less oxygen (SO₃ ²-) **Example:** Nitr<u>ate</u> is NO₃¹-, so nitr<u>ite</u> is the same charge with one less oxygen (NO₂ ¹-) **Hint 2:** If you know that a sulfate ion is SO₄²-, then to get the formula for hydrogen sulfate, you add a hydrogen ion to the front of the formula. Since hydrogen has a 1+ charge, the net charge on the new ion is less negative by one.

Example:

 PO_4 $^{3-}$ \rightarrow HPO_4 $^{2-}$ \rightarrow H_2PO_4 $^{1-}$ phosphate $hydrogen\ phosphate$ $dihydrogen\ phosphate$

<u>Hint 3:</u> Other prefixes: "Per-" indicates *one more oxygen* than the "-ate" form "Hypo-" indicates *one less oxygen* than the "-ite" form **Example:** $ClO_4^{1-} \rightarrow ClO_3^{1-} \rightarrow ClO_2^{1-} \rightarrow ClO_1^{1-}$ perchlorate chlorate chlorite hypochlorite

• The Halogens are all the same: F, Cl, Br, I all behave the same, so if chlorate is ClO₃ ¹⁻, Bromate is BrO₃ ¹⁻!!!

<u>Hint 4:</u> Make *<u>FLASHCARDS</u>* to help with your memorization!

MODULE B: Naming & Writing Chemical Compounds

NOTES: Naming & Writing Ionic Compounds				
How do I know	An ionic compound is formed between a metal and a nonmetal, or a cation ion			
it is an ionic	(positive ion) and an anion (negative ion).			
compound?	(rogavivo rong and an annon (nogavivo rong.			
Naming Rule 1:	Look at the cation first. If the cation has <i>only one</i> possible charge (Group 1, Group 2,			
O	Al, Ag, Cd, Zn)			
	Write cation first			
	 Write anion last ending in –ide 			
	Examples: 1) CaCl ₂			
	 Look at Ca first! ← Ca is in group 2 (only can have a charge of 2+) 			
	 Chlorine become Chloride 			
	= Calcium Chlor <i>ide</i>			
	2) $Al_2O_3 = Aluminum Oxide$			
Naming Rule 2:	Look at the cation first. If the cation has <i>more than one</i> possible charge (most			
	transition metals, post-transition metals)			
	Write cation first, write cation charge (as Roman Numeral) in parentheses			
	Write anion last ending in –ide			
	Charge of cation is based on <i>charge balance</i>			
	Examples:			
	1) FeCl ₃ o Look at Fe first! ← Fe is a transition metal (can have a charge of 2+ or 3+)			
	o To determine charge of Fe → look at Cl			
	O Cl has a charge of 1-			
	○ There are 3 Cl^{1-} → overall negative charge of -3			
	 To balance a <i>negative</i> three, you must have a <i>positive</i> three 			
	 Fe must have a charge of 3+ →Iron(III) 			
	= Iron (III) Chlor <i>ide</i>			
	2) Cr ₂ S ₃			
	o Look at Cr first! ← Cr is a transition metal (can have a charge of $2+$ or $3+$)			
	o To determine charge of $Cr \rightarrow look$ at S			
	o S has a charge of 2-			
	○ There are $3 S^{2-} \rightarrow \text{overall negative charge of } -6$			
	 To balance a <i>negative</i> six, you must have a <i>positive</i> six The overall charge of Cr is +6, but there are 2 Cr's, so each Cr will 			
	o The overall charge of Cr is +6, but there are 2 Cr's, so each Cr will have a charge of +3			
	o Cr has a charge of $3+\rightarrow$ Chromium(III)			
	= Chromium (III) Sulfide			
Naming Rule 3:	When polyatomic ions are involved, follow Rules 1 & 2. Write full polyatomic name			
0	in place of cation or anion.			
	Examples:			
	1) K ₂ SO ₄			
	 Look at K first! ← K is in group 1 (only can have a charge of 1+) 			
	 Need to recognize SO₄ as sulfate 			
	= Potassium Sulfate			

	2) CuCO ₃
	 Look at Cu first! ← Cu is a transition metal (can have a charge of 1+ or 2+)
	o To determine charge of Cu → look at CO_3
	 You need to recognize CO₃ as carbonate
	o CO₃ has a charge of 2-
	○ There is one CO_3^{2-} → overall negative charge of -2
	 To balance a negative two, you must have a positive two
	 So, the overall charge of Cu is +2
	 Cu has a charge of 2+ → Copper(II)
	= Copper (II) Carbonate
Writing Rule 1:	1) Write the formulas for the cation and anion, including charges
	2) Check to see if the <i>charges are balanced</i>
	 If balanced, just remove charges
	 If not balanced, continue with rule #3
	3) Balance charges
	 Use parentheses if more than one polyatomic in is needed
	 Write subscripts if more than one ion is needed to balance
	 Use crisscross method to balance subscripts
	o <i>Remove</i> charges
	Example:
	1) Barium nitrate
	• Write the formulas: Ba ²⁺ NO ₃ ¹⁻
	 Think: Do +2 and -1 balance each other? NO!
	• Ba^{2} NO_3^{1} \rightarrow $Ba(NO_3)_2$

	NOTES: Naming Molecular Compo	ounds				
How do I know it is a molecular compound?	A molecular compound is formed between a two nonmetals. Also known as a covalent compound.					
Rule:	For the 1 st nonmetal: O Name the element O Use the prefix <i>if there is more than one</i> of that element		d in Naming Molecular ipounds			
	For the 2 nd nonmetal: O Name the element	Prefix mono-	Number 1			
	 Always include the prefix Use -ide ending 	di- tri-	2 3			
	Example: NF ₃ O Two nonmetals! = covalent	tetra- penta-	4 5			
	 o First element: o Nitrogen → only one = no prefix 	hexa- hepta-	6 7			
	o Second element:	octa- nona-	8			
	o 3 of them = prefix "tri-"	deca-	10			
-	= nitrogen trifluoride					

MODULE C: Naming & Writing Acids

	NOTES NOTES AND				
	NOTES: Naming & Writing Acids				
What is an acid?	A form of ionic compound				
	 Hydrogen salt dissolved in water (aq) 				
Types of Acids	Binary: contains two elements				
	o Hydrogen + nonmetal				
	Oxyacid: contains oxygen				
	 Hydrogen + polyatomic 				
- N					
Naming &	Use prefix " hydro" – root of nonmetal ic acid				
Writing Binary	Evennle #1, HCl				
Acids:	Example #1: HCl • Hydro – <i>Chlor</i> - ic Acid → Hydrochloric Acid				
	11yaro - Chior- ic Acia - Hyarochioric Acia				
	Example #2: Hydrofluoric Acid				
	• HF				
Naming &	Use root of anion (polyatomic) then check ending				
Writing Oxyacids	Polyatomic ends in –ate				
	<i>Root</i> –ic acid				
	Polyatomic ends in –ite				
	Root –ous acid				
	Everyle #1. IINO				
	Example #1: HNO ₃ • HNO ₃ → Nitr <u>ate</u> → ends in -ate → <i>root</i> -ic				
	→Nitric Acid				
	Andreas				
	Example #2: HNO ₂				
	Nop→Nitr <u>ite</u> → ends in -ite→ <i>root</i> -ous				
	→Nitrous Acid				
	Example #3: Sulfuric Acid				
	• Sulfuric \rightarrow ends in $-ic \rightarrow$ polyatomic must end in $-ate \rightarrow$ sulfate				
	• Two H ⁺ must balance -2 charge on sulfate ion, SO ₄ ² -				
	→H ₂ SO ₄				
-					

MODULE B: Naming & Writing Compounds Practice

Name the following compounds:	Answer
1) NaBr	
2) CaO	
3) CO ₂	
4) MgBr ₂	
5) Be(OH) ₂	
6) N ₂ S	
7) ZnSO ₄	
8) AuBr ₃	
9) CuC2H3O2	
10)KMnO ₄	
11)CaCO ₃	
12)NH ₄ NO ₃	
13)CO	
14)Li ₂ S	
15)MgCl ₂	
16)SF ₆	
17)Fe ₂ O ₃	
18)PbSO ₃	
19)Zn ₃ (PO ₄) ₂	
20)NO ₂	

compounds:	Answer
21)Potassium iodide	
22)Magnesium oxide	
23)Nitrogen monoxide	
24)Ammonium chloride	
25)Iron (III) oxide	
26)Magnesium phosphate	
27)Iron(II) sulfate	
28)Calcium chromate	
29)Silver bromide	
30)Cooper (I) chloride	
31)Silver carbonate	
32)Nitrogen trichloride	
33)Aluminum chloride	
34)Sodium Cyanide	
35)Nickel (II)Phosphate	
36)Chromium (III) Hydroxide	
37)Zinc nitrate	
38)Barium Acetate	
39)Calcium sulfide	
40)Sodium phosphate	

MODULE C: Naming & Writing Acids Practice

Name the following compounds:	Answer
1) HF	
2) HClO ₃	
3) H ₂ CO ₃	
4) HCl	
5) H ₂ S	
6) HClO	
7) H ₂ SO ₄	
8) H ₂ SO ₃	
9) H ₃ PO ₄	
10)HI	
11)Hydrobromic acid	
12)Nitric acid	
13)Acetic acid	
14)Phosphorous acid	
15)Hydrocyanic acid	
16)Carbonic acid	
17)Phosphoric acid	
18)Sulfurous acid	
19)Hydrochloric acid	
20)Sulfuric acid	

MODULE D: Chapter 1 in Textbook

Chapter 1: Matter and Measurements

I. End of Chapter Problems -Starting on page 30

This chapter should be a review of states of matter, physical & chemical properties, physical & chemical changes, and converting units. Some new topics might be significant figures.

Complete the following problems from the textbook. If you come across a problem you are not sure of, read through the corresponding section in the textbook for help.

Zha oi chaptei i i obiemb buai ting on page o	
A. Title of segment #1: Visualizing Concepts	
Problems submitted by the student: 2, 5	
B. Title of segment #2: Classification and Properties of Matter	
Problems submitted by the student: 20, 22	
C. Title of segment #3: <i>Units and Measurement</i>	
Problems submitted by the student: 27	
D. Title of segment #4: <i>Uncertainty in Measurement</i>	
Problems submitted by the student: 36, 37	
E. Title of segment #5: Dimensional Analysis	

Problems submitted by the student: 53

MODULE E: Chapter 2 in Textbook

Chapter 2: Atoms, Molecules & Ions

I. End of Chapter Problems—Starting on page 70

Problems submitted by the student: 64, 68, 72, 73

This chapter should be a review of atoms, subatomic particles, atomic number, atomic mass, isotopes, and ions, It also covers naming of both ionic (metal & nonmetal) and molecular (nonmetal & nonmetal) compounds. Some new topics are naming of acids.

Complete the following problems from the textbook. If you come across a problem you are not sure of, read through the corresponding section in the textbook for help.

A. Title of segment #1: Visualizing Concepts Problems submitted by the student: 1, 2, 4, 5, 7, 8 B. Title of segment #2: Atomic Theory and the Discovery of Atomic Structure Problems submitted by the student: 12 C. Title of segment #3: Modern View of Atomic Structure: Atomic Weights Problems submitted by the student: 26, 29, 35 D. Title of segment #4: The Periodic Table; Molecules and Ions Problems submitted by the student: 47, 51, 53, 56, 60 E. Title of segment #5: Naming Inorganic Compounds; Organic Molecules

MODULE F: Chapter 3 in Textbook

Chapter 3: Stoichiometry

I. End of Chapter Problems—Starting on Page 108

Problems submitted by the student: 67, 68, 69

This chapter should be a review of balancing equations, types of reactions, Avogadro's number, the mole, molar mass, and stoichiometry conversions. We will go back and look at empirical formulas and limiting reactants in the first unit.

Complete the following problems from the textbook. If you come across a problem you are not sure of, read through the corresponding section in the textbook for help.

A. Title of segment #1: Visualizing Concepts	
Problems submitted by the student: 1, 7	
B. Title of segment #2: Balancing Chemical Equations	
Problems submitted by the student: 10, 12, 14	
C. Title of segment #3: Patterns of Chemical Reactivity	
Problems submitted by the student: 17, 20	
D. Title of segment #4: Formula Weights	
Problems submitted by the student: 21a-d, 25	
E. Title of segment #5: Avogadro's Number and the Mole	
Problems submitted by the student: 28, 33, 36	
F. Title of segment #6: Calculations Based on Chemical Equations	
Problems submitted by the student: 57, 59, 63, 64	
G. Title of segment #7: Limiting Reactants; Theoretical Yields	